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Higher-order Massey products for algebras over algebraic
operads

Oisín Flynn-Connolly, José M. Moreno-Fernández

Abstract

We introduce higher-order Massey products for algebras over algebraic operads. This extends
the work of Fernando Muro on secondary ones. We study their basic properties and behavior with
respect to morphisms of algebras and operads and give some connections to formality. We prove
that these higher-order operations represent the differentials in a naturally associated operadic
Eilenberg–Moore spectral sequence. We also study the interplay between particular choices of
higher-order Massey products and quasi-isomorphic P∞-structures on the homology of a P -
algebra. We focus on Koszul operads over a characteristic zero field and explain how our results
generalize to the non-Koszul case.

1 Introduction

In [18], reprinted as [19], W. S. Massey introduced the classical triple Massey product, a secondary
operation on the (co)homology of differential graded associative algebras. He used this new
operation to show that the Borromean rings are non-trivially linked. Similar secondary operations
were defined independently by Allday and Retah on the homology of differential graded Lie algebras,
see [1, 2, 26]. The existence of these higher-order products is due to the vanishing of certain
equations that follow from the associativity and Jacobi relations at the chain level, respectively.
Recently, F. Muro has shown that secondary operations analogous to Massey’s in the case of
associative algebras on the homology of differential graded algebraic structures are not ad-hoc
at all [22]. Indeed, the theory of algebraic operads explains and organizes the existence and
construction of these operations. An algebraic operad is an operad in the symmetric monoidal
category of Z-graded vector spaces over a characteristic zero field, and will be assumed to be
Koszul. In loc. cit., Muro defines secondary Massey products for algebras over algebraic operads.
Given an algebraic operad P , each quadratic relation in the presentation of P defines a secondary
Massey-product-like operation on the homology of the P -algebras. This secondary operation takes
as many inputs as the arity of the relation. In this way, the associativity relation of the associative
operad yields the classical triple Massey products, while the Jacobi identity relation of the Lie
operad yields the Lie–Massey brackets. Under this new point of view, Muro uncovered secondary
Massey-product-like operations for many distinct types of algebras for the first time, and gave
applications to hyper-commutative and Gerstenhaber algebras.

In Muro’s paradigm, there is no restriction as to the arity of the relation. Thus, a relation Γ of
arity r in a presentation of an operad P produces a Massey-product-like operation with r inputs
〈−, ...,−〉Γ on the homology of the P -algebras. However, this still left the definition of higher-order
Massey product operations unclear. This is where our work enters the picture. It is well-known
that the triple Massey product is just the first in an infinite series of higher-order operations on the
homology of differential graded associative algebras, roughly witnessing the different ways in which
an n-fold product in homology vanishes as a consequence of associativity. These higher-order
products have been shown many times to be essential in a wide range of topics where triple Massey
products are not enough, see for example the survey [14]. In particular, they are concrete tools for
computations when a fully-fledged A∞-structure is not available.

In this work, we introduce and study higher-order Massey products for algebras over algebraic
operads. These higher operations include Muro’s secondary ones, and gather together to form the
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hierarchy of higher operations on the homology of algebras over algebraic operads mentioned
before. Our approach generalizes the fruitful framework of higher-order Massey products for
differential graded associative algebras to algebras over any algebraic operad, producing a new
tool to perform computations in many kinds of differential graded algebras.

The importance of these higher-order operations seems to have been neglected due to a
widespread misconception. This misconception consists of thinking that, whenever a higher-
order Massey product set 〈x1, ..., xr 〉 on the homology of a differential graded associative algebra is
defined, then any transferred A∞-structure {mr } on the homology of this differential algebra via
the homotopy transfer theorem satisfies

±mr (x1, ..., xr ) ∈ 〈x1, ..., xr 〉. (1)

This is true only for the triple Massey product, but fails in general [5]. Algebras over operads other
than the associative one behave in the same manner (Theorem 4.2). This fact makes the higher-
order operations defined in this paper important, filling a fundamental gap in the understanding
of the homology of differential graded algebraic structures. Being slightly more precise, we show
that if the homology of an algebra over a Koszul operad P is endowed with a P∞-algebra structure
quasi-isomorphic to the original structure, then the P∞-algebra structure maps recover higher-
order Massey products only up to lower-arity P∞-algebra structure maps. We also prove, however,
a positive result in this direction: for any choice of class in a higher-order Massey product set,
under a linearly independence hypothesis, one can make appropriate choices in the homotopy
transfer theorem so that the induced P∞ structure on the homology of the P -algebra recovers this
choice exactly by Formula (1).

Let us briefly explain how these higher-order Massey products arise. Let P be a Koszul operad
with Koszul dual cooperad P

¡ (we explain in Remark 2.16 how to deal with the non-Koszul case).
Each weight-homogeneous cooperation Γc of P

¡ gives rise to a partially defined higher operation
〈−, ...,−〉Γc on the homology of any P -algebra. The number of inputs of this operation is the arity r
of Γc . If A is a P -algebra, then out of homogeneous elements x1, ..., xr ∈ H∗(A), the operation gives
a (possibly empty) set of homology classes

〈x1, ..., xr 〉Γc ⊆ H∗(A).

The non-emptiness depends on the vanishing, in a precise sense, of higher operations of the
same kind that arise from Γc and have strictly lower weight-degree. We call 〈x1, ..., xr 〉Γc the Γc -
Massey product of the classes x1, ..., xr . The process to construct the Γc -Massey product operation
〈−, ...,−〉Γc is done by a non-trivial analogy with the case of differential graded associative algebras.
To wit, the cooperation Γc determines a set of indices I (Γc ) which is then used to form defining
systems. Fixed a P -algebra A and homogeneous elements x1, ..., xr ∈ H∗(A), where r is the arity of
Γc , a defining system for the Γc -Massey product 〈x1, ..., xr 〉Γc is a coherent choice of elements {aα}
of A indexed by I (Γc ) that conspire together to create a cycle. Running over all possible choices
of defining systems for x1, ..., xr , we obtain all possible representatives of the homology classes
in the set 〈x1, ..., xr 〉Γc . This construction is the core of the paper, and it is performed in Section
2. Since the details are quite technical, we skip them for the moment and refer the reader to
the mentioned section. There, we give explicit examples, including the case of the associative,
commutative, Lie, and dual numbers operads. We prove that our framework generalizes Muro’s
in Proposition 2.9. In Section 2.1, we study the basic properties enjoyed by these new operations.
For example, we prove that morphisms of P -algebras preserve higher-order Massey products,
and that quasi-isomorphisms induce a bijective correspondence between them. This makes
the higher-order Massey products a useful tool in the study of homotopy types of algebras over
operads; in particular, they can be used to study formality-type results. In Section 2.2, we explain
how higher-order Massey products behave with respect to morphisms of operads. Under mild
assumptions, higher-order Massey products can be pulled back and forward along morphisms
of operads. This allows one to relate the formality (or more generally, the quasi-isomorphism
class) of an algebra of a certain type to the formality (or quasi-isomorphism class) of a functorially
associated algebra of a distinct type. The reader can have in mind the adjoint pair between taking
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the universal enveloping differential graded associative algeba of a differential graded Lie algebra,
and forming the commutator bracket of a dg associative algebra. Under some hypotheses, one can
relate formality and quasi-isomorphism classes in both directions.

We prove some further results related to higher-order Massey products. It is a well-known and
celebrated result that higher-order Massey products for associative algebras provide a concrete
description of the differentials in the Eilenberg–Moore spectral sequence. In Section 1.1.1, we
explain how to construct an Eilenberg–Moore-type spectral sequence for any algebra over an
algebraic operad. Under mild hypotheses, this spectral sequence computes the Quillen homology
of the algebras over this operad. The spectral sequence is then exploited in Section 3. Our main
result in this direction is Theorem 3.2, which proves that the higher-order Massey products defined
in this paper provide concrete representatives for the differentials in this Eilenberg–Moore-type
spectral sequence. To finish the paper, we give in Section 4 a precise relationship between the
higher-order Massey products on the homology of a P -algebra, and transferred P∞-structures on
it.

Acknowledgements: The authors would like to thank Coline Emprin, Grégory Ginot, Fernando
Muro and Pedro Tamaroff for useful conversations and comments; and furthermore to the anony-
mous referee for their time, effort, and excellent advice. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 945322. The second author has been partially supported by the
MICINN grant PID2020-118753GB-I00 and by the Junta de Andalucía grant ProyExcel-00827.

Notation and conventions

In this paper, all algebraic structures are taken over a base field k of characteristic zero. We work
on the category of unbounded chain complexes over k with homological convention. That is, the
differential d : A∗ → A∗−1 of a chain complex (A,d) is of degree −1. The degree of a homogeneous
element x is denoted by |x|. The suspension of a chain complex (A,dA) is the chain complex
(s A,ds A) = (ks ⊗ A,1⊗d), where s is a formal variable of degree 1. For a homogeneous element
a ∈ A, we denote sa = s ⊗a ∈ s A. Thus, (s A)∗ ∼= A∗−1, and ds A (sa) =−sdA(a) for every such a ∈ A.
The symmetric group on n elements is denoted Sn . The operads in this paper are taken in the
symmetric monoidal category of Z-graded vector spaces, and therefore have zero differential.
In this monoidal category, we follow the Koszul sign rule. That is, the symmetry isomorphism

U ⊗V
∼=−→ V ⊗U that identifies two graded vector spaces is given on homogeneous elements by

u ⊗ v 7→ (−1)|u||v |v ⊗u. Algebras over operads are always differential graded (dg) and homological.
We will frequently omit the adjective "dg" and assume it is implicitly understood. The reason
for choosing the operads to have trivial differential is that in this case, the homology of any dg
P -algebra is a graded (non-dg) P -algebra again. If f : A → B is a morphism of differential graded
algebras over an operad, then we denote by f∗ : H∗(A) → H∗(B) the induced map in homology.

1.1 Preliminaries

In this section, we collect some of the prerequisites for understanding this paper. We start in
Section 1.1.1 by giving a brief recollection of the results of operad theory that we will make use of,
mainly to establish our notation. We borrow most of the notation from [16], which is an excellent
reference for algebraic operads. A non-standard topic explained in this section is the construction
of the Eilenberg–Moore-type spectral sequence mentioned in the introduction. In Section 1.1.2, we
recall the higher-order Massey products for differential graded associative algebras. To finish, we
briefly summarize in Section 1.1.3 the construction of the secondary Massey products for algebras
over algebraic operads as defined by Muro in [22].

1.1.1 Operadic background

In this paper, we work with operads in the symmetric monoidal category of graded vector spaces.
Our generic operad P is therefore arity-wise made up of Z-graded vector spaces, but it has no
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differential. That is, we work with non-dg operads. The reason is that if A is a P -algebra, we will
need A and its homology H∗(A) to be algebras over the same operad. Our operads will always
satisfy P (0) = 0, except for theorems 1.2 and 4.2, where they need to be reduced. Recall that an
operad P is reduced if P (0) = 0 and P (1) = k.

This paper will assume familiarity with the results and notation from [16], and we will adopt its
notation for most of the objects used in this paper (infinitesimal compositions, twisting morphisms,
weight gradings, and Koszul duality). We shall briefly sketch only those results that will be essential
to understand this paper.

Quadratic and Koszul operads. A symmetric sequence E is reduced if E(0) = E(1) = 0. An operad
P is quadratic if it is given by a presentation F (E ,R), that is, if it is given as the quotient F (E )/(R)
of the free operad F (E) on the reduced symmetric sequence E by the operadic ideal of relations
generated by a sub S-module of relations R ⊆F (E)(2). Here, F (E)(n) is the sub S-module of F (E)
formed by elements of weight n, that is, formed by combining exactly n generating operations from
E . The free operad F (E) comes equipped with a weight grading concentrated in non-negative
degrees. Since the operadic ideal (R) is homogeneous with respect to the weight grading of F (E)
and P is a quotient of F (E), the weight grading of F (E) naturally descends to P . The degree n
component of this weight grading on P will be denoted P (n). Similarly, one can construct the
cofree conilpotent cooperad F c (E). To do so, consider the same underlying symmetric sequence
F (E), endowed with the same weight-grading. Dually, we can consider the conilpotent sub-
cooperad F c (E ,R) of F c (E) which is final among the conilpotent sub-cooperads C of F c (E)
equipped with a morphism of S-modules C → E such that the composite

C ,→F c (E)↠F c (E)(2)/R

is 0. The weight grading of F c (E ) restricts to the sub-cooperad F c (E ,R), and the degree n compo-
nent of this weight grading on F c (E ,R) will be denoted F c (E ,R)(n). In particular, and this will be
important later, the weight 2 component of F c (E ,R) is precisely the submodule of co-relations R,

F c (E ,R)(2) = R.

We call F c (E ,R) the cofree conilpotent cooperad cogenerated by E with corelations R . A cooperad
C is quadratic if it is given by a presentation F c (E ,R) as above, that is, if is is given as the subcoop-
erad of F c (E) just described. Let P =F (E ,R) be a quadratic operad. Its Koszul dual cooperad is
defined as

P
¡ =F c (

sE , s2R
)

.

The canonical twisting morphism is the degree −1 morphism of S-modules κ : P ¡ →P given by
the composite

κ : F c (
sE , s2R

)
↠ sE

s−1

−−→ E →F (E ,R) .

If P is augmented, then we can functorially associate to it a quasi-free differential graded conilpo-
tent cooperad BP , called the bar construction of P . If P is quadratic, then it is naturally aug-
mented, and the Koszul dual cooperad P

¡ is a subcooperad of BP with trivial differential. The
operad P is Koszul if the inclusion P

¡
,→ BP is a quasi-isomorphism. The cooperad BP , being dif-

ferential graded, has a homology cooperad H∗ (BP ). This homology admits an extra cohomological
degree called the syzygy degree. It can be seen that P is Koszul if, and only if, H 0 (BP ) ∼=P

¡. The
assignment of a Koszul dual cooperad is functorial on weighted operads as long as the morphisms
of operads preserve the weight.

P∞-structures and Quillen homology. In this section, we discuss several ways to present a
P∞-structure on a chain complex A for a given Koszul operad P , and define the Quillen homology
of a P -algebra. A convenient choice of model for P∞ is the cobar construction ΩP

¡, where P
¡

is the Koszul dual cooperad of P . Recall that the cobar construction is the left adjoint of the
bar construction B , mapping onto the category of augmented differential graded operads. A P∞
structure on A is therefore a morphism of differential graded operads ΩP

¡ → EndA , where EndA is
the endomorphism operad of A. Under this point of view, we can think of a P∞-algebra structure
on A as a family of operations

{
A⊗n → A

}
parametrized by the operad ΩP

¡.
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By the Rosetta Stone Theorem [16, Theorem 10.1.13], an equivalent approach, and the one which
we shall use in the rest of this document, is to define a P∞-algebra to be a chain complex A along
with a degree −1 square zero coderivation

δ : P
¡
(A) →P

¡
(A) .

Briefly recall that if A is a P -algebra, then P
¡
(A) is a quasi-free P

¡-coalgebra whose coderivation
codifies the internal differential of A as well as its P -algebra structure. The coderivation is meant as
a P

¡-coalgebra, and we explain next how to understand this. Since it squares to zero, we might call
it the codifferential of P

¡
(A). It will often be convenient to present δ in two different ways. Firstly,

as a collection of linear maps δr : P ¡(r )⊗ A⊗r → A, for r ≥ 1, where each δr is the composition

P
¡
(r )⊗ A⊗r ,→ ⊕

k≥1
P

¡
(k)⊗ A⊗k =P

¡
(A)

δ−→P
¡
(A)

ϵA−→ A.

Here, ϵ is the counit of the P
¡ comonad. The coderivation δ can be reconstructed from the family

{δr }r≥1 as the map

P
¡
(A)

△(1)−−−→
(
P

¡ ◦(1) P
¡
)

(A) =P
¡ ◦

(
A;P

¡
(A)

)
id◦(id;m)−−−−−−→P

¡ ◦ (A; A) →P
¡
(A) .

Here, △(1) is the infinitesimal decomposition coproduct of P
¡, see [16, §6.1.4], and m is the

map (δr )r≥1 :
⊕

r≥1 P
¡(r )⊗ A⊗r → A induced by the universal property of the coproduct of the

underlying graded vector spaces. Secondly, we can present δ as a collection of degree n −2 linear
maps δ(n) : P ¡(A)(n) → A, for n ≥ 1, where each δ(n) is the composition

P
¡
(A)(n) ,→P

¡
(A)

δ−→P
¡
(A)

ϵA−→ A,

and where P
¡(A)(n) consists of the weight n part of P

¡(A),

P
¡
(A)(n) = ⊕

r≥n

(
P (n)(r )⊗Sr A⊗r )

.

To reconstruct δ from the family
{
δ(n)

}
n≥1, one proceeds mutatis mutandis as in the case of {δr }r≥1.

The object (P ¡(A),δ) is called the operadic chain complex. The Quillen homology of a P -algebra
A is the homology H∗

(
P

¡(A),δ
)

of this operadic chain complex. It forms a (non-differential) graded
P

¡-coalgebra.

A P∞-algebra A is a strict P -algebra if the map m factors through the canonical twisting
morphism κ : P ¡ →P . Conversely, any P -algebra A can be seen as a P∞-algebra by pulling back
its algebra structure along the morphism of operads ΩP

¡ →P .

A P∞-morphism is a map of (dg) P
¡-coalgebras F :

(
P

¡
(A) ,δ

)→ (
P

¡(B),δ′
)
. As in the case of a

codifferential on a P
¡-coalgebra, it will often be convenient to present F as a collection of linear

maps Fn : P ¡(n)⊗ A⊗n → B , for n ≥ 1, where each Fn is the composition

P
¡
(n)⊗ A⊗n ,→ ⊕

k≥1
P

¡
(k)⊗ A⊗k =P

¡
(A)

F−→P
¡
(B)

ϵB−→ B.

The map F can be reconstructed from the family {Fn}n≥1 as the map

P
¡
(A)

△−→P
¡ ◦P

¡
(A)

P
¡( f )−−−−→P

¡
(B),

where f is the map (Fi )i≥1 :
⊕

i≥1 P
¡(n)⊗A⊗n → B induced by the universal property of the coprod-

uct. Similarly, we can decompose by weight instead of arity to produce a collection of degree n −1
linear maps F (n) : P ¡(A)(n) → B .

The P -Eilenberg–Moore spectral sequence. Let A be an algebra over a Koszul operad P and
H = H∗(A) be its homology. There is a spectral sequence, which we call the P -Eilenberg–Moore
spectral sequence, that computes the Quillen homology of A as long as A is positively graded of

5



finite type (which is implicitly assumed whenever we speak of convergence). It is constructed as
follows. The operadic chain complex P

¡(A) admits the ascending filtration

FpP
¡
(A) =

p⊕
n=1

P
¡
(A)(n).

This filtration is bounded below and exhaustive. Therefore, the associated spectral sequence
converges to the operadic homology of A as a graded module. The complex P

¡(A) also has the
structure of a conilpotent cofree P

¡-coalgebra with comultiplication∆, which respects the filtration
in the sense that

∆
(
FpP

¡
(A)

)
⊆

p⊕
k=1

⊕
i1+···+ik=p

P
¡
(k)⊗

(
Fi1P

¡
(A)⊗·· ·⊗Fik P

¡
(A)

)
.

This further implies that each page of the spectral sequence inherits a P
¡-coalgebra structure, and

furthermore, the spectral sequence converges as a P
¡-coalgebra. A morphism of P

¡-coalgebras
naturally induces a morphism of the corresponding spectral sequences. The E 0-page of this
spectral sequence is explicitly given by

E 0
p,q =

(
P

¡
(A)(p)

)
p+q

∼=
(⊕

r≥1

(
P

¡
)(p)

(r )⊗Sr A⊗r
)

p+q

where the p+q grading is induced from the internal grading of A. Under the isomorphism above, the
differential d 0 is determined by the differential d of A, and there is an isomorphism of differential
bigraded modules (

E 0,d 0)∼= (
P

¡
(A),δ(1)

)
,

where abusing the notation, δ(1) stands for the coderivation of P
¡(A) induced by the weight 1

component of the codifferential δ. Taking homology of
(
E 0,d 0

)
, it follows that the E 1-page of the

spectral sequence is

E 1
p,q =

(
P

¡
(H∗ (A))(p)

)
p+q

and the differential on this page is therefore entirely determined by the weight 2 component of the
codifferential. In other words, we have that d 1 = H∗

(
δ(2)

)
. Taking homology again, we finally have

E 2
p,q = Hp+q

(
P

¡
(H)(p)

) p====⇒ H∗
(
P

¡
(A),δ

)
.

While this definition seems to be original to this paper for general operads, it has some very well-
known special cases. When P is binary, that is, generated by operations of arity 2, the weight
grading coincides with the arity grading up to a shift. So, for example, when P = Ass is the
associative operad, the P -Eilenberg–Moore spectral sequence is exactly the classical Eilenberg–
Moore spectral sequence [8]. When P = Lie is the Lie operad, the P -Eilenberg–Moore spectral
sequence is exactly a classical Quillen spectral sequence that appears in [24, (6.9) p. 262].

Remarks 1.1.

1. If A is an algebra over a Koszul operad P , there are several spectral sequences closely related
to the one defined above. First, we can filter P

¡ by weight. This gives the spectral sequence
we studied above. Second, we can filter P

¡ by arity. This produces a spectral sequence that
coincides with the previous one up to a shift when the operad is binary generated, or more
generally, when the generators of the operad are concentrated in a single arity. However,
in general, these two spectral sequences differ. Third, one can replace P

¡ with the bar
construction BP and filter similarly. Since not every operad is Koszul, this spectral sequence
will be useful in those situations.

2. If A is a P∞-algebra, then the construction of the spectral sequence above goes through with
straightforward adjustments.
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A version of the homotopy transfer theorem. In [23, Theorem 2], D. Petersen gave what probably
is the most general form of T. Kadeishvili’s version of the classical homotopy transfer theorem
[11] for algebras over binary algebraic operads. Adapted to our needs, it reads as follows. In the
statement, P is a reduced Koszul operad.

Theorem 1.2. Let (A,d) be a P -algebra, H its homology, and f : H → A a cycle-choosing (and
therefore necessarily degree 0) linear map. Let δA be the degree −1 square-zero coderivation of P

¡(A)
representing the P -algebra structure on A whose arity 1 term equals the given differential d. Then
there exists noncanonically a square-zero degree −1 coderivation δ of P

¡(H) whose arity 1 term
vanishes, and a morphism of P

¡-coalgebras F : P ¡(H ) →P
¡(A) whose linear term F1 is f and which

is a chain map with respect to the differentials defined by δA and δ.

Sketch of the proof. The homology H is equipped with the structure of a P -algebra descending
from the P -algebra structure on A. This induces a degree −1 coderivation δ1 : P

¡
(H) → P

¡
(H)

whose arity 1 component δ1
1 is identically 0. Now, by induction, assume that for some n ≥ 2, we have

a degree −1 coderivation δn−1 : P
¡
(H) →P

¡
(H) and a P

¡-coalgebra morphism F n−1 : P
¡
(H) →

P
¡(A) with F1 = f , such that the restrictions of δn−1 and F n−1 to Fn−1P

¡
(H) satisfy{

δn−1 ◦δn−1 = 0

F n−1 ◦δn−1 −δA ◦F n−1 = 0.

Above, ◦ denotes the usual composition of maps, not the operadic circle product. Write F 1 for the
coalgebra map determined by f in arity 1 and vanishing in higher arities. Then δ1 and F 1 satisfy
the identities above, providing the base case in the induction. The idea now is to modify only
the arity n terms of δn−1 and F n−1 to produce new δn and F n such that the equations above are
satisfied on FnP

¡(A). One can show that there are e and e ′ such that(
F n−1 ◦δn−1 −δA ◦F n−1)

n = f ◦e +de ′

where e ∈ Hom(P ¡(n)⊗H⊗n , H) and e ′ ∈ Hom(P ¡(n)⊗H⊗n , A). Therefore, we can define

δn
i =

{
δn−1

i for i ̸= n.

δn−1
n −e for i = n.

In fact, e may be computed as the projection of
(
F n−1 ◦δn−1 −δA ◦F n−1

)
n onto H . Similarly, we

can define F n
n to be

F n
i =

{
F n−1

i if i ̸= n.

F n
n for any F n

n such that dF n
n = F n−1

n −e ′ when i = n.

So defined, the coderivation δn and the coalgebra map F n satisfy the required conditions, and the
proof is complete.

1.1.2 Higher-order Massey products for associative algebras

The triple Massey product for differential graded associative algebras was introduced in the fifties,
see [29] and [18] (reprinted as [19]). Massey himself soon realized that the triple product could
be extended to n-fold Massey products [17], see also [21]. Our generalization of the higher-order
Massey products to algebras over algebraic operads has its roots in this definition. Therefore, we
find it convenient to devote this section to recall the higher-order Massey products for differential
graded associative algebras. Excellent references for this topic include [12, 21, 25].

Let (A,d) be a differential graded associative algebra, and x1, x2 ∈ H∗(A) homogeneous elements.
The Massey product 〈x1, x2〉 is defined as the singleton {x1x2} formed by the product of the two
classes in H∗(A). It is also possible to identify the set {x1x2} with the product x1x2 itself and define
the Massey product of two homogeneous elements in homology as their ordinary product. Let us
define next the triple and higher-order Massey products. First, we introduce the auxiliary notion of
a defining system. A defining system in the case of the Massey product of two homology classes
〈x1, x2〉 is just a choice {b1,b2} of cycle representatives of x1 and x2.
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Definition 1.3. Let (A,d) be a differential graded associative algebra, and x1, . . ., xn be n ≥ 3
homogeneous elements in H∗(A). A defining system for the nth-order Massey product of the classes
x1, ..., xn is a set of homogeneous elements{

bi j
}⊆ A, for 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1,

defined as follows.

• (Initial step) For i = 1, . . .,n the element bi−1,i is a cycle representative of xi .

• (Inductive relation) For each 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1, the element bi j ∈ A satisfies

d
(
bi j

)= ∑
0≤i<k< j≤n

(−1)|bi k |+1bi k bk j . (2)

The nth-order Massey product of the classes x1, ..., xn is the set

〈x1, . . ., xn〉 =
{[ ∑

0≤i<k< j≤n
(−1)|bi k |+1bi k bkn

]
| {

bi j
}

is a defining system

}
⊆ Hs+2+n(A),

where s =∑n
i=1 |xi |, and the bracket [−] denotes taking homology class.

The elements bi j of Equation (2) might not exist at all, in which case the Massey product set
is empty. The necessary and sufficient condition for 〈x1, . . ., xn〉 to be non-empty is that for all
1 ≤ i < j ≤ n and 1 ≤ j−i ≤ n−2, the Massey product sets 〈xi , ..., x j 〉 are non-empty and furthermore
contain the zero class in a coherent manner.

The fact that for a fixed defining system the sum∑
0≤i<k< j≤n

(−1)|bi k |+1bi k bkn

defines a cycle is a straightforward check by applying d and using the inductive relations. If there
are no defining systems for the classes x1, ..., xn , their Massey product 〈x1, . . ., xn〉 is defined as the
empty set, or it is said to be undefined.

A similar definition for higher Lie–Massey brackets on the homology of a differential graded
Lie algebra exists, see [1, 2, 26, 4, 28]. The main purpose of this paper is to provide a suitable
generalization of Definition 1.3 to algebras over Koszul operads, see Section 2.

1.1.3 Secondary Massey products for algebras over algebraic operads

In this section, we briefly outline Muro’s definition of secondary Massey products for algebras over
algebraic operads. Our eventual definition of Massey products for algebras over operads, Def. 2.7,
is shown to extend the one below in Proposition 2.9.

Definition 1.4. ([22, Def. 2.1]) Let P = F (E ,R) be a Koszul operad generated by the reduced
symmetric sequence E with quadratic relations R ⊆F (E)(2). Fix

Γ=∑(
µ(1) ◦k µ

(2)) ·σ
a relation of arity r of R. Here, µ(i ) ∈ E(ri ), with r1 + r2 = r +1, the symbol ◦k denotes the k-th
partial composition product, 1 ≤ k ≤ r1, and σ ∈Sr . Let A be a P -algebra and let x1, ..., xr ∈ H∗(A)
be homogeneous elements such that

µ(2) (xσ−1(k), . . . , xσ−1(k+r2−1)

)= 0 (3)

in H∗(A) for each term in the relation. For each 1 ≤ i ≤ r , fix yi ∈ A a cycle representative of xi and,
for each summand in the relation, let ρ(2) ∈ A be an element such that

dρ(2) =µ(2) (yσ−1(k), . . . , yσ−1(k+r2−1)

)
(4)
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in A. Such an element exists by Equation (3). The Γ-Massey product set 〈x1, . . . , xr 〉Γ is the set of
homology classes represented by cycles of the form∑

(−1)γµ(1) (yσ−1(1), . . . , yσ−1(k−1),ρ
(2), yσ−1(k+r2), . . . , yσ−1(r )

)
,

where

γ=α+|µ(1)| + (|µ(2)|−1
) k−1∑

m=1
|xσ−1(m)|, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |.

for all possible coherent choices of elements ρ(2).

Muro shows that the definition above recovers the usual triple Massey products for differential
graded associative algebras when Γ is the associativity relation of the associative operad, and the
triple Lie–Massey brackets for differential graded Lie algebras when Γ is the Jacobi relation of the
Lie operad.

The perspective we take to construct higher-order Massey products for algebras over algebraic
operads differs significantly from the construction of Muro just explained. Muro uses the form of
relations defined using partial composition. The definition does not depend exclusively on the
relation Γ, but also on a specific choice of expansion of Γ in terms of the partial compositions. This
choice is not unique. Our approach is also affected by a choice in the explicit form of the higher
relations. To generalize, we prefer to see such relations as the weight 2 cooperations in the Koszul
dual cooperad of P , and work with defining systems in a similar way as in Definition 1.3. This
makes our formulas easier to write in the usual language of algebraic operads and Koszul duality
theory. To take into account the dependency of the higher relations on a presentation, we will
assume all through that a k-linear basis of the symmetric sequence E has been fixed, and then
there is an induced basis on F c (sE) given by symmetric tree monomials. This will be recalled in
the corresponding section. We show in Proposition 2.9 that the secondary case of our definition
coincides with Muro’s definition.

2 Higher-order operadic Massey products

In this section, we define higher-order Massey products for algebras over algebraic operads. We
focus on the case of Koszul operads and explain in Remark 2.16 how to deal with the non-Koszul
case. We recommend familiarity with the classical higher-order Massey products for differential
graded associative algebras recalled in Section 1.1.2.

Let P = F (E ,R) be a Koszul operad with Koszul dual cooperad P
¡ = F c (sE , s2R). We will

assume all through the paper that a k-linear basis of E has been fixed. Then, there are induced
bases on F (E) and on F c (sE) given by appropriate symmetric tree monomials, see [7, Section
2.4]. These bases will also be fixed once and for all. Since P

¡ ⊆F c (sE), we will use this basis to
linearly expand the elements of P

¡ in our results.
As mentioned in the introduction, each weight-homogeneous cooperation Γc of P

¡ creates a
partially defined higher-order operation 〈−, ...,−〉Γc on the homology of any P -algebra, with as
many inputs as the arity r of Γc . Out of homogeneous elements x1, ..., xr ∈ H∗(A) on the homology
of a P -algebra A, this operation creates a (possibly empty) set of homology classes

〈x1, ..., xr 〉Γc ⊆ H∗(A).

The non-emptiness depends on the vanishing, in a precise sense, of strictly lower-order operations
of the same kind that depend on Γc . The set 〈x1, ..., xr 〉Γc is called the Γc -Massey product of the
classes x1, ..., xr .

To construct the Γc -Massey product operation 〈−, ...,−〉Γc , we proceed as follows. First, the
cooperation Γc determines a set of indices I (Γc ) which is then used to form defining systems.
A defining system for the concrete Γc -Massey product set 〈x1, ..., xr 〉Γc is a coherent choice of
elements {aα} of A indexed by I (Γc ) that are combined to create a cycle. The homology classes
contained in 〈x1, ..., xr 〉Γc are obtained by running over all possible choices of defining systems for
x1, ..., xr and taking the homology class of the associated cycle.
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The section is organized as follows. First, we introduce the Massey inductive map. This map
depends on the coproduct of P

¡ and a fixed twisting morphism κ : P
¡ → P . It is an essential

ingredient when dealing with the inductive definitions that follow. Then, we define the indexing
set I (Γc ) associated to an arbitrary cooperation Γc and compute some examples. Once the concept
of indexing sets is established, we proceed to explain what a defining system is and give examples
of them. Then, we define the higher-order Γc -Massey products, and compute examples including
the associative, commutative, Lie, Poisson, and dual numbers operads. Later on, we show that
our higher-order Massey products framework includes Muro’s [22] (Prop. 2.9). We study the
elementary properties of these higher-order products in Section 2.1. These include the behavior
along morphisms of P -algebras, quasi-isomorphisms, and some connections to formality. Some
further properties are explored in Section 2.2. There, we focus on the behavior of the higher-order
Massey products along morphisms of operads and give some applications to formality.

Recall that the decomposition map ∆ : C →C ◦C of any counital cooperad C can be uniquely
written as

∆(c) =∆+(c)+ (id;c)

for every arity-homogeneous c ∈C . Here, id ∈C (1) is the element that corresponds to the identity
element 1 of the ground field k under the linear isomorphism C (1) → k induced by the counit. We
call ∆+ the half-reduced decomposition map of C .

Definition 2.1. The Massey inductive map is the degree −1 map

D : F c (sE)
∆+
−−→F c (sE)◦F c (sE)

κ◦id−−−→ E ◦F c (sE) .

Applied to some cooperation µ, we shall write

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) , (5)

where ζ ∈ E(m), ζi ∈F c (sE) (vi ), σ ∈Sm and v1 +·· ·+ vm is equal to the arity of µ.

The sum in Equation (5) is indexed over all ζ along the chosen basis of E , and each term may
have a k-coefficient (possibly 0). The map D is inductive in the sense that, for any cooperation µ,
the cooperations ζ1, . . . ,ζm appearing on the terms of D

(
µ
)

will each always have weight strictly
less than that of µ. This will allow us to establish the inductive relations of our defining systems
later on. If P is a Koszul operad, then the fact that P

¡ is a subcooperad of F c (sE) allows us to
restrict the Massey inductive map to a map

D : P
¡ ∆+
−−→P

¡ ◦P
¡ κ◦id−−−→ E ◦P

¡
.

Abusing the notation, we call this restriction the Massey inductive map too, and use the same
symbols to denote the maps that constitute it.

As mentioned before, the cofree conilpotent cooperad F c (sE) has a fixed combinatorial de-
scription in terms of rooted tree monomials whose internal vertices are labeled by elements of sE .
Each such tree monomial has a first vertex, which is the unique child of the root and corresponds
to the first generating cooperation to be applied. The action of D is determined by sending any
tree monomial T to

(
s−1x;T1, . . .Tm

)
, where x ∈ (sE) (m) is the label of the first vertex of T , and

T1, . . . ,Tm are the tree monomials attached to this first vertex of T . Intuitively, the Massey inductive
map is trimming level 1 edges. See figures 1 and 2.

Next, we introduce the set associated with a cooperation of P
¡ that will provide the indices for

our defining systems. It is defined by induction on the weight of arity-homogeneous cooperations
of P

¡, with the Massey inductive map providing the necessary inductive step.

Definition 2.2. Let Γc ∈ P
¡(r ) be a weight-homogeneous cooperation. For each permutation

(k1, ...,kr ) ∈Sr , we define the Γc -indexing set I (Γc , (k1, ...,kr )) by induction on the weight w (Γc ) of
Γc as follows.

• If w (Γc ) = 0, then I (Γc ) =;.

• If w (Γc ) = 1, then I (Γc , (1)) = {(id, (1)) , ..., (id, (r ))}.
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Assume next that I (Γc , (k1, ...,kr )) has been defined for cooperations up to weight n, and suppose
Γc is of weight n +1. If

D
(
Γc)=∑

(ζ;ζ1, . . . ,ζm ;σ)

as in Equation (5), and the leaves on top of each ζi are labeled l1, ..., lvi , then

I
(
Γc , (k1, ...,kr )

)
:=

m⋃
i=1

I
(
ζi ,

(
kl1 , ...,klvi

))
∪

{(
ζi ,

(
kl1 , ...,klvi

))}
.

The super index c in Γc indicates that we are seeing the corresponding element in the Koszul
dual cooperad of P . At a later place, we will see this same element as a relation Γ in the free operad
F (E). Since we will need to distinguish between these two elements, we keep the super index in
the notation.

Figure 1: The Massey inductive map for Ass

Figure 2: The Massey inductive map for Lie

The following elementary observation will be the base case of the inductive definition of defining
systems below. We record this fact before giving some explicit examples.

Remark 2.3. If P is any Koszul operad and Γc ∈ (
P

¡)(1)
(r ) = (sE) (r ) is any cogenerator of arity r ,

then the Γc -indexing set is always given by

I
(
Γc)= {(id, (1)), ..., (id,(r ))} .

Let us illustrate the definition of indexing sets with some examples.

Example 2.4. Let P =Ass. Then the weight n component of P
¡ is freely generated as an Sn+1-

module by a single generator µc
n+1 ∈Ass

¡
(n +1). Recall that

∆
(
µc

n

)= ∑
i1+···+ik=n

(−1)
∑

(i j +1)(k− j )
(
µc

k ;µc
i1

, . . .µc
ik

; id
)

.

Here, we denote µc
1 = id ∈Ass¡

(1). Since κ
(
µc

2

)=µ2 and κ
(
µc

k

)= 0 for k ≥ 3, this implies that

D
(
µc

n

)= ∑
i1+i2=n

(−1)i1+1
(
µ2;µc

i1
,µc

i2
; id

)
.

This means that the defining system I
(
µc

n

)
contains the elements

(µc
i1

, (1,2, . . . , i1)) and (µc
i2

, (n − i2,n − i2 +1, . . . ,n)),

where i1 + i2 = n. By iterating this process, we see that

I
(
µc

n

)= {(
µc

k , (i , i +1, . . . , i +k −1)
) | k < n and i ∈ {1,2, . . . ,n −k −1}

}
.

□
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Example 2.5. Let P = Lie. Then the weight n part of P
¡ is one-dimensional and generated by

τc
n+1 ∈ Lie

¡
(n +1). Recall that

∆
(
τc

n

)= ∑
i1+···+ik=n

σ∈Sh
−1

(i1,...,ik )

(−1)
∑

(i j +1)(k− j ) sgn(σ)
(
τc

k ;τc
i1

, . . .τc
ik

;σ
)

,

where Sh
−1

(i1, . . . , ik ) is the set of reduced unshuffles. Here, an unshuffle is the inverse of a shuffle,
and reduced signifies that we are considering only those shuffles that fix the position of the first
element, i.e. σ(1) = 1. Since κ(τc

2) = τ2 and κ(τc
k ) = 0 for k ≥ 3, this implies that

D
(
τc

n

)= ∑
i+ j=n

σ∈Sh
−1

(i , j)

(−1)i+1 sgn(σ)
(
τ2;τc

i ,τc
j ;σ

)
.

This means that the defining system I
(
τc

n

)
contains the elements(

τc
i , (σ(1),σ(2), . . . ,σ(i ))

)
and

(
τc

j ,
(
σ(n − j ),σ(n − j +1), . . . ,σ(n)

))
for each reduced shuffle σ ∈ Sh

(
i , j

)
with i + j = n. In this step, we changed from using unshuffles

to shuffles, because there is an inversion involved. By iterating this process, we find that

I
(
τc

n

)= {(
τc

k , (i1, . . . ik )
) | k < n and 1 ≤ i1 ≤ ·· · ≤ il ≤ n

}
.

□
As mentioned before, each cooperation Γc of weight n in the Koszul dual cooperad P

¡ of
P produces a partially defined n-th order operation 〈−, ...,−〉Γc on the homology H∗(A) of a P -
algebra A. This higher operation has r inputs, where r is the arity of Γc , and the output is the
set of homology classes created from all possible choices of defining systems, generalizing the
case of associative algebras of Section 1.1.2. Our next task is to explain what the defining systems
are. Each defining system will depend on a weight-homogeneous cooperation Γc of arity r and r
homogeneous homology classes x1, ..., xr ∈ H∗(A). Their definition is given by induction on the
weight of the cooperation.

Definition 2.6. Let Γc ∈ (
P

¡)(n)
(r ) for some n ≥ 1, A a P -algebra, and x1, ..., xr ∈ H∗(A) homoge-

neous elements. A Γc -defining system (associated to x1, ..., xr ) is a collection {aα}α∈I (Γc ) of elements
of A indexed by I (Γc ) such that:

1. Each a(id,(i )) ∈ A is a cycle representative of xi .

2. For each index
(
µ, (k1, · · · ,ki )

) ∈ I (Γc ) with µ ̸= id, the corresponding element a(µ,(k1,··· ,ki )) is
such that

d
(
aµ,(k1,··· ,ki )

)=∑
ζ

(
a(
ζ1,

(
kσ−1(1),...,kσ−1(v1)

)), . . . , a(
ζm ,

(
kσ−1(v1+···+vm−1+1),...,kσ−1(i )

))) ,

where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ).

Next, we use the defining systems explained above to define the Γc -Massey products. If the
cooperation Γc is of weight 1 and arity r , that is, a cogenerator, then Γ= κ(Γc ) is a generator of P .
For any homogeneous elements x1, ..., xr ∈ H∗(A), we define their Γc -Massey product as the set

〈x1, ..., xr 〉Γc := {Γ(x1, ..., xr )}.

We may also identify this set with its unique element Γ(x1, ..., xr ) ∈ H∗(A). Let us define the Γc -
Massey products for elements of weight ≥ 2.

Definition 2.7. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ) with n ≥ 2, and x1, ..., xr homogeneous

elements of H∗(A). Then:
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1. The Γc -Massey product associated to a Γc -defining system {aα} and x1, ..., xr is the homology
class of the cycle

aΓc ,(1,...,r ) :=∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
, (6)

where D (Γc ) =∑
(ζ;ζ1, . . . ,ζm ;σ), and the sign is given by

γ=α+
m∑

i=2

(|ζi |−wgt(ζi )
)(v1+···+vi−1∑

k=1
|xσ−1(k)|

)
+1, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |,

where wgt(ζi ) is the weight of ζi .

2. The Γc -Massey product set 〈x1, . . . , xr 〉Γc is the (possibly empty) subset of H∗(A) formed by
the homology classes arising from all possible choices of Γc -defining systems {aα} associated
to x1, ..., xr .

The next result shows that the proposed definition is correct. As a consequence of it, we readily
see from the definition of defining systems that the Γc -Massey product set 〈x1, ..., xr 〉Γc is non-
empty if, and only if, for all (µ;k1, . . .ki ) ∈ I (Γc ), the Massey product set 〈xk1 , . . . , xki 〉µ is defined
and contains the zero class in a coherent manner.

Proposition 2.8. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ) for some n ≥ 2, and x1, ..., xr homogeneous

elements of H∗(A). Then the Γc -Massey product x associated to any Γc -defining system for x1, ..., xr

is a cycle.

Proof. Let {aα} be a defining system, and denote by x the associated cycle given by formula (6),

x =∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
.

Let us compute d x in terms of the Massey inductive map D and terms of the form aµ,(k1,...ki ). Recall
that the differential of A fits into the commutative diagram

P ◦ A A

P ◦ A A

id◦′d

γA

d
γA

where ◦′ is the infinitesimal composite. From here, it follows that

d x = d
(∑

ζ
(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

))
is equal to

∑ m∑
i=1

(−1)ϵi ζ
(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . ,d

(
aζi ,(σ−1(v1+···+vi−1+1),...,σ−1(v1+···+vi ))

)
, . . . aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
,

where

ϵi = |ζ|+ |aζ1,(σ−1(1),σ−1(2),...,σ−1(v1))|+ · · ·+ |aζi−1,(σ−1(v1+···+vi−2+1),...,σ−1(v1+···+vi−1))|.

Each term d
(
aζi ,(σ−1(v1+···+vi−1+1)),...,σ−1(v1+···+vi ))

)
appearing in the sum above can be rewritten in

terms of aµ,(k1,...ki ) of lower order, by using the inductive relation of the defining system (Def 2.6,
item 2). In particular, if we consider the composite

G : P
¡ ∆+
−−→P

¡ ◦P
¡ κ◦id−−−→P ◦P

¡ f−→P ◦
(
P

¡
;P

¡
) id◦(id;∆+)−−−−−−−→P ◦ (P

¡
;P

¡ ◦P
¡
)

id◦(id;κ◦id)−−−−−−−−→

P ◦
(
P

¡
;P ◦P

¡
) p−→P ◦

(
P

¡
;P

¡
) q−→P ◦P

¡
,
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where f is the natural inclusion, p is induced by the partial composition in P , and q is the forgetful
map, then the element d x is given by∑

ξ
(
aξ1,(σ−1(1),...,σ−1(v1)), . . . , aξm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
,

where G(Γc ) =∑
(ξ;ξ1, . . . ,ξm ;σ). So to prove the result, it suffices to show that G is identically 0.

We shall do this by showing that ImG ⊆ R ◦P
¡, where R is the sub-module of relations in the fixed

presentation P = F (E ,R). Recall that P
¡ can be thought of as a subset of the tree module and

all the maps defining G descend from maps on or between the free operad on E and the cofree
conilpotent cooperad on sE . It follows that we may describe G combinatorially by giving its action
on individual basis tree monomials T of F c (sE). This action is as follows.

1. First, apply the Massey inductive map D. This is sending the tree monomial T to a sum of
tree monomials of the form

(
s−1e;T1, . . .Tm

)
, where e ∈ (sE)(m) is the label of the first vertex

and T1, . . . ,Tm are its children.

2. Now, repeat this procedure on each Ti individually, thereby obtaining sums of tree monomials
of the form

(
s−1ei ;Ti ,1, . . .Ti ,mi

)
, and take for each individual tree monomial Ti the sum over

the results to obtain

(−1)ϵi
m∑

i=1

(
s−1e;T1, . . . ,

(
s−1ei ;Ti ,1, . . .Ti ,mi

)
, . . .Tm

)
.

Here, each ei is the first vertex of the corresponding Ti .

3. The final step is to apply the partial composition in the free operad F (E) in order to obtain

m∑
i=1

(
s−1e ◦i s−1ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

)
.

This time, without the suspension.

From this description, it follows that there is another equivalent way to describe G :

• First, directly apply the cooperadic reduced decomposition map ∆+ to T to obtain

∆+(T ) =∑
(S;S1, . . .Sk ) .

• Then, project the first component of F c (sE)◦F c (sE) into weight 2. That is, map S to itself if
it is in weight 2, and map it to 0 otherwise. This produces

m∑
i=1

(
e ◦i ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

)
.

• Desuspend the tree monomial e ◦i ei twice.

From this description, it follows that

m∑
i=1

(
e ◦i ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

) ∈P
¡(2) ◦P

¡
,

and thus that

m∑
i=1

(
s−1e ◦i s−1ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

) ∈ R ◦P
¡
.

This is exactly what we wanted to prove.

In the next result, we show that our higher-order Massey products recover the secondary Massey
products defined by Muro in [22] when restricting to cooperations of weight 2, up to a sign. The
construction of Muro is recalled in Section 1.1.3, and we stick to the notation used there.
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Proposition 2.9. Let P be a Koszul operad with fixed presentation F (E ,R). Let

Γ=∑(
µ(1) ◦l µ

(2)) ·σ ∈ R(r )

be a quadratic relation of arity r , and denote the corresponding weight 2 element of the Koszul dual
cooperad P

¡ by Γc , so that

Γc := s2 (Γ) =
∑

(−1)|µ
(1)| (sµ(1) ◦l sµ(2)) ·σ.

Let A be a P -algebra, and let x1, ..., xr ∈ H∗(A) be homogeneous elements. Then the Γ-Massey
product set 〈x1, . . . , xr 〉Γ of Def. 1.4 and the Γc -Massey product set 〈x1, . . . , xr 〉Γc of Def. 2.7 are the
same up to a sign,

〈x1, . . . , xr 〉Γ =±〈x1, . . . , xr 〉Γc .

In particular, the Massey product set 〈x1, . . . , xr 〉Γ is non-empty if , and only if, the Γc -Massey product
set 〈x1, . . . , xr 〉Γc is non-empty.

Proof. One can directly verify that

∆+ (
Γc)=∑

(−1)|µ
(1)|(sµ(1); id, . . . , id, sµ(2), id, . . . , id;σ).

Since µ(1) has weight 1, it follows that κ(sµ(1)) =µ(1). Therefore, a cycle representing the Γc -Massey
product associated to the elements x1, . . . xr is of the form∑

(−1)γµ(1)
(
aid,σ−1(1), . . . , aid,σ−1(l−1), asµ(2),σ−1(l ), aid,σ−1(l+r1), . . . , aid,σ−1(r )

)
,

as in Equation (6). Now, the aid,(i ) are just cycle representatives of the xi . To finish, we will check
that the element asµ(2),(l ) satisfies exactly Condition (4) in Muro’s construction (Def. 1.4), so it

corresponds to the element ρ(2) there. Indeed, since sµ(2) has weight 1, it follows that ∆+ (
sµ(2)

)=(
sµ(2); id, id. . . , ; id

)
, and so D

(
sµ(2)

)= (
µ(2); id, id. . . , ; id

)
. Therefore,

d asµ(2),(l ) =µ(2) (aid,l , . . . aid,l+r1−1
)

.

The sign (−1)γ that appears in Equation (6) gives exactly Muro’s sign plus one because for binary
operads, the weight equals the arity degree minus one. This completes the proof.

In the following examples, we explain how our operadic framework for defining systems recovers
the classical framework in the associative and Lie cases, and then explain how it creates completely
new higher-order operations.

Example 2.10. When P = Ass is the associative operad, our framework recovers the classical
definition of higher-order Massey products as in Def. 1.3. To see this, recall from Example 2.4 that
the weight n component of Ass

¡
is freely generated as an Sn+1-module by a single generator µc

n+1,
and that the µc

n-indexing set attached to a cooperation is given by{(
µc

k , (i , i +1, . . . , i + i −1)
) | 1 ≤ k < n and i ∈ {1,2, . . . ,n −k +1}

}
.

We show next that fixing a particular differential graded associative algebra (A,d) and homogeneous
homology classes x1, ..., xn ∈ H∗(A), there is a bijective correspondence between the classical
defining systems {bi j } for the higher-order Massey product 〈x1, ..., xn〉, and the defining systems
{aα} for the µc

n-Massey product 〈x1, ..., xn〉µc
n

as defined in this paper. Indeed, the correspondence
is given by

bi , j = aµc
j−i ,(i+1,i+2,...,i+( j−i )= j) for all 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1.

To finish, it suffices to compare the boundaries of the elements in these sets. Recall that

D
(
µc

r

)= ∑
l1+l2=r

(−1)l1+1
(
µ2;µc

l1
,µc

l2
; id

)
.
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Therefore, by directly applying Definition 2.6, we see that

dbi j =
j−1∑

k=i+1
b̄i k bk j =

j−1∑
k=i+1

(−1)|bi k |+1bi k bk j =
j−1∑

k=i+1
(−1)|bi k |+1aµc

k−i ,(i+1,i+2,...,k) ·aµc
j−k ,(k+1,k+2,..., j )

=
j−1∑

k=i+1
(−1)

|aµc
k−i

,(i+1,i+2,...,k)|+1
aµc

k−i ,(i+1,i+2,...,k) ·aµc
j−k ,(k+1,k+2,..., j )

= ∑
l1+l2= j−i

(−1)l1+1(−1)γaµc
l1

,(k−l1+1,k−l2+2,...,k) ·aµc
l2

,(k+1,k+2,...,k+l2) = d aµc
j−i ,(i+1,i+2,...,i+( j−i )= j).

where γ= |xi+1|+|xi+2|+· · ·+|xi+l1 | and the change of sign from the second to the third line follows
from the equality

|aµc
k−i ,(i+1,i+2,...,k)| = |xi+1|+ |xi+2|+ · · ·+ |xk |+ |µc

k−i |+1.

□
The observant reader will likely have spotted that the above is just one of the several linearly

independent Massey products that Ass possesses. In fact, there are different, linearly independent
Massey products for each permutation σ ∈Sn , since τc

n ·σ is linearly independent of τc
n . Up to a

sign, these are related by 〈x1, . . . xn〉τc
n ·σ = 〈

xσ−1(1), . . . xσ−1(n)

〉
τc

n
, see Prop. 2.21. Similarly, different

presentations of an operad (in the associative case, one could take for example the Livernet–Loday
presentation [16, Prop. 9.1.1]) give rise to seemingly distinct Massey products, which are just the
same expressed with respect to a different basis.

Example 2.11. When P = Lie is the Lie operad, our framework recovers the classical definition of
higher Lie–Massey brackets as in [2, 26] (see also [28, 3]). To see this, recall that the weight n part of
Lie

¡
is one-dimensional and generated by τc

n+1 ∈ Lie
¡
(n +1). Recall also from Example 2.5 that in

this case, the τc
n-indexing set is

I
(
τc

n

)
:= {

(τc
k , (i1, . . . ik )) | k ≤ n and 1 ≤ i1 ≤ ·· · ≤ il ≤ n

}
.

We show next that fixed a particular differential graded Lie algebra (L,d) and homogeneous ele-
ments x1, ..., xn ∈ H∗(L), there is a bijective correspondence between the classical defining systems
{x j1,..., jl } of [2] for the higher-order Whitehead product [x1, ..., xn], and the defining systems {aα}
for the τc

n-Massey product as defined in this paper. Indeed, the correspondence is given by

x j1,..., jl = aτc
l ,( j1,..., jl ) for all 1 ≤ j1 ≤ ·· · ≤ jl ≤ n.

Recall from Example 2.5 that

D
(
τc

n

)= ∑
r1+r2=n

σ∈Sh
−1

(r1,r2)

(−1)r1+1 sgn(σ)
(
τ2;τc

r1
,τc

r2
;σ

)
.

Therefore, by directly applying Definition 2.6, we see that

d x j1,..., jl =
l∑

p=1

∑
σ∈Sh(p,l−p)

ϵ(σ)
[

x jσ(1),...,σ(p) , x jσ(p+1),...,σ(l )

]
= ∑

r1+r2=l

σ∈Sh
−1

(r1,r2)

(−1)r1+1 sgn(σ)τ2

(
a
τc

r1
,
(

jσ−1(1), jσ−1(2),..., jσ−1(r1)

), a
τc

r2
,
(

jσ−1(r1+1),..., jσ−1(l )

))

= d aτc
l ,( j1,..., jl ).

□

16



As likely expected, the higher-order Massey products for commutative differential graded
associative algebras coincide with those formed by forgetting that the structure is commutative.
This can be seen as a consequence of the theory developed in the next section, see Example 2.25.

In [22], Muro contributed a new kind of triple Massey-product operation for Gerstenhaber
and/or Poisson algebras. Our framework recovers this triple operation as a consequence of Propo-
sition 2.9. It follows from our results that all the higher-order analogs of this new operation also
exist. Although we will not give closed formulas, we hope these higher products will be successfully
applied in the future in cases where the triple-product operation defined by Muro does not suffice.

Example 2.12. Recall that the Poisson operad Pois is self-Koszul dual, generated by a commutative
associative product ∧ and a Lie bracket [−,−], both of degree zero, which are compatible via the
Poisson relation,

[x ∧ y, z] = x ∧ [y, z]+ (−1)|y ||z|[x, z]∧ y.

The inner combinatorics of this operad are complex, and multiplying base elements frequently
involves complicated rewriting procedures. Therefore, we cannot hope to write down formulas
that are quite as clean as in examples 2.10 and 2.11. Nonetheless, it is possible to compute Poisson
Massey products inductively in low weight.

For example, if one considers [−,−]∧−∈Pois¡
(3), where we are taking the Koszul suspensions

to be implicit, one has

D ([−,−]∧−) = (∧; [−,−], id)− ([−,−]; id,∧, )− ([−,−]; id,∧, ) · (2,3).

Recall thatκ[−,−] =∧ andκ(∧) = [−,−]. A defining system for the Massey product 〈x1, x2, x3〉 associ-
ated to the cooperation above in a Poisson algebra is therefore a set of elements

{
z1, z2, z3, y1, y2, y3

}
where each zi is a cycle representative of xi for i = 1,2,3, and

d y1 = z1 ∧ z2, d y2 = [z2, z3] d y3 = [z1, z3].

The cycle representative associated to this defining system is

[y1, z3]− (−1)|z1|z1 ∧ y2 − (−1)|z2|+|z1||z2|z2 ∧ y3.

Similarly, if we consider [−,−∧−] ∈Pois¡
(3),

D ([−,−∧−]) = ([−,−]; id,∧)+ (∧; [−,−], id)+ (∧; id, [−,−]) · (1,2)

A defining system for the Massey product 〈x1, x2, x3〉 associated to this cooperation in a Poisson
algebra is therefore a set of elements

{
z1, z2, z3, y1, y2, y3

}
where each zi is a cycle representative of

xi for i = 1,2,3, and
d y1 = [z2, z3], d y2 = z1 ∧ z2 d y3 = z1 ∧ z3.

The cycle representative associated to this defining system is

z1 ∧ y1 − (−1)|z1|[y2, z3]− (−1)|z2|+|z1||z2|[z2, y3].

□
Example 2.13. We continue the previous example by computing the higher Massey product
corresponding to ∧◦ ([−,−], [−,−]) ∈Pois¡

(4). If one takes the Koszul suspensions and Koszul signs
to be implicit, one has:

△+ (∧◦ ([−,−], [−,−]))

= (∧; [−,−], [−,−])+ (∧◦ (−, [−,−]); [−,−], id, id)+ (∧◦ ([−,−],−); id, id, [−,−], )

+ (∧; id, [−,−∧−])+ (−∧ [−,−]; id, id,∧)+ (∧; [−,−∧−], id) · (2,4,3)

+ ([−,−]∧−; id,−∧−, id) · (2,4,3)+2(∧; id,−∧ [−,−], ) · (2,4,3)+2(−∧−∧−; id, id, [−,−]) · (2,4,3)

+2(∧;−∧−, [−,−]) · (2,4,3)+2(∧; id, [−,−]∧−)+2(−∧−∧−; id, [−,−], id)

+2(∧;−∧ [−,−], id)+2(∧; id, [−,−]∧−) · (1,2,4,3)+2(−∧−∧−; id, [−,−], id) · (1,2,4,3)

+2(∧;−∧ [−,−], id) · (1,2,4,3)+ (∧; id, [−∧−,−], id) · (1,2,3)+ (−∧ [−,−]; id,−∧−, id) · (1,2,3)

+ (∧; [−∧−,−], id)+ ([−,−]∧−;∧, id)
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This means that

D (∧◦ ([−,−], [−,−]))

= (∧; [−,−], [−,−])+ (∧; id, [−,−∧−])+ (∧; [−,−∧−], id) · (2,4,3)+2(∧; id,−∧ [−,−], ) · (2,4,3)

+2(∧;−∧−, [−,−]) · (2,4,3)+2(∧; id, [−,−]∧−)+2(∧;−∧ [−,−], id)+2(∧; id, [−,−]∧−) · (1,2,4,3)

+2(∧;−∧ [−,−], id) · (1,2,4,3)+ (∧; id, [−∧−,−], id) · (1,2,3)+ (∧; [−∧−,−], id)

Now we compute the product corresponding to the equation above. This means that the Massey
product may be computed as being, up to Koszul sign

= [y∧,(1,2), y∧,(3,4)]+ [z1, xb,(2,3,4)]+ [xb,(1,3,4), z2]+2[z1, xa,(3,4,2)]

+2[y[−],(1,3), y∧,(4,2)]+2[z1, xa,(2,3,4)]+2[xa,(1,2,3), z4]+2[z3, xa,(1,4,2)]

+2[xa,(1,4,3), z2]+ [xb,(2,3,1), z4]+ [xb,(3,1,2), z4]

(7)

where
d y∧,(i , j ) = zi ∧ z j , y[−],(i , j ) = [zi , z j ]

d xa,(i , j ,k) = [y∧,(i , j ), zk ]− (−1)|zi |z j ∧ y[−],( j ,k) − (−1)|z j |+|zi ||z j |z j ∧ y[−],(i ,k)

d xb,(i , j ,k) = zi ∧ y[−],( j ,k) − (−1)|zi |[y∧,(i , j ), zk ]− (−1)|z j |+|zi ||zk |[z j , y∧,(i ,k)]

□
The signs missing in each term of (7) can be computed as follows. These signs arise in three

ways:

• Firstly, the products in ∆+ come with the usual Koszul signs.

• Secondly, one has those signs corresponding to γ in Equation (6).

• Thirdly, to simplify the expression, for the three terms on the final line, we use the (anti)commutativity
of the generating cooperations. This introduces signs coming from the (signed) identities

[x, y] =−(−1)|x||y |[y, x] and x ∧ y = (−1)|x||y |y ∧x.

Our final example will illustrate the close connection of Massey products with spectral se-
quences. We point the reader to [16, 10.3.7] for some of the basic background on this example.

Definition 2.14. The dual numbers operad is the quadratic operad D presented as

D :=F (k△,△◦△) ,

where △ is an arity 1 element of homological degree 1.

Algebras over this operad are precisely the bicomplexes, i.e., chain complexes (A,d) equipped
with an operation △ : A → A such that △2 = 0 and d△+△d = 0. The dual numbers operad is
Koszul, and its Koszul dual cooperad is cofree conilpotent on a single generator,

D
¡ =F c (s△) .

In particular, this cooperad has no corelations and is concentrated in degree 1.

Example 2.15. We shall compute the Massey products of the dual numbers operad. The arity 1
component of D

¡ is
D

¡
(1) =⊕

kδn ,

where δn has weight n and degree 2n. Since

∆+ (δn) =
∑

k+l=n
(δk ;δl ) ,

where l ≥ 1 and k ≥ 0, it follows that

D(δn) = (△;δn−1) for all n ≥ 2.

Therefore, the δn-indexing system is given by
{

aδi : 0 < i < n
}

, with the relation d aδi =△(
aδi−1

)
.

This is almost the definition of the dn−1-differential in the spectral sequence associated to the
bicomplex (A,d ,△). More precisely, one can check that if x ∈ 〈y〉δn is defined in H∗(A), then y
survives to the En−1-page of the associated spectral sequence and dn−1(y) = [x]. □
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Remark 2.16. In our higher-order Massey products framework for Koszul operads, there is nothing
special about the Koszul dual cooperad P

¡ aside from it being a very useful resolution. In principle,
starting with any conilpotent cooperad C together with a choice of twisting morphism τ : C →P ,
it is possible to define a relative Massey inductive map

D : C
∆+
−−→C ◦C

τ◦id−−−→P ◦C .

From this, one defines relative Massey products following, mutatis mutandis, the same recipe we
gave in the Koszul case. Taking C = BP to be the bar construction of P and τ : BP → P the
canonical twisting morphism, this allows for defining Massey products for non-Koszul operads.

2.1 Elementary properties of the operadic Massey products

In this section, we collect some elementary properties of the operadic Massey products. First,
we show that Massey product sets do not depend on the initial choice of cycles in the defining
system (Prop. 2.17). Then, that morphisms of P -algebras preserve Massey products (Prop. 2.18).
In particular, quasi-isomorphisms induce bijections of the corresponding Massey product sets.
This provides an obstruction for two P -algebras to be weakly equivalent. In particular, a nontrivial
Massey product provides an obstruction to formality. At the end of the section, we collect a few
elementary properties of the Massey products that might be useful elsewhere (Prop. 2.21).

For the next few results, we fix a cooperation Γc ∈ (
P

¡)(n)
(k). We say that a Massey product set

〈x1, ..., xk〉Γc is defined if it is non-empty, that is, if there is some defining system for the Massey
product; trivial if it contains the zero homology class; and non-trivial if it is defined and does not
contain the zero homology class.

First, we shall show that Massey product sets do not depend on the initial choice of cycles in the
defining system.

Proposition 2.17. Let A be a P -algebra. Suppose that x1, ..., xk ∈ H∗(A) are homogeneous elements
such that the Massey product set 〈x1, ..., xk〉Γc is defined. For each x ∈ 〈x1, ..., xk〉Γc and each choice of
cycle representative xi for xi , one has a defining system

{
aβ

}
for x such that aid,(i ) = xi

Proof. Let
{
bβ

}
be a defining system for a Massey product x ∈ 〈x1, ..., xk〉Γc . We shall construct, by

induction on the weight of the elements of the defining system, a defining system
{

aβ
}

for a Massey
product x ∈ 〈x1, ..., xk〉Γc such that aid,(i ) = xi and that aΓc ,(1,...,k) is homologous to bΓc ,(1,...,k).

For the first step, simply fix aid,(i ) = xi . Since aid,(i ) and bid,(i ) are both choices of representative
for xi , it follows that aid,(i ) −bid,(i ) is nullhomologous, which means that there is a cid,(i ) ∈ A such
that

dcid,(i ) = aid,(i ) −bid,(i ).

The family
{

aid,(i )
}

gives the first inductive step. Now, suppose that for all indexes
(
µ, (i1, . . . , ik )

) ∈
I (Γc ) with the weight of µ strictly less than N , with 1 < N < n, where n is the weight of Γc , we have
constructed aµ,(i1,...,ik ),cµ,(i1,...,ik ) ∈ A such that

d
(
aµ,(i1,··· ,ik )

)
=∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and

dcµ,(i1,...,ik ) = aµ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ),

where Qµ,(i1,...,ik ) is the sum:

∑∑
ζ

x
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)
 .

Here, the outer summation is indexed by

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) ,
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and for each term (ζ;ζ1, . . . ,ζm ;σ), the inner sum is taken over every possible choice of tuplex
ζ1,

(
iσ−1(1),...,iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)
 ,

where one of the
x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

))
is precisely

c
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)),

anything to the left of it in the tuple is

a
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)),

and anything to its right is

b
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)).

Now, let
(
µ, (i1, . . . , ik )

) ∈ I (Γc ) have µ of weight N . Then, Qµ,(i1,...,ik ) is well defined, because the
cooperations appearing in its defining tuple have weight strictly less than µ. Its boundary is as
follows:

dQµ,(i1,...,ik ) = dbµ,(i1,...,ik ) +
∑
ζ

(
aζ1,(iσ−1(1)),...iσ−1(v1)

, . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) . (8)

Indeed, the sum dQµ,(i1,...,ik ) can be separated into two parts: a telescoping part that converges to
the right-hand side of the equation above, and a second part that can be divided into subsums
each vanishing by arguments similar to the proof of Theorem 2.8. Now, from Equation (8), we
deduce that the element∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))
where the sum ranges over D

(
µ
) = ∑

(ζ;ζ1, . . . ,ζm ;σ), is a cycle. Therefore, there is an element
a′
µ,(i1,...,ik ) ∈ A such that

d a′
µ,(i1,...,ik ) =

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .

Define a cycle
eµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

Then there is an element e ′
µ,(i1,...,ik ) ∈ A such that e ′

µ,(i1,...,ik ) is homologous to eµ,(i1,...,ik ), that is, such

that
dcµ,(i1,...,ik ) = e ′µ,(i1,...,ik ) −eµ,(i1,...,ik ),

and
aµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −e ′µ,(i1,...,ik ).

It follows that

d
(
aµ,(i1,··· ,ik )

)
=∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where the sum ranges over D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and furthermore, that

dcµ,(i1,...,ik ) = aµ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).
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This concludes the induction step. To finish, consider the element QΓc ,(i1,...,ik ). This is defined by
the same logic as above, and its boundary satisfies

dQΓc ,(i1,...,ik ) = aΓc ,(i1,...,ik ) −bΓc ,(i1,...,ik ).

Therefore, the elements aΓc ,(i1,...,ik ) and bΓc ,(i1,...,ik ) are homologous, as we wanted to prove.

Proposition 2.18. A morphism of P -algebras f : A → B preserves Massey products. That is, if
x1, ..., xk ∈ H∗(A) are homogeneous elements such that the Massey product set 〈x1, ..., xk〉Γc is defined,
then

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc is also defined, and moreover

f∗〈x1, ..., xk〉Γc ⊆ 〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc .

If furthermore f is a quasi-isomorphism, then f∗ induces a bijection between the corresponding
Massey product sets.

Proof. Assume that the Massey product set 〈x1, ..., xk〉Γc is defined. Then, any defining system {aα}
for 〈x1, ..., xk〉Γc produces a defining system

{
f (aα)

}
for

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc , because f commutes

with the operadic structure maps and the differentials. Therefore, if 〈x1, ..., xk〉Γc is defined, then〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc is also defined, and the containment f∗〈x1, ..., xk〉Γc ⊆ 〈

f∗ (x1) , ..., f∗ (xk )
〉
Γc

follows.
Next, assume that f is a quasi-isomorphism and let us prove that the corresponding Massey

product sets are in bijective correspondence. Let
{
bβ

}
be a defining system for a Massey product y ∈〈

f∗ (x1) , ..., f∗ (xk )
〉
Γc . We shall construct, by induction on the weight of the elements of the defining

system, a defining system
{

aβ
}

for a Massey product x ∈ 〈x1, ..., xk〉Γc such that f
(
aΓc ,(1,...,k)

)
is

homologous to bΓc ,(1,...,k), and therefore f∗(x) = y.
Let aid,(i ) be any representative for xi . This means that f (aid,(i ))−bid,(i ) is nullhomologous,

which means that there is a cid,(i ) ∈ B such that

dcid,(i ) = f
(
aid,(i )

)−bid,(i ).

The family
{

aid,(i )
}

gives the first inductive step. Now, suppose that for all indexes
(
µ, (i1, . . . , ik )

) ∈
I (Γc ) with the weight of µ strictly less than N , with 1 < N < n, where n is the weight of Γc , we have
constructed aµ,(i1,...,ik ) ∈ A and cµ,(i1,...,ik ) ∈ B such that

d
(
aµ,(i1,··· ,ik )

)
=∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and

dcµ,(i1,...,ik ) = f
(
aµ,(i1,...,ik )

)−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ),

where Qµ,(i1,...,ik ) is the sum:

∑∑
ζ

x
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)
 .

Here, the outer summation is indexed by

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) ,

and for each term (ζ;ζ1, . . . ,ζm ;σ), the inner sum is taken over every possible choice of tuplex
ζ1,

(
iσ−1(1),...,iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)
 ,

where one of the
x
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

))
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is precisely
c
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)),

anything to the left of it in the tuple is

f

a
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

))
 ,

and anything to its right is

b
ζ j ,

(
i
σ−1

(
v1+···+v j−1+1

),...,i
σ−1

(
v1+···+v j−1+v j

)).

Now, let
(
µ, (i1, . . . , ik )

) ∈ I (Γc ) have µ of weight N . Then, Qµ,(i1,...,ik ) is well defined, because the
cooperations appearing in its defining tuple have weight strictly less than µ. Its boundary is as
follows:

dQµ,(i1,...,ik ) = dbµ,(i1,...,ik ) +
∑
ζ

(
f (aζ1,(iσ−1(1)),...iσ−1(v1)), . . . , f (a

ζm ,
(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))

)
. (9)

Indeed, the sum dQµ,(i1,...,ik ) can be separated into two parts: a telescoping part that converges to
the right-hand side of the equation above, and a second part that can be divided into subsums
each vanishing by arguments similar to the proof of Proposition 2.8. Now, from Equation (9), we
deduce that the element∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))
where the sum ranges over D

(
µ
) = ∑

(ζ;ζ1, . . . ,ζm ;σ), is a cycle. Therefore, there is an element
a′
µ,(i1,...,ik ) ∈ A such that

d a′
µ,(i1,...,ik ) =

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .

Define a cycle

eµ,(i1,...,ik ) = f
(
a′
µ,(i1,...,ik )

)
−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

Then there is an element e ′
µ,(i1,...,ik ) ∈ A such that f

(
e ′
µ,(i1,...,ik )

)
is homologous to eµ,(i1,...,ik ), that is,

such that
dcµ,(i1,...,ik ) = f

(
e ′µ,(i1,...,ik )

)
−eµ,(i1,...,ik ),

and
aµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −e ′µ,(i1,...,ik ).

It follows that

d
(
aµ,(i1,··· ,ik )

)
=∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where the sum ranges over D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and furthermore, that

dcµ,(i1,...,ik ) = f
(
aµ,(i1,...,ik )

)−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

This concludes the induction step. To finish, consider the element QΓc ,(i1,...,ik ). This is defined by
the same logic as above, and its boundary satisfies

dQΓc ,(i1,...,ik ) = f
(
aΓc ,(i1,...,ik )

)−bΓc ,(i1,...,ik ).

Therefore, the elements f
(
aΓc ,(i1,...,ik )

)
and bΓc ,(i1,...,ik ) are homologous, as we wanted to prove.
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Recall that two P -algebras are weakly-equivalent, or quasi-isomorphic, if there is a zig-zag of
P -algebra quasi-isomorphisms between them. From the two previous results, we can deduce the
following.

Corollary 2.19. There is a bijection between the Massey product sets of weakly-equivalent P -
algebras.

Proof. Suppose one has a zig-zag of quasi-isomorphisms of P -algebras

A B C .
f g

By Proposition 2.18, there is a bijection between a Massey product set 〈x1, ..., xk〉Γc in A and the
corresponding Massey product set

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc at B . Since g is a quasi-isomorphism,

there exists yi such that g∗(yi ) = f∗(xi ). Therefore, a second application of Proposition 2.18 yields
that the Massey product set

〈
f∗

(
y1

)
, ..., f∗

(
yk

)〉
Γc is in bijection with 〈x1, ..., xk〉Γc .

Recall that, for an operad P without differential, the homology of a P -algebra is also a P -
algebra. We say that a P -algebra is formal if it is weakly equivalent to its homology endowed
with the induced P -algebra structure (and trivial differential). In general, the Massey products of
P -algebras with trivial differential are always trivial because they have no relations that exist at the
chain level but not at the homological level. In particular, the Massey products of the homology
of a P -algebra are all trivial whenever they are defined. From this, we immediately deduce the
following result.

Corollary 2.20. If a P -algebra has a nontrivial Massey product, then it is not formal.

Proof. Assume that a P -algebra A has a nontrivial Massey product. Since the homology of A has a
zero differential, it must be that all of its Massey products are trivial. Therefore, by Corollary 2.19 it
cannot be quasi-isomorphic to A.

Next, we collect some elementary properties satisfied by the operadic Massey products. These
are similar to some of those explained in [13] and, more recently, in [25, p. 325]. The proofs follow
from the definitions, and are left to the reader.

Proposition 2.21. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ), and x1, . . . , xr ∈ H∗(A) be homogeneous

elements such that 〈x1, ..., xr 〉Γc is defined. Then the following assertions hold.

1. (Homological linearity) If k ∈ k is a scalar, then for all 1 ≤ i ≤ r ,

k〈x1, . . . , xr 〉Γc ⊆ 〈x1, . . . ,kxi , . . . , xr 〉Γc .

2. (Equivariance) For every permutation σ ∈Sr , there is a bijection

〈x1, . . . , xr 〉Γc
n ·σ = (−1)ε(σ−1)〈xσ−1(1), . . . xσ−1(r )〉Γc

n
,

where (−1)ε(σ−1) is the Koszul sign appearing by permuting the variables according to σ−1.

Proof. 1. Let {aα} be a defining system for a Massey product x ∈ 〈x1, . . . , xr 〉Γc . Consider a new
defining system

b(ζ, j1,... js ) =
{

ka(ζ, j1,... js ) if jl = i for some l .

a(ζ, j1,... js ) otherwise.

In particular, one has

b(id, j ) =
{

ka(id,i ) for i = j .

a(id, j ) otherwise.

so {bα} is a defining system for a Massey product in 〈x1, . . . ,kxi , . . . , xr 〉Γc . Furthermore,
b(Γc ,1,2,...,r ) = ka(Γc ,1,2,...,r ) so the corresponding Massey product is kx.
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2. Let {aα} be a defining system for a Massey product x ∈ 〈x1, . . . , xr 〉Γc . Consider a new defining
system

b(ζ, j1,... js ) := a(ζ,σ−1( j1),...σ−1( js ).

This is then a defining system for (−1)ε(σ−1)〈xσ−1(1), . . . xσ−1(r )〉Γc
n

and the result follows.

2.2 Massey products along morphisms of operads and formality

In this section, we shall discuss pullbacks and pushforwards of Massey products along morphisms
of operads and give some applications to formality.

Before we begin, it will be helpful to remark some observations. Let f : P →Q be a morphism
of weighted operads. In this case, taking Koszul dual cooperad is functorial, and therefore there is
an induced map f ¡ : F (E ,R) =P

¡ →Q
¡ =F (F,S). Moreover, there is a commutative diagram

P
¡

P
¡ ◦P

¡
P ◦P

¡

Q
¡

Q
¡ ◦Q

¡
Q ◦Q

¡

∆+

f
¡

f
¡◦ f

¡

κ◦id

f ◦ f
¡

∆+ κ′◦id

From this, we conclude that the Massey inductive map D commutes with f ¡. Secondly, because the
category of graded vector spaces admits finite colimits, on the level of algebras, f descends to an
adjoint pair

f! : P −Alg⇆Q−Alg : f ∗.

The functor f ∗ preserves the underlying chain complex of the Q-algebras, and therefore there is
a chain map f ∗(A) → A which is just the identity morphism. We define next another chain map
h : A → f!(A). Given a P -algebra A, the unit of the adjunction above is a morphism of P -algebras

A → f ∗ f!(A).

Forgetting the P -algebra structure and recalling that f ∗ preserves the underlying chain complex,
there is a chain map

h : A → f!(A).

Pullbacks of Massey products. For any Q-algebra B , the P -Massey products on f ∗(B) induce
Q-Massey products on B . Since the underlying chain complex of both algebras is the same, we can
prove the following result.

Proposition 2.22. Let f : P → Q be a morphism of weighted operads, B a Q-algebra, and Γc ∈(
P

¡)(n)
(r ). Suppose that x1, ..., xr ∈ H∗

(
f ∗ (B)

)
are homogeneous elements such that the Massey

product set 〈x1, ..., xr 〉Γc is defined. If P is finite type arity-wise and f ¡(Γc ) ̸= 0, then under the
identification of f ∗(B) and B as chain complexes, we have

〈x1, ..., xr 〉Γc ⊆ 〈x1, ..., xr 〉 f ¡(Γc ).

If f ¡ is injective, this is an equality.

Proof. Let x ∈ 〈x1, ..., xr 〉Γc have a defining system
{
bµ,(i1,...,ir )

}
. We shall prove the statement by

constructing a defining system for x as a f ¡(Γc )-Massey product. If f ¡ is injective, then the statement

is trivial. Indeed, since D commutes with f ¡, we may obtain the desired defining set
{

b f ¡(µ),(i1,...,ir ))

}
by setting b f ¡(µ),(i1,...,ir )) := bµ,(i1,...,ir )). The converse is also true; each defining set

{
b f ¡(µ),(i1,...,ir ))

}
is

a defining set for a Γc -Massey product.
If f ¡ is not injective, then the set before may fail to be a defining system. Two problems may

arise. Firstly, f ¡(µ) may be zero. In this case, however, any term coming from D in which f ¡(µ)
plays a role will also vanish, so we may safely remove any term of the form b f ¡(µ),(i1,...,ir )) from the
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defining system altogether. Secondly, f ¡ may fail to preserve linear independence. We circumvent
this problem as follows. To fix notation, write P = F (E ,R) and Q = F (F,S). The map f ¡ is a
map of weighted quadratic cooperads and, in particular, it sends cogenerators to cogenerators,(

f ¡)(1)
: E → F . We shall assume that k-linear bases of E and F are chosen such that the image of

the basis elements of E are precisely the first m basis vectors {ui } of F , and further that the other

basis elements of F are not in the image of
(

f ¡)(1)
, and that the rest of the elements of the basis of

E are in the kernel of
(

f ¡)(1)
. These bases now, as explained in the second paragraph of Section 2,

extend to bases of the operads P and Q using appropriate symmetric tree monomials.
The image of f ¡ now entirely lies in the span of tree monomials labeled by the first m basis

elements of F . This means that there is now a canonical (with respect to this choice of basis) linear
section s of f ¡ defined only on this codomain that preserves the cocomposition. This section is
given by sending sums of tree monomials labeled by the first m basis elements of F to sums of tree
monomials of the same shape labeled by the corresponding first m basis elements of E .

The section s induces a bijection between the indexing sets I
(

f ¡(Γc ), (1, ...,r )
)

and I (Γc , (1, ...,r )).
Define bµ,(i1,...in ) to be bs(µ),(i1,...in ). This provides a defining system for x.

Remark 2.23. This means that if f ¡ is injective and f ∗(B) has nontrivial Massey products, then so
does B .

Example 2.24. Consider the natural weighted operad morphism f : Lie→Ass. For any differential
graded associative algebra A, the differential graded Lie algebra f ∗(A) is the chain complex A
equipped with the bracket [a,b] = ab − (−1)|a||b|ba for all homogeneous a,b ∈ A. Now, recall
from Example 2.11 that Lie

¡
(n)(n−1) is generated by an element denoted τc

n . Since on the level of
Koszul dual cooperads, the map f ¡ : Lie

¡ → Ass
¡

is the linear dual of the canonical operad map

Ass→Com, one can verify that f ¡(τc
n) =∑

σ∈Sn µ
c
n ·σ, where µc

n is the generator of
(
Ass

¡)(n−1)
(n) as

an Sn-module. This map is injective and therefore, it follows from Proposition 2.22 that

〈x1, ..., xn〉τc
n
= 〈x1, ..., xn〉∑σ∈Sn µ

c
n ·σ.

This can be used in two ways. Firstly, we can deduce that if f ∗(A) admits a nontrivial Lie–Massey
bracket, then A admits a (nonclassical) associative bracket and so is not formal. In general, on the
other hand, most of the time if A has a nontrivial (classical) Massey product, we cannot deduce the
existence of a Massey product on f ∗(A) or its formality. However, if A admits a Massey product
of the form 〈x, x, ..., x〉µc

n
, referred to in the literature as Kraine’s 〈x〉n product, or iterated Massey

product, then it follows that it admits a product of the form 〈x, ..., x〉∑
σ∈Sn µ

c
n ·σ, and so we can

deduce that f ∗(A) is not formal. □
Example 2.25. We can use Prop 2.22 to compute the Massey products for the commutative
operad Com. Consider the canonical weighted operad map f : Ass→Com. As mentioned in the
example before, the map f ¡ : Ass

¡ → Com
¡

is the linear dual of the natural operad morphism
g : Lie→Ass. This last operad map is an embedding, so it follows that f ¡ is surjective. Thus, for

any τ ∈ (
Com

¡)(n)
(r ) there exists µ ∈ (

Ass
¡)(n)

(r ) such that f ¡(µ) = τ, and it follows from Proposition
2.22 that

〈x1, ..., xk〉τ ⊆ 〈x1, ..., xk〉µ,

whenever the products above make sense. □

Pushforwards of Massey products. For any P -algebra A, the P -Massey products on A induce
Q-Massey products on f!(A).

Proposition 2.26. Let f : P → Q be a morphism of weighted operads, A a P -algebra, and Γc ∈(
P

¡)(n)
(r ). Suppose that x1, ..., xr ∈ H∗(A) are homogeneous elements such that the Massey product

set 〈x1, ..., xr 〉Γc is defined. Then, the Q-Massey product set 〈h∗(x1), ...,h∗(xr )〉 f ¡(Γc ) is also defined,
and

h∗〈x1, ..., xr 〉Γc ⊆ 〈h∗(x1), ...,h∗(xr )〉 f ¡(Γc ).
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Proof. One constructs a defining system for a f ¡(Γc )-Massey product in essentially the same
manner as in the proof of Proposition 2.22.

Let x ∈ 〈x1, ..., xr 〉Γc have a defining system
{
bµ,(i1,...,ir )

}
. We shall prove the statement by con-

structing a defining system for x as a f ¡(Γc )-Massey product. If f ¡ is injective, then the statement is

trivial. Indeed, since D commutes with f ¡, we may obtain the desired defining set
{

b f ¡(µ),(i1,...,ir ))

}
by setting b f ¡(µ),(i1,...,ir )) := h

(
bµ,(i1,...,ir ))

)
. If f ¡ is not injective, then the set before may fail to be a

defining system. Two problems may arise. Firstly, f ¡(µ) may be zero. In this case, however, any
term coming from D in which f ¡(µ) plays a role will also vanish, so we may safely remove any term
of the form b f ¡(µ),(i1,...,ir )) from the defining system altogether. Secondly, f ¡ may fail to preserve
linear independence. We fix this problem as follows.

To fix notation, write P =F (E ,R) and Q =F (F,S). The map f ¡ is a map of weighted quadratic

cooperads and, in particular, it sends cogenerators to cogenerators,
(

f ¡)(1)
: E → F . We shall assume

that k-linear bases of E and F are chosen such that the image of the basis elements of E are precisely
the first m basis vectors {ui } of F , and further that the other basis elements of F are not in the

image of
(

f ¡)(1)
, and that the rest of the elements of the basis of E are in the kernel of

(
f ¡)(1)

. These
bases now, as explained in the second paragraph of Section 2, extend to bases of the operads P

and Q using appropriate symmetric tree monomials.
The image of f ¡ now entirely lies in the span of tree monomials labeled by the first m basis

elements of F . This means that there is now a canonical (with respect to this choice of basis) linear
section s of f ¡ defined only on this codomain that preserves the cocomposition. This section is
given by sending sums of tree monomials labeled by the first m basis elements of F to sums of tree
monomials of the same shape labeled by the corresponding first m basis elements of E .

The section s induces a bijection between the indexing sets I
(

f ¡(Γc ), (1, ...,r )
)

and I (Γc , (1, ...,r )).
Define bµ,(i1,...in ) to be

(
bs(µ),(i1,...in )

)
. This provides a defining system for x.

Example 2.27. Consider the natural operad map f : Lie→ Ass. For any differential graded Lie
algebra g, the differential graded associative algebra f!(g) is the universal enveloping algebra of A.
Recall that there is an embedding of graded vector spaces (in fact, graded Lie algebras) h : g→ f!(g).
Since on the level of Koszul dual cooperads, the map f ¡ : Lie

¡ → Ass
¡

is the linear dual of the
forgetful functor Ass→Com, one can verify that f ¡(τc

n) =∑
σ∈Sn µ

c
n ·σ, where µc

n is the generator of(
Ass

¡)(n−1)
(n) as an S-module. Therefore,

h∗〈x1, ..., xk〉τc
n
⊆ 〈h∗(x1), ...,h∗(xk )〉∑

σ∈Sn µ
c
n ·σ.

□

A criterion for formality. In this section, we characterize the formality of a P -algebra in terms of
its Sullivan model, whenever it makes sense (Prop. 2.29 below). Although the result is presumably
well-known to experts, we could not find a precise statement in the literature. The connection of
the characterization with this paper is that it gives us a method to construct non-formal algebras
with vanishing higher operadic Massey products of all orders. We leave the task of finding explicit
examples to the interested reader.

The Sullivan model of a P -algebra exists after imposing some connectivity assumptions on the
operad and the algebra itself. To our knowledge, the first work in this direction is [15], where P is
assumed to be Koszul and concentrated in degree 0, while the most general results are achieved in
[6], were P is not required to be Koszul, but satisfy a mild connectivity requirement called being
tame. We stick to the setting of [6], but will also require P to be Koszul to make use of infinity
structures. An operad P is r -tame for a fixed integer r ≥ 0 if for every n ≥ 2,

P (n)q = 0 for all q ≥ (n −1)(1+ r ).

The operads Ass,Com and Lie are examples of 0-tame operads, as well as their minimal models.
The Gerstenhaber operad Gerst is 1-tame. The main results of [6] combine to read as follows.

Theorem 2.28. [6] Every r -connected algebra over an r -tame operad has a Sullivan minimal model,
unique to isomorphism.
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Now, suppose that P is an r -tame Koszul operad and A is an r -connected finite type algebra
for some r ≥ 0. Furthermore, suppose that A is P∞-quasi-isomorphic to a minimal P∞-algebra H
with differential δ whose components δ(n) vanish for all n ≥ 2. Then there is a quasi-isomorphism
of P

¡-coalgebras

(P
¡
(A),δ)

≃−→ (P
¡
(H),δ′).

Taking the linear dual, one obtains a quasi-isomorphism of P !-algebras

(P !(H),d ′) ≃−→ (P !(A),d).

The differential d ′ is decomposable and concentrated in weight 2. Therefore, (P !(H),d) is a
minimal Sullivan model for (P !(A),d), which is the dual of the bar construction on A. This model
is unique up to isomorphism, as mentioned before. We sum this discussion up in the following
characterization.

Proposition 2.29. Let P be an r -tame Koszul operad for some r ≥ 0, and A an r -connected finite
type P -algebra. Then A is formal if, and only if, the Sullivan minimal model of the dual of the bar
construction on A admits a differential concentrated in weight 2.

3 Differentials in the P -Eilenberg–Moore spectral sequence

Aside from providing obstructions to formality, one of the major uses of higher Massey products is
in providing a concrete description of the differentials in the classical Eilenberg–Moore spectral
sequence. The following is a classical result of May [20], compare also [27], but adapted to the
notation of this paper.

Theorem 3.1. Let A be a differential graded associative algebra, and let x1, . . . xn be homology classes
such that the Massey product set 〈x1, ..., xn〉 is non-empty. Then, the element [sx1 | · · · | sxn] survives
to the E n−1-page of the Eilenberg–Moore spectral sequence of A, and furthermore, the suspension sx
of any representative of x ∈ 〈x1, . . . xn〉 is a representative for d n−1[sx1 | · · · | sxn].

An analogous statement for differential graded Lie algebras appears in [2]. Our following result
generalizes these statements to all algebras over a Koszul (in fact, quadratic) operad. Recall from
Section 1.1.1 the construction of the spectral sequence. We will sometimes confuse homology
classes with representatives to lighten the notation.

Theorem 3.2. Let A be a P -algebra, and x1, . . . xr homology classes such that the Massey product set
〈x1, ..., xr 〉Γc is defined for a cooperation Γc ∈P

¡(r )(n). Then the element

Γc ⊗x1 ⊗·· ·⊗xr ∈
(
P

¡
)(n)

(r )⊗H∗(A)⊗r

survives to the E n−1 page in the P -Eilenberg–Moore spectral sequence, and for x ∈ 〈x1, . . . xn〉

d n−1 (
Γc ⊗x1 ⊗·· ·⊗xr

) ∈ (−1)n−2 [id⊗x] .

Our proof of this is an adaption of the classical one, so we shall therefore make use of the
Staircase Lemma [13, Lemma 2.1], which we briefly recall next.

Lemma 3.3. Let A = (
A∗,∗,d ′,d ′′) be a bicomplex, denote by d the differential on its total complex,

and fix c1, . . . ,cn homogeneous elements in A. Suppose that d ′cs = d ′′cs+1 for 1 ≤ s ≤ n −1, and
define c := c1 −c2 +·· ·+ (−1)n−1cn . Then, dc = d ′c +d ′′c = d ′′c1 + (−1)n−1d ′cn , and furthermore, in
the spectral sequence

{
(E r ,d r )

}
associated to the bicomplex, if d ′′c1 = 0 then c1 survives to E n , and

d n[c1] = (−1)n−1[d ′cn].

Our approach to proving Theorem 3.2 is therefore to construct a sequence c1, . . .cr−1 satisfying
the conditions of the Staircase Lemma.
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Proof of Theorem 3.2. First, fix a defining system
{

aµ,(k1,...,ki )
}

for the element x ∈ 〈x1, . . . , xr 〉Γc . For
each s between 1 and n−1, we will define cs in terms of this defining system and the auxiliary maps

△s : P
¡ △−→P

¡ ◦P
¡ ps◦id−−−→

(
P

¡
)(s) ◦P

¡
,

where ps is the projection onto the weight s component. More precisely, the element cs is defined
as

cs :=∑[
ζ(n−s) ⊗aµ1,(σ−1(1),...σ−1(i1)) ⊗·· ·⊗aµm ,(σ−1(i1+···+im−1+1),...σ−1(r ))

]
,

where △n−s (Γc ) =∑(
ζ(s);µ1, . . . ,µm ;σ

)
. In particular, c1 = [Γc ⊗aid,(1) ⊗·· ·⊗aid,(r )], and

cn−1 =
∑(

sζ(1))⊗aµ1,(σ−1(1),...,σ−1(v1)) ⊗·· ·⊗aµm ,(σ−1(v1+···+vm−1+1),...,σ−1(r )),

where D (Γc ) =∑(
ζ(1);µ1, . . . ,µm ;σ

)
with ζ(1) ∈ E and thus sζ(1) ∈ sE ⊂ (

P
¡)(1)

. To finish, we must
verify that the conditions of the Staircase Lemma 3.3 are met. Denote by ∂ the external differential
on P

¡(A), and by d• its internal differential. Then, since d(aid,(i )) = 0 for each i , it follows that
d•c1 = 0. A routine calculation shows that d•cs+1 = ∂cs for each s. It follows from the Staircase
Lemma that

dn−1[c1] = (−1)n[∂cn−1] = (−1)n[x].

In the expression of cn−1, the element ζ is in the image of the twisting morphism κ. In particular,
this implies that it is of weight 1, and so ∂cn−1 ∈ id⊗〈x1, . . . , xr 〉Γc . This finishes the proof.

The formality of a dg algebra of some type is well-known to be related to the collapse of the
associated Eilenberg–Moore-type spectral sequence, see for instance [10] for the commutative
case, and [9] for the Lie case. The following statement generalizes these results.

Theorem 3.4. The Eilenberg–Moore spectral sequence of a formal P -algebra over a Koszul operad
collapses at the E 2-page. The same is true for formal P∞-algebras.

Proof. Since every P -algebra is a P∞-algebra, we prove the result for P∞-algebras. Let A be
a formal P∞-algebra, and denote by H = H∗(A) its homology as a P -algebra. Then there are
P∞-quasi-isomorphisms A ⇆ H , or equivalently, P

¡-coalgebra quasi-isomorphisms

P
¡
(A)⇆P

¡
(H).

Recall that the codifferential δH (µ,−) of P
¡(H ) vanishes unless µ ∈P

¡ has weight 1. By comparison,
both Eilenberg–Moore spectral sequences are isomorphic from the first page. Therefore, it suffices
to consider the case where A has no internal differential and δ(i )

A vanishes when i ̸= 1. We now

check that the differential d i in the Eilenberg–Moore spectral sequence vanishes for i ≥ 2. To do so,
we will use the standard relative cycles and boundaries spaces,

Z r
p = FpP

¡
(A)∩δ−1

(
Fp−r P

¡
(A)

)
and Dr

p = FpP
¡
(A)∩δ

(
Fp+r P

¡
(A)

)
.

The differential d r in the successive pages of the spectral sequence is induced by the restrictions of
the differential δ of P

¡(A) to Z r
p , as shown below:

Z r
p Z r

p−r

E r
p = Z r

p /Z r−1
p−1 +Dr−1

p E k
p−r = Z r

p−r /Z r−1
p−r−1 +Dr−1

p−r

δ

d r

Fix some r ≥ n. To check that d r = 0, we will fix an element x ∈ Z r
p and find a representative y of

the class [x] ∈ E r
p such that

δ(y) ∈ Z r−1
p−r−1 +Dr−1

p−r = Fp−r−1P
¡
(A)∩δ−1

(
Fp−r−1P

¡
(A)

)
+Fp−r P

¡
(A)∩δ

(
Fp−1P

¡
(A)

)
.
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Indeed, write x = x1 +·· ·+xp where each xi ∈P
¡(i )⊗ A⊗i . Now, since δ(x) ∈ Fp−r P

¡(A), it follows
that δ

(
xp−r+1 +·· ·+xp

) = 0. Thus, we take y = x − (
xp−r+1 +·· ·+xp

)
as a representative of the

form we needed, finishing the proof.

The converse to Theorem 3.4 in general is not true, it fails even in the associative case and some
examples are computed in some of the references given before the statement of the theorem.

Remark 3.5. Massey products sometimes completely determine formality. For the case of the
dual numbers operad, the Massey products are precisely the differentials in the spectral sequence
associated to the bicomplex. So if the differentials all vanish, the spectral sequence must collapse
on the E 2-page.

4 Higher-order operadic Massey products and P∞-structures

In this section, we fix a Koszul operad P . In this case, there is a natural relationship between the
higher-order operadic Massey products and P∞-structures on the homology of the P -algebras.

Let A be a P -algebra, and denote by H its homology. Since P has no operadic differential, H is
a P -algebra in a natural way. It is well-known that the homotopy transfer theorem (in its various
forms) extend this P -algebra structure on H to a P∞-structure that retains the quasi-isomorphism
class of A as a P∞-algebra. In this paper, we mainly focus on D. Petersen’s extension [23] of T.
Kadeishvili’s classical transfer theorem [11], which is recalled in Theorem 1.2. See also [16, Section
10.3]. It is a common misconception to expect that higher-order Massey products sets of the sort
〈x1, ..., xr 〉 are related to P∞-structure maps θr induced on the homology H via the homotopy
transfer theorem by the clean formula

±θr (x1, ..., xr ) ∈ 〈x1, ..., xr 〉.

At this level of generality, the assertion is incorrect. However, it is true for secondary Massey
products, as shown in [22, Theorem 3.9].

Let us make the connection between infinity structures and higher-order Massey products
more precise. First, recall that codifferentials on the cofree conilpotent P

¡-coalgebra P
¡(A) are in

bijective correspondence with P∞-structures on the chain complex A [16, Theorem 10.1.13].

Definition 4.1. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ), and x1, ..., xr homogeneous elements of

H = H∗(A) for which the Γc -Massey product set 〈x1, . . . , xr 〉Γc is defined. A given P∞ structure
δ on H for which A and H are quasi-isomorphic is said to recover the Massey product element
x ∈ 〈x1, . . . , xr 〉Γc if, up to sign,

δr
(
Γc ⊗x1 ⊗·· ·⊗xr

)= x.

We begin by showing below that given a higher-order Massey product x ∈ 〈x1, . . . , xr 〉Γc , there is
always a choice of P∞ structure on H quasi-isomorphic to A which recovers x. In general, however,
an arbitrary P∞ structure on H quasi-isomorphic to A only recovers a given higher-order Massey
product element up to multiplications of lower arity. Our proof strategy is very similar to the proof
in [5], where the authors demonstrated this result in the associative case. In the result below, we
require the operad to be reduced for Theorem 1.2 to apply.

Theorem 4.2. Let A be an algebra over a reduced Koszul operad P , and let H be its homology.

Let Γc ∈ (
P

¡)(n)
(r ), and assume that x1, ..., xr are r ≥ 3 homogeneous elements of H for which the

Γc -Massey product set 〈x1, . . . xr 〉Γc is defined. Let x ∈ 〈x1, . . . xr 〉Γc . Then:

(i) For any P∞ structure δ on H quasi-isomorphic to A, we have

δ(n) (Γc ⊗x1 ⊗·· ·⊗xr
)= x +Φ,

where Φ ∈
n−1∑
i=1

Im
(
δ(i )

)
.
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(ii) If µ⊗ xi1 ⊗·· ·⊗ xil are linearly independent in the corresponding copy of P
¡ ⊗Sl A⊗l , where

(µ, (i1, ..., il )) ∈ I (Γc ), then there is a choice of P∞ structure δ on H which recovers x.

Proof. (i ) We will construct a P∞ structure on H recovering x via the procedure established in
the proof of Theorem 1.2. We shall continue to use the notation of that proof. First, we choose a
defining system {aα} for the Massey product element x ∈ 〈x1, . . . , xr 〉Γc . We proceed by induction
on arity, starting in arity 1 with δ1 initially defined as the coderivation corresponding to the strict
P -algebra structure on H induced from it being the homology of A, and defining f as any chain
quasi-isomorphism H → A extending the choice f (x1) = aid,(1), f (x2) = aid,(2), . . . , f (xr ) = aid,(r ).
This defines a map F1 : P ¡(1)⊗H → A, since P

¡(1) = k. We give next the arity 2 step. This step is
not needed for the inductive procedure, but we include it because we think it sheds light on the
general case. Recall that the algorithm of Theorem 1.2 automatically determines the multiplication
on H , but there are choices for F2. First, we make the following observation. If

(
sµ, (i , j )

)
appears

in the Γc -indexing system, then γA(µ; xi , x j ) = 0. This is because D
(
sµ

)= (
µ, id, id

)
, and therefore

d asµ,(i , j ) = κ
(
sµ

)(
aid,(i ), aid,( j )

)
,

which implies that γA(µ; xi , x j ) ∈ H admits a lift to A which is a coboundary, which implies that
it is 0 on homology. It therefore follows that

(
F 1 ◦δ1

)
2 is 0 when applied to [sµ⊗ xi ⊗ x j ]. On the

other hand, (
δ1 ◦F 1)

2 [sµ⊗xi ⊗x j ] = κ(
sµ

)(
F1 (xi ) ,F1

(
x j

))= d asµ,(i , j ).

So we choose F2 : P ¡(2)⊗H⊗2 → A to extend the choice F2
(
µ, xi , x j

)= aµ,(i , j ). The general case is
similar. Our inductive hypothesis has the following two parts:

Fl
[
µ⊗xi1 ⊗·· ·⊗xil

]= aµ,(i1,...,il ),where
(
µ, (i1, . . . il )

) ∈ I
(
Γc)and l < n, (10)

and
δk−1

l

[
µ⊗xi1 ⊗·· ·⊗xil

]= 0, where
(
µ, (i1, . . . il )

) ∈ I
(
Γc) for l ≤ n. (11)

We verified these two items in the arity 2 case in the previous paragraph. Next, we shall compute
(δA ◦F )n

[
µ⊗xi1 ⊗·· ·⊗xin

]
. The map (δA ◦F )n is precisely the composite

P
¡
(H)

∆(H)−−−→P
¡ ◦P

¡
(H)

P
¡( f )−−−−→P

¡
(A)

κ(A)−−−→P (A)
γA−−→ A.

The arity n component of f is 0, and in particular P
¡ ( f

)(
id;µ⊗xi1 ⊗·· ·⊗xin

)= 0. It follows that
(δA ◦F )n sends the class of µ⊗xi1 ⊗·· ·⊗xin to the same element as the following map does:

P
¡
(H)

∆+
−−→P

¡ ◦P
¡
(H)

P
¡( f )−−−−→P

¡
(A)

κ(A)−−−→P (A)
γA−−→ A.

The map above is tightly related to the Massey inductive map D . Indeed, the image of µ⊗xi1 ⊗·· ·⊗
xin is given by∑

ζ
(

f
(
ζ1 ⊗xiσ−1(1)

⊗·· ·⊗xiσ−1(v1)

)
, . . . , f

(
ζm ⊗xiσ−1(v1+···+vm−1+1)

⊗·· ·⊗xiσ−1(n)

))
,

where
D

(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) .

By the first assumption of our inductive hypothesis (10), this is equal to

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(n)

)) .

It follows from the definition of a defining system that this is equal to

d aµ,(xi1 ,...,xin ).
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The second assumption of our inductive hypothesis (11) implies that
(
F n−1 ◦δn−1

)
l

[
µ⊗xi1 ⊗·· ·⊗xil

]=
0, so we have that (

F ◦δn−1 −δA ◦F
)

n

[
µ⊗xi1 ⊗·· ·⊗xin

]=−d aµ,(xi1 ,...,xin ).

Therefore, there is no obstruction to obtaining a lift Fn such that Fn(µ⊗xi1 ⊗·· ·⊗xin ) = aµ,(xi1 ,...,xin ).

Notice that the algorithm also tells us that δn
n

[
µ⊗xi1 ⊗·· ·⊗xin

]= 0 (the projection of a boundary
in homology).

Next, we shall verify that δn
n+1

(
µ⊗xi1 ⊗·· ·⊗xin+1

)= 0 when (µ, (i1, . . . , in+1)) ∈ I (Γc ). Because
the arity (n +1)-component of δn comes from the P -algebra structure induced on H from A, we
have that

δn (
µ⊗xi1 ⊗·· ·⊗xin+1

)= γA
(
κ

(
µ
)

; xi1 , . . . , xin+1

)
.

But if κ
(
µ
)

is non-zero, then µ must be of weight 1. It then follows that D
(
µ
)= (µ; id, . . . , id). So, by

the same argument as in the arity 2 case, we conclude that γA
(
κ

(
µ
)

; xi1 , . . . , xin+1

)= 0.

(i i ) Consider any P∞ quasi-isomorphism H
≃−→ A and the corresponding quasi-isomorphism

of P
¡-coalgebras

P
¡
(H)

≃−→P
¡
(A).

The induced morphism of P -Eilenberg–Moore spectral sequences is, at the E1 level, the identity
on P

¡(H). By comparison, all the terms in both spectral sequences are also isomorphic. Now,
it follows from Theorem 3.2 that if 〈x1, . . . xr 〉Γc is nonempty, then the element [Γc ⊗ x1 ⊗·· ·⊗ xr ]
survives to the (n −1)-page (E n−1,d n−1). Moreover, given any x ∈ 〈x1, . . . xr 〉Γc , one has

d n−1Γc ⊗x1 ⊗·· ·⊗xr = (−1)r x.

Here, · denotes the class in E n−1. In other words, there exists Φ ∈ Fn−1P
¡(H) such that

δH
(
Γc ⊗x1 ⊗·· ·⊗xr +Φ

)= x.

Applying the counit ϵH : P ¡(H) → H to both sides, we obtain

mH
(
Γc ⊗x1 ⊗·· ·⊗xr +Φ

)= x.

Write mH = ∑
i≥2∂

(i )
H , and decompose Φ = ∑r−1

i=2 φi with φi ∈ P
¡(H)(i ). By a word length argu-

ment,

δ(n)
H

(
Γc ⊗x1 ⊗·· ·⊗xr

)+ r−1∑
i=2

δ(i )
H (φi ) = x.

This completes the proof.
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