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Abstract

Real-time control of comfort in indoor spaces needs models of temperature distribution and air velocity field. 
Complete models, based on CFD, give this information but are improper for real-time calculations. Therefore, 
a reduced model is needed. This study proposes to reduce the dimension of a CFD model by first considering 
the velocity field fixed and solving only the energy balance equation, then putting this equation in the form of 
state-space and finally by reducing its order by Proper Orthogonal Decomposition (POD). This article focuses 
on the correction of the reduced order model which is absolutely necessary before using it for real time 
application. This algorithm was applied to a room equipped with a fan coil with an air jet having three 
patterns: sticking to the ceiling and reaching the opposite wall, falling before the opposite wall, and falling 
before reaching the ceiling. For the two-dimensional case, the reduced model has been validated by 
comparison with CFD results for step inputs of temperature and air velocity. As the order of the reduced 
model is always smaller than 7, the energy balance equation may be solved in real time and integrated into a 
control algorithm.
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Nomenclature

effa effective air diffusivity (m2/s)

)(tan temporal coefficient, computed with the 

reduced order model, associated to the thn
eigenfunction

)(ta vector of temporal coefficient

)(~ ta vector of Lagrange multipliers

)(tbn temporal coefficient extracted from the 

snapshot, associated to the thn  eigenfunction

pC specific heat at constant pressure (J/kg°C)

E mean energy

J cost functional

L Lagrangian

M number of snapshot

m number of eigenfunctions 

N constraints

n number of data for the Rmse calculation

Rmse root mean square error (°C)

pS source power (W/m3)

t time (s)

v velocity field (m/s)

x space coordinates

Greek letters

α coefficients of calibration

 air temperature (°C)

 eigenvalue

 air density (kg/m3)

 eigenfunctions



Subscripts

d diffusive term

m mean quantity

n number of the eigenvector

r reduced order matrix

t transport term

ref reference data

1. Introduction

In air conditioning spaces, the air velocity field and 
the temperature distribution are not uniform, with 
implications on thermal comfort and energy 
consumption. Generally, this characteristic is not 
taken into account by the control system. Even 
though computational fluid dynamics (CFD) may 
predict the temperature distribution and the velocity 
field, computing time is prohibitive for real time 
control. For the problem of indoor air flow, Peng
(Peng 1996) proposed to calculate the dynamic 
temperature distribution in a fixed flow field, 
provided that it is correctly calculated by the CFD 
code. So in this paper, only the energy balance 
equation needs to be solved. We propose the 
reduction of this equation by using Proper 
Orthogonal Decomposition. This technique is based 
on the construction of an optimal basis-function 
which contains enough information for an accurate 
description of the temperature distribution.
This article briefly describes the method of 
construction of a high order state space model based 
on the assumption of a fixed velocity field, and the 
subsequent implementation of the POD to get a 
reduced order state space model. Emphasis will be 
placed on the method used for correction of the 
reduced order model based on solving an 
optimization problem under constraint. The CFD 
simulations performed prior are considered as 
reference data, and are used to validate models

2. Theory

2.1 Reduced order model

The energy balance is described by the differential 
equation:
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Provided that the flow field can be correctly 
calculated by a CFD code, Ghiaus and Ghiaus 
(Ghiaus et al 1999) show how to obtain a state space 
form after discretization. This is a more 
advantageous representation for control, in which 
the temperatures are written in a vector. The high 
order model is then:
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where θ  is the state vector, u  the input vector, y
the output vector, A  the state matrix, B  and D
input matrix and C  the output matrix. For each 
fixed air-flow pattern, the system (2) gives the air 
temperature distribution in all the room. The size of 
the first equation is exactly equal to the number of 
discretization cells for CFD calculations.
The order of system (2) is too high to be used in 
real-time applications. A reduction of the order can 
be achieved by finding an optimal basis with the 
Proper Orthogonal Decomposition (POD), (Allery et 
al 2005) and (Gunes 2002). This method needs M
snapshots extracted from a transient simulation 
made with the CFD. The basic idea of the POD 
consists in finding a ‘‘physical’’ basis which is 
optimal in an energetic sense. Thus, we search a 
deterministic function, , which gives the ‘‘best’’ 
representation of the set of temperature. From 
variational calculus, it follows that this problem is
equivalent to an eigenvalue problem. In order to 
reduce the calculation, we used the snapshots 
method (Sirovich 1987) which leads to the following 
expression of temperature:
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where m  is the mean temperature.

Owing to the propriety of the eigenvalue problem, 
eigenvalues are real and non-negative and can be 
ordered as M  21 . Each eigenvalue n , 

taken individually, represents the energy 
contribution of the corresponding eigenfunction. The 
eigenvectors i  satisfy the boundary conditions and 

can be normalized to form an orthonormal set. The 



main property of the POD is its ability to give the 
best approximation of the distribution in an energetic 
sense. The energy contained in the first m modes is 
indeed always greater than the energy contained in 
any other basis, such as the Fourier basis. If POD is 
applied to the velocity field, this energy is related to 
the fluid’s kinetic energy. In the case of a 
temperature distribution, the fact that a mode 
captures, for instance, 65% of the energy means in a 
probabilistic sense that the system spends 65% of its 
time executing this mode (Deane et al 1991). Then, 
by keeping only the first m modes and ignoring the 
remaining modes, the temperature is written as:
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The number of basis functions is chosen according 
to an energetic criterion which ensures the 
conservation of maximum energy:
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Only a very small number m  of functions are
sufficient to rebuild the temperature distribution. In 
order to obtain a low dimensional model, equation 4
is substituted into equation 2 and after a change of 
variable leads to a state space system of order m:
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The low order model 6 gives the behaviour of 
coefficients ]1[)( miia a  as a function of the input 

vector. Knowing the basis functions i , the 

temperature is then rebuilt with use of the expression 
4, leading to the second equation of model 6.

2.2 State calibration method

Although very few POD modes contain most of the 
energy and can be kept to construct a reduced-order 
dynamical system, the low-energetic modes, which 
drop out, must be taken into account to recover an 
accurate description of the temperature. Most 
authors use a diffusive model based on the 
Heisenberg spectral viscosity model (Allery 2002; 

Couplet et al 2003; Podvin et al 2001; Rempfer 
1994). The effect of the low-energetic modes on the 
high-energetic modes is then equivalent to the 
increase of dissipation. In practice, an artificial 
viscosity is added to the state equation. First, it is 
more convenient to separate the first equation of the 
system 6 into a diffusive part and a transport part 
issued from the corresponding terms of the 
equation 1.

uBBaAAa rdrtrdrt )()(  (7)

Then, the addition of the artificial viscosity is 
equivalent to the increase of the diffusivity by 

effj a  and leads to the new state equation:

)(1 uBaAIuBaAa rdrdrtrt   (8)

Where 1I  is a diagonal matrix given by:
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Here, the state space form turns out to be very 
interesting as it gives access to the modern control 
theory. Indeed, the calibration aims at approaching 
the coefficients ib  by the coefficients ia . So, an 

attractive element of the optimal control theory is 
the introduction of a cost functional which provides 
a quantitative measure of this objective:
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The second term represents the cost link to the 
difference between the effective diffusivity effa  and 

the corrected diffusivity effj a)1(  . The 

calibration problem is then expressed as:
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where the constraints 0)( αa,N  correspond to the 
equation 8. The constrained optimization problem 11 
is solved using the Lagrange multiplier method. The 
constraints are enforced by introducing the Lagrange 
multipliers or adjoint variables a~ and the 
Lagrangian functional:
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The solutions (state a , co-state a~  and coefficient of 
calibration α ) of this new unconstrained 
optimization problem are such that is rendered 
stationary:
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where a , α and a~ are arbitrary variations. 
Considering that each argument of L  is independent 
of the others, the calibration problem is determined 
by setting the first variation of L  with respect to a~ , 
a  and α  to be equal to zero. These three variations 
respectively yield to the state equation, the adjoint 
equation and the calibration condition:
























dt

T
T

t

t

auBAα

0abaaAIAa

uBIBaAIAa

rdrd

rdrt

rdrtrdrt

~)(
2

1
)(~;)(2~)(~

)()(

0
2

1

11










(14)

This system of coupled ordinary differential can be 
solved by a simple iterative process.

3. Application

3.1 Case study

This study deals with a 4.90 m × 2.82 m × 2.76 m 
room equipped with a fan coil having two outlet 
speeds (1 and 1.5 m/s) and an outlet temperature 
varying from 16 to 21 °C (Figure 1a). The fan coil is 
placed at the right bottom. Each wall temperature is 
considered homogeneous and constant.
The complete CFD model of this room is considered 
in 2D for computational time reasons. However, this 
2D approach does not reduce the generality of the 
methodology proposed in this paper. A study on the 
application of POD to 3D CFD results obtained for a 
similar room showed that less than 10 
eigenfunctions are needed to obtain a reliable reduce 
model (Basman et al 2005). It is worth mentioning 
that convergence of CFD model was difficult to 
achieve for an inlet temperature closed to 20 °C and 
a velocity of 1.0 m/s, certainly because of a physical 
transition in the flow pattern. 

Figure 1. View of the studied room: (a) 3D scheme and (b) 2D vertical mid plane (xOy).



In reference to the European standard EN ISO 7730
(1995), the control of temperature is surveyed at 
three different points in the occupancy zone, 
respectively at 0.10 m (P1), 1.10 m (P2) and 1.80 m 
(P3) high. In addition, the temperature at the inlet of 
the fan coil (P4) is checked. The location of these 
points on the vertical mid plane of the room is 
illustrated on Figure 1b.
In order to evaluate the accuracy of reduced models, 
we compare their results with CFD simulations and 
the root mean square error is used:




n

Rmse
ref 


2)(

(15)

Where n  is the number of cells for steady 

simulations, or number of time step for transient 
simulations.

3.2 Reduction of the state space model

In order to use the fixed velocity field, it is necessary 
to distinguish four different cases: a) jet falling 
before reaching the ceiling, b) jet sticking to the 
ceiling and falling rapidly, c) jet sticking to the 
ceiling and falling before the opposite wall, d) jet 
flow sticking to the ceiling and reaching the opposite 
wall. Figure 2 gives an illustration of these 4 cases.
Each one can be defined by a range of outlet 
temperature and an outlet velocity (Table 1). The 
methodology described in the previous section is 
applied to each case.
At first, the accuracy of the four high order models 
has to be checked. It is interesting to have a closer 
look to case c) which is the less advantageous 
because of the behaviour of the jet. Indeed, the jet is 
developing quickly along the ceiling without 
reaching the opposite wall. The accordance with the 
fixed flow hypothesis is worse than for the other 
cases. Figure 3 shows the difference of temperature 
distribution for an outlet temperature of 21 °C and a 
temperature step of 1°C. The Rmse is equal to 
0.240 °C for the whole room, 0.205 °C in the 

Table 1. Parameters of the cases
Outlet temperature 

[°C]
Outlet

velocity [m/s]
Case a 16.0 to 16.7 1.0
Case b 16.7 to 19.7 1.0
Case c 19.7 to 21.0 1.0
Case d 16.0 to 21.0 1.5

Figure 2. Studied cases



Figure 3. Difference of temperature for the case 
c) and for an outlet temperature of 21 °C
between: (a) the high order model and full CFD
model, (b) the reduced order model and full 
CFD model.

Figure 4. Transient response of temperature for 
the case c) and for an outlet temperature step 
from 20 at 21 °C at the point: (a) P1, (b) P2, (c) 
P3, (d) P4; temperature computed with CFD 
(solid line), the high order model (stared line) 
and the reduced order model (crossed line).

occupancy zone and 0.017 °C at the inlet of the fan 
coil. For all the room, the value is higher because of 
the difficulty in forecasting the jet flow correctly. 
The same remark is also valid for the steady state at 
20 °C, where the jet flow largely enters in the 
occupancy zone (Figure 3a) and results in a Rmse of 
0.420 °C in this zone. Nevertheless, the study of the 
transient period (Figure 4) shows that only points 
placed in high gradient zone undergo such error 
(Rmse=0.439 °C at P2), whereas points P1 and P3 
have Rmse equal to 0.154 °C and 0.170 °C 
respectively. The simulations of the high order 
model only spend a few minutes whereas CFD 
simulations need several hours. However this 
computed time are still too long for real time 
control. Besides, the order of the model (2992) has 
to be reduced again to allow the construction of a 
controller.

The POD-based basis functions are extracted from 
the simulation results of two opposite successive 
steps of outlet temperature describing all the range 
of each configuration. For instance and for the 
case c), 60 snapshots have been extracted from CFD 
simulations with a time step of 60 s (23 for the step 
from 19.7 to 21.0 °C and 37 for the step from 21.0 to 
19.7 °C). They only contain the transient period of 
the temperature variation. Snapshots have been 
systematically extracted from CFD except for the 
case b). Indeed, because of the difficulty in 



stabilizing the CFD simulation, the high order state 
space model is used to generate snapshots. For all 
cases, the cumulative contribution to the total 
“energy” is given in the last column of Table 2. Note 
that only a very few eigenfunctions are necessary to 
capture more than 90% of the “energy”. The 
principal eigenfunction contributes at least 72% of 

the total “energy”. The number of eigenfunctions 
needed in order to satisfy the criterion (5) is 
respectively 4, 3, 7 and 3 for case a) to d). Although 
it is not necessary to keep seven modes for all the 
cases, all the models are reduced to the same order 
7.

3.3 Calibration

Figures 5 to 8 compare the temporal coefficients 
obtained with the reduced state space system before 
calibration and after calibration to coefficients 
directly issued from the projection of the snapshot 
on the POD base. 
For cases a) and d), the shape is similar for the first 
two coefficients but not for the others which is 
reasonable as more than 97% of the energy 
(Equation 5) is contained in the first two modes. For 
case a), the correction seems to be absolutely 
necessary to improve the forecast of the temporal 
coefficient. On the contrary, for the case d), the 
correction has a paradoxical effect because it 
decreases the precision of the model on the first two 
coefficients, which highlights a problem with the 
chosen method of correction. Indeed, the 
minimization of the cost functional led to the 
minimization of the overall gap between the 
temporal coefficients from the projection of 
snapshots and those calculated with the reduced state 
space model. So it is possible that some factors are 
improved while others are degraded while 
minimizing the functional. This is what happens in 
cases d), especially since seven modes are retained, 
while three would suffice. In conclusion, it was 
decided not to correct the model of case d), but it 
must be ascertained that the accuracy of the model is 
well enough.
At last, it is worth noticing that the coefficients are 
very close for the case b). The reduced state space 
model does not be dramatically improved by the 
calibration. Contrary to the three other cases, the 
snapshots are not obtained from CFD simulation but 
from the high order state space model. In the case of 
c), it must be emphasized that the correction has 
been little affected by the fluctuation of the second 
part of the temporal factors due to the difficulty in 
stabilizing CFD simulations.
Finally, this method not only allows calibration to 
correct the truncation errors, but also to take account 
of all the modeling errors. This remark makes sense 
to explain the difficulties to properly correct the 
case a), since the calibration also took into account 
the error made because of the assumption of a fixed 
velocity field.

Table 2. Eigenvalues of the eight most energetic 
modes and their contribution to the total temperature 
"energy".

Modes
Eigenvalues



Cumulative 
“energy” 

contribution E  [%]
Case a
1 0.2809 83.93
2 0.0439 97.05
3 0.544E-04 98.68
4 0.198E-04 99.27
5 0.102E-04 99.58
6 0.554E-05 99.74
7 0.222E-05 99.81
8 0.203E-05 99.87

Case b
1 4.4437 84.98
2 0.7457 99.27
3 0.0287 99.82
4 0.0061 99.94
5 0.0022 99.98
6 0.747E-03 99.99
7 0.262E-03 100.00
8 0.834E-04 100.00

Case c
1 0.7359 72.98
2 0.1367 86.54
3 0.0492 91.42
4 0.0393 95.32
5 0.0128 96.58
6 0.0077 97.35
7 0.0070 98.05
8 0.0054 98.58

Case d
1 32.9710 98.15
2 0.5729 99.86
3 0.0234 99.93
4 0.0083 99.95
5 0.0081 99.98
6 0.0045 99.99
7 0.0011 99.99
8 0.707E-03 100.00



Figure 5. Temporal coefficients of the first four 
mode for the case a): (a) Mode 1, (b) Mode 2,
(c) Mode 3, (d) Mode 4; coefficients directly 
issued from the projection of the snapshot on
the POD base (solid line), obtained with the 
reduced state space system before calibration
(dash line) and after calibration (dash dot line)

Figure 6. Temporal coefficients of the first four 
mode for the case b): (a) Mode 1, (b) Mode 2,
(c) Mode 3, (d) Mode 4; coefficients directly 
issued from the projection of the snapshot on
the POD base (solid line), obtained with the 
reduced state space system before calibration
(dash line) and after calibration (dash dot line)



Figure 7. Temporal coefficients of the first four 
mode for the case c): (a) Mode 1, (b) Mode 2,
(c) Mode 3, (d) Mode 4; coefficients directly 
issued from the projection of the snapshot on
the POD base (solid line), obtained with the 
reduced state space system before calibration
(dash line) and after calibration (dash dot line)

Figure 8. Temporal coefficients of the first four 
mode for the case d): (a) Mode 1, (b) Mode 2,
(c) Mode 3, (d) Mode 4; coefficients directly 
issued from the projection of the snapshot on
the POD base (solid line), obtained with the 
reduced state space system before calibration
(dash line) and after calibration (dash dot line)



3.4 Comparison with CFD

Again, the case c) is chosen to consider the 
validation of the reduced order model. Comparing 
the simulation results of the reduced order model 
with the full CFD model, it results that the reduction 
does not systematically reduce the accuracy (Figure
3b). In the case of an outlet temperature of 20 °C for 
instance, the steady state Rmse decreases at 0.317 °C 
in the working zone. For the steady state at 21 °C, 
the accuracy of the reduced order model (Figure 3b) 
is increased at 0.152 °C and 0.124 °C for 
respectively all the room and the working zone, and 
it is decreased for the inlet of the fan coil at 
0.127 °C, which remains acceptable. Concerning the 
transient period, results are better than high order 
model ones, above all for the point P2 (Figure 4b) 
with a Rmse of 0.229 °C. It is worth remembering 
that the base of reduction is built without the 
hypothesis of fixed flow field. Consequently, the 
base contains information on the velocity field 
variation, and so enhances the reduced order model 
compared to the higher order model.
For all cases, not only the accuracy is good, but 
resolution is made in real time. In addition, the size 
of the reduced order model is only 7, which allows 
controller design.

4. Conclusions

These results show a good capacity of reduced 
models obtained with Proper Orthogonal 
Decomposition (POD) to predict the temperature in 
the occupancy zone. Two solutions exist in order to 
generate the snapshots needed for the reduction 
respectively based on the full CFD model and on the 
high order sate space model. The choice depends on 
both the quality of CFD simulations and the results 
of the state space model. However, the decision will 
have a significant impact on the efficiency or the 
difficulty of calibrating the reduced order model 
necessary to take into account the truncation errors 
in the second case, but also errors of the high order 
model in the first.
Last but not least, the small size of these models 
allows real time applications such as the controller 
design for air temperature in indoor spaces. Besides, 
the use of state space form is suited to the 
application of modern control theory.
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