
HAL Id: hal-04657850
https://hal.science/hal-04657850v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Euclidean constraints in template based
visual tracking of piecewise-planar scenes

Selim Benhimane, Ezio Malis

To cite this version:
Selim Benhimane, Ezio Malis. Integration of Euclidean constraints in template based visual tracking of
piecewise-planar scenes. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2006, Beijing, China. pp.1218-1223, �10.1109/IROS.2006.281859�. �hal-04657850�

https://hal.science/hal-04657850v1
https://hal.archives-ouvertes.fr


Integration of Euclidean constraints in template
based visual tracking of piecewise-planar scenes

Selim Benhimane, Ezio Malis
INRIA

2004 route des Lucioles, BP93
06902, Sophia Antipolis cedex, France
Firstname.Secondname@sophia.inria.fr

Abstract— This papers deals with the problem of tracking a
piecewise-planar scene in a video sequence and, at the same time,
with the problem of estimating accurately the 3D displacement
of the camera for robotic applications. A new approach to
the problem is proposed and two noticeable contributions are
given. Firstly, the explicit dependency between the 2D image
transformation parameters (a homography for each plane) and
the 3D camera displacement parameters is computed. Secondly,
a second-order optimization algorithm is proposed. The second-
oder optimization considerably increases the convergence domain
and the convergence rate of standard first-order optimization
algorithms while having an almost equivalent computational
complexity.

I. INTRODUCTION

Visual tracking of objects in a sequence of images is a
fundamental step for various computer vision applications. In
many applications, for example in vision-based robot control
[1], the final objective of visual tracking is not only the
localization of the objects in the image but also the estimation
of the camera displacement with respect to a reference frame.
Most of the visual tracking algorithms focus on the estimation
of the 2D projective transformation of the objects between the
images. In this paper, we consider visual tracking methods that
minimize a dissimilarity measure between a reference template
and the current image using parametric models of the 2D
projective transformation (see for example [2], [3], [4], [5],
[6]). Then, the camera displacement between the reference
frame (attached to the reference template) and the current
frame (attached to the current image) can be extracted from
the image transformation using the camera intrinsic parameters
[7]. Instead, our objective here is to track a piecewise-planar
scene (which model is a priori known) in the 2D image and,
at the same time, to estimate accurately the 3D displacement
of the camera. It is well known that an accurate measure
of the displacement can be obtained by adding some known
constraints on the camera displacement and/or on the shape
of the observed objects (see for example [8], [9], [10], [11]).
These constraints are generally expressed in the Euclidean
space. For example, the displacement of a camera mounted
on a mobile robot can be constrained to be in a plane. The
shape of the observed objects may be partially known and
different regions of the same rigid object have the same 3D
displacement despite they do not undergo the same image
transformation. For example, when the scene is piecewise-

planar, several planar patches can be independently extracted
and tracked. This corresponds to estimating a projective ho-
mography for each plane. In the ideal case, the computation
of the homographies provides a coherent camera displacement.
In practice, this hardly happens if we do not explicitly impose
the constraint that all the planes are rigidly attached to
each other. Indeed, it can happen that two planar patches
with poor textures give two contradictory displacements. In
addition, it is generally difficult to transform this additional
Euclidean information into simple constraints on the 2D image
transformation. To overcome these difficulties, the primary
objective of this paper is to compute the explicit dependency
between the 2D image transformation parameters and the
3D camera displacement parameters. This makes it easier to
integrate Euclidean constraints in the visual tracking algorithm
and to give a direct and more accurate camera motion with
respect to a reference frame attached to the observed scene.
Several papers have addressed the problem of templated-
based tracking imposing some Euclidean constraints. In [11],
the authors avoid the explicit computation of the Jacobian
that relates the variation of the 3D pose parameters to the
variation of the appearance in the image by using implicit
function derivatives. In that case, the minimization of the
image error is done with a coarse approximation of the inverse
compositional algorithm [2], [12]. In [13], the authors extend
the method proposed in [3] to a homographic warping. The
method makes the assumption that the true camera pose can
be approximated by the current estimated pose (i.e. the camera
displacement is sufficiently small). In addition, the Euclidean
constraints are not directly imposed during the tracking, but
once the homography has been estimated, the rotation and the
translation of the camera are extracted [7]. In [10], the authors
go one step further and extend the method proposed in [3] by
including the constraint that a set of control points on a three-
dimensional surface undergo the same camera displacement.
The aim of our work is to propose a visual tracking algorithm
to be integrated into vision-based robot control systems. This
implies a real-time implementation and the possibility to track
objects with fast camera motions. In order to meet these
constraints, we suppose that the structure of the scene is
known. This limits our system to 6 unknowns (the translation
and rotation of the camera). Other methods consider both the
motion and the structure as unknowns (see for example [14]).



In this case, the number of unknowns is considerably higher
which reduces the real-time performance of the algorithm.
Furthermore, even when fixing some unknowns, these methods
generally use first-order approximations (e.g. the linearization
involved in the Extended Kalman Filter proposed in [14]).

In this paper, we propose a different approach to the
problem and we give two noticeable contributions. Firstly,
we compute the explicit dependency between the 2D image
transformation parameters (a homography for each plane) and
the 3D parameters of the camera displacement. Secondly, we
propose a second-order optimization algorithm that consider-
ably increase the convergence domain and the convergence rate
of standard first-order optimization algorithms while having an
almost equivalent computational complexity.

II. THEORETICAL BACKGROUND

An image region is a n × m matrix containing the pixel
intensities. Let I(i, j) be the entry of the matrix corresponding
to the value of the pixel at the line i and at the column j. Let
p = (u, v) ∈ R

2 be the vector containing the coordinates
(in pixels) of a point in the image region. We suppose that
there exists a C∞ map I : R

2 → R such that, when p =
(i, j) ∈ {1, 2, ..., n} × {1, 2, ...,m} then I(p) = I(i, j). For
non-integer values of (u, v), the value of the function I at p

is obtained by interpolating the measures I(i, j).

A. The Lie Groups SL(3) and SE(3)

We suppose that the image contains the projection of a
piecewise-planar environment. For each plane in the scene,
there exists a (3×3) homography matrix G that links the
coordinates p = (u, v) of a certain point in a reference
image I∗ (for example I∗ can be the first image in the video
sequence) to its corresponding point q in the current image I:

q =

[
g11 u + g12 v + g13

g31 u + g32 v + g33

,
g21 u + g22 v + g23

g31 u + g32 v + g33

]

such that I∗(p) = I(q) and {gij} are the entries of the
matrix G. The homography matrix is defined up to a scale
factor. In order to fix the scale, we choose G ∈ SL(3) (the
Special Linear group of dimension 3). This choice is well
justified since det(G) = 0 happens only if the observed
plane passes through the optical center of the camera (in
this singular case the plane is not visible any more). Let
w : SL(3) × R

2 → R
2 be an action of SL(3) on R

2 on
the left (i.e. w(G)(p) ∈ R

2). The map w(G) : R
2 → R

2

defines a coordinate transformation (a warping) such that q =
w(G)(p). Let I be the identity element of the transformation
group. We have the following properties:

• w(I)(p) is the identity map, i.e. ∀p ∈ R
2:

w(I)(p) = p (1)

• the composition of two actions corresponds to the action
of the composition, i.e ∀p ∈ R

2, ∀G1, G2 ∈ SL(3):

w(G1)(w(G2)(p)) = w(G1G2)(p) (2)

The camera displacement between two views can be repre-
sented by a (4×4) matrix T ∈ SE(3) (the Special Euclidean
group):

T =

[
R t

0 1

]

where R ∈ SO(3) is the rotation and t ∈ R
3 is the translation

of the camera. Here and in the following, 0 denotes a zero sub-
matrix of appropriate size. The 2D projective transformation G

is similar to a matrix H ∈ SL(3) that depends on T ∈ SE(3):

G(T) = KH(T)K−1

where K is the upper triangular matrix containing the camera
intrinsic parameters (i.e. the focal length f , the skew s, the
aspect ratio r and the principal point (u0, v0)). The matrix
H(T) can be written as follows:

H(T) =
R + tn∗>

d

3

√
1 + t>Rn∗

d

where n∗

d = n∗/d∗ is the ratio between the normal vector to
the plane n∗ (a unit vector) and the distance d∗ of the plane to
the origin of the reference frame. The map H between SE(3)
and SL(3) is not a group homomorphism (indeed for T1,T2 ∈
SE(3), in general we have: H(T1)H(T2) 6= H(T1T2)).
Thus, the map w is not an action of SE(3) on R

2. In general,
we have : w(G(T1))(w(G(T2)(p)) 6= w(G(T1T2))(p) In
some particular cases, when T belongs to some subgroup of
SE(3), the map w is an action. For example, if t = 0 then
H depends only on the rotation R ∈ SO(3) and the map w

is an action of SO(3) on R
2.

B. The Lie Algebra of SE(3) and the exponential map
Let Ai, with i ∈ {1, 2, ..., 6}, be a basis of the Lie Algebra

se(3) (i.e. the dimension of the Lie Algebra se(3) is 6). Any
matrix A ∈ se(3) can be written as a linear combination of
the matrices Ai:

A(x) =

6∑

i=1

xiAi (3)

where x = (x1, x2, ..., x6) is a (6×1) vector and xi is the i-th
element of the base field. Let the (3×1) vectors bx = (1, 0, 0),
by = (0, 1, 0) and bz = (0, 0, 1) be the natural orthonormal
basis of R

3. Knowing that the dimension of the matrices Ai

is (4× 4), the generators for the translation are:

A1 =

[
0 bx

0 0

]
,A2 =

[
0 by

0 0

]
,A3 =

[
0 bz

0 0

]

The generators for the rotation are:

A4 =

[
[bx]

×
0

0 0

]
,A5 =

[
[by]

×
0

0 0

]
,A6 =

[
[bz]× 0

0 0

]

where [bi]× is the antisymmetric matrix associated to the
vector bi (i.e. [bi]× ∈ so(3)). The exponential map links
the Lie Algebra to the Lie Group: exp : se(3) → SE(3).
There exist an open cube v about 0 in se(3) and an open
neighborhood U of the identity matrix I in SE(3) such that
exp : v → U is smooth and one-to-one onto, with a smooth



inverse. The neighborhood U of I is very large (i.e. the rotation
angle must be less than π). Consequently, a homography
matrix H is a function of T that can be locally parameterized
as:

H(T(x)) = H

(
exp

(
6∑

i=1

xiAi

))

III. VISUAL TRACKING

Let q = nm be the total number of pixels in some image
region corresponding to the projection of a planar patch of
the scene in the reference image I∗. This image region is
called the reference template. To track the template in the
current image I is to find the transformation T ∈ SE(3) that
warps a pixel of that region in the reference image I∗ into its
correspondent in the current image I, i.e find T such that ∀i:

I
(
w
(
G(T)

)
(pi)

)
= I∗(pi)

For each plane in the scene, we consider its corresponding
template and its homography. For the sake of simplicity, we
describe here the computations for a single plane. Let us make
the following change of coordinates:

qi = w(G(T))(pi)

Then, we have:

pi = w−1
(
G(T)

)
(qi) = w(G(T)−1)(qi)

and:
I(qi) = I∗

(
w
(
G(T)−1

)
(qi)

)
(4)

Knowing an approximation T̂ of the transformation T, the
problem is to find the incremental transformation T(x) that
minimizes the sum of squared differences (SSD) between the
current image region I warped with T̂T(x) and the reference
image I∗, i.e T(x) that minimizes:

φ(x) =
1

2

q∑

i=1

[
I
(
w(G(T̂T(x)))(pi)

)
− I∗(pi)

]2

Writing this equation in the same frame by using the equations
(2) and (4), the problem becomes find x that minimizes the
function:

φ(x) =
1

2

q∑

i=1

[
I∗
(
w(G(T)−1G(T̂T(x)))(pi)

)
− I∗(pi)

]2

The global minimum is obviously obtained when x = x0

and where x0 verifies: T̂−1T = T(x0). The function φ is
generally non-linear. As a consequence, the global minimum
cannot be found in one iteration. An iterative minimization
algorithm is then used. Having an estimated update x, we can
update the transformation matrix:

T̂←− T̂T(x) (5)

The nonlinear least-squares minimization can be solved with
a standard optimization method using a first-order approxi-
mation (section III-A). Instead, we propose to use an opti-
mization method that performs a second-order approximation
(section III-B).

A. First-order approximation
Consider the (q×1) vector y(x) obtained by rearranging the

entries of the image differences:

y(x) = (y1(x), y2(x), ..., yq(x))

where ∀i ∈ {1, 2, ..., q}, we have:

yi(x) = I∗
(
w
(
G(T)−1G(T̂T(x))

)
(pi)

)
− I∗(pi)

The cost function φ can thus be written as:

φ(x) =
1

2
‖y(x)‖2 (6)

The necessary condition for finding a local or the global
minimum of the cost function is that there exists a stationary
point x0 such that:

[∇xφ(x)]x=x0
= 0 (7)

where ∇x is the gradient operator with respect to the pa-
rameter x. Equation (7) is also non-linear, therefore closed-
form solution is generally difficult to obtain. However, we can
approximate the cost function by performing first-order Taylor
series of y(x) about x = 0:

y(x) = y(0) + J(0) x +R(‖x‖2) (8)

where J(z) = ∇z(y(z)) and R(‖x‖2) is the second-order
reminder. Plugging equation (8) in (6) gives:

φ(x) =
1

2
‖y(0) + J(0)x‖2 +R(‖x‖2) (9)

When using the first-order approximation of y(x), ŷ1(x) =
y(0) + J(0)x, the cost function is approximated by:

φ(x) ≈
1

2
‖ŷ1(x)‖2

Then, the derivative of the cost function can be approximated
as follows:

∇x(φ(x)) ≈ ∇x(ŷ1(x))>ŷ1(x)

and using (7), we find the approximated local minimizer by
solving the equation:

[∇x(ŷ1(x))]>
x=x0

(y(0) + J(0)x0) = 0

When J(0) is a full rank square matrix, the solution is obvi-
ously x0 = −J(0)−1y(0). When J(0) is neither square nor
full rank, any generalized inverse can be used. For example,
we can use the pseudo-inverse J(0)+ of the matrix J(0).
If J(0) is full rank, the pseudo-inverse can then be written
as: J(0)+ =

(
J(0)>J(0)

)−1
J(0)>. This corresponds to

the well-known Gauss-Newton method. Note that with few
modifications, one can use the Levenberg-Marquardt method
[15][16]. The Jacobian J(0) can be written as the product of
five Jacobians:

J(0) = JI JP JK JbT
JX(0) (10)

As a consequence, the approximated solution for the minimum
is:

x0 = −(JI JP JK JbT
JX(0))+y(0)



Note that, using the current Jacobian given in equation (10),
one can design minimization algorithms similar to [5].

B. Second-order approximation
Although the optimization problem can be solved using

first-order methods, we propose to use an efficient second-
order minimization algorithm. Indeed, with little extra com-
putation, we can make the most of the local quadratic con-
vergence rate of the second-order optimization [17], [6]. A
second-order Taylor series of y(x) about x = 0 gives:

y(x) = y(0) + J(0) x +
1

2
M(0,x)x +R(‖x‖3) (11)

where M(z,x) = ∇z(J(z)x) and R(‖x‖3) is the third-order
reminder. Similarly, we can write the Taylor series of the
Jacobian J(x) about x = 0:

J(x) = J(0) + M(0,x) +R(‖x‖2) (12)

Plugging (12) in (11) leads to:

y(x) = y(0) +
1

2
(J(0) + J(x)) x +R(‖x‖3) (13)

Using equation (13), we obtain a second-order approximation
of the cost function:

φ(x) =
1

2

∥∥∥∥y(0) +
J(0) + J(x)

2
x

∥∥∥∥
2

+R(‖x‖3) (14)

Setting ŷ2(x) = y(0) + 1

2
(J(0) + J(x)) x, the cost function

is approximated by:

φ(x) ≈
1

2
‖ŷ2(x)‖2

The derivative of the cost function is approximated by:

∇xφ(x) ≈ ∇x(ŷ2(x))>ŷ2(x)

and using equation (7), we find the approximated local mini-
mizer by solving the equation:

[∇x(ŷ2(x))]>
x=x0

(
y(0) +

J(0) + J(x0)

2
x0

)
= 0 (15)

The Jacobian J(x0) is written again as the product of five
Jacobians:

J(x0) = JI∗JP JKJT JX(x0) (16)

Despite the Jacobian J(x0) generally depends on the unknown
x0, thanks to the left-invariance property of the vector fields
on SE(3), we have the following identity:

JX(x0)x0 = JX(0)x0

Thus, in the equation (15), we can use JX(0)x0 instead of
JX(x0)x0. On the other hand, the Jacobian JT depends on
the unknown transformation T . However, the Jacobian can be
approximated by JT ≈ JbT

. The update x0 of the second-order
minimization algorithm can be computed as follows:

x0 = −

((
JI + JI∗

2

)
JP JKJbT

JX(0)

)+

y(0)

In the next section, we show through experiments that our
second-order optimization algorithm converges faster than
the standard first-order algorithms. At the same time, the
computational complexity is almost the same as for first-order
algorithms. Note that, using the reference Jacobian given in
equation (16), one can design minimization algorithms similar
to [2] but with some additional limitations [12].

IV. SIMULATION RESULTS

A. Tracking a piecewise-planar scene
In order to have a ground truth, we have generated a video

sequence with a synthetic piecewise-planar scene. The differ-
ent planar textures of the scene are extracted from real images
to make the simulation as realistic as possible. This simulation
proposes to track three different planar regions over a sequence
of 100 images. The trajectory of the camera is a closed-
loop with the optical axis always pointing towards the planes.
We compare two different strategies. In the first one, we
estimate the image transformation of the three planar regions
separately (see Figure 1). When tracking the planes separately,
we use the second-order method proposed in section III-B
with the SL(3) group [6]. Then, knowing the camera intrinsic
parameters K and the ratio n∗

d, we extract the rotation and
the translation of the camera [7]. When tracked separately,
the constraint that the camera displacement is the same for
all the planes cannot be imposed directly. Thus, a second
step is needed in order to obtain a coherent estimate of the
camera displacement. In the second strategy, we track the three
planes jointly (see Figure 1). Thanks to the parameterization
of the incremental displacements in the SE(3) group with
its corresponding Lie Algebra, given n∗

d for each plane and
K, it is possible to impose the Euclidean constraint that the
rotation and the translation of the camera are the same for
the three homographies. For each image of the sequence, we
directly estimate the rotation and the translation of the camera
with respect to a reference frame. Visually, the results show
that tracking the three planes jointly gives better results than
tracking them separately. For example, in image 63 we can
clearly see that one of the templates is practically lost by the
visual tracking algorithm.

B. Advantages of second-order optimization
We compare now the second-order minimization algorithm

(called “SO”) and two standard first-order Gauss-Newton
minimizations algorithms: one, similar to [4], [5]), using
the current Jacobian (called “CJ”), and one, similar to [3],
[2]), using reference Jacobian (called “RJ”). All of the three
algorithms use the Lie Algebra parameterization described in
section II-B. The performance of the algorithms have been
compared with the same simulation setup. The template has
been selected in the center of the image taken at a reference
position shown in Figure 2. The camera observing the scene
has been moved 1000 times using different rotations and
translations. The movements have been computed randomly
but such that their effect on the image adds a Gaussian noise
to the coordinates of the 4 corners of the template. The



Tracking separately Image 21 Image 42 Image 63

Tracking jointly Image 21 Image 42 Image 63
Fig. 1. The red, magenta and green lines represent the tracking error computed respectively the first, second and third plane separately. The blue line
represents the tracking error computed considering the three plane at the same time.

0 2 4 6 8 100

10

20

30

40

50

60

70

80

90

100

RJ
CJ
SO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

5

10

15

20

25

30

35

40

45

50

RJ
CJ
SO

Ref. image Ref. template Conv. frequency Conv. rate
Fig. 2. Comparison between the proposed second-order optimization algorithm (SO) and standard first-order optimization algorithms (RJ and CJ).

standard deviation σ of the Gaussian noise is increased from
0.5 to 10. Figure 2 plots the convergence frequencies (% over
1000 tests). As σ grows, the convergence frequencies of the
RJ and the CJ methods decay quicker than the convergence
frequency of the second-order method. At the final σ = 10,
the frequency of convergence of the RJ and the CJ methods
are only 50% while the frequency of convergence of the
second-order method is more than 80%. Figure 2 shows the
average convergence rate over the converged tests of the
algorithms for σ = 10. We consider that a test has converged
if, after 15 iterations, the position error of each corner of the
template is less than 1 pixel. The initial SSD is the same
for the three algorithms but the speed of convergence of the
second-order method is much higher. Indeed, in the converged
tests, the second-order approximation algorithm needs only 7
iterations to converge while the first-order algorithms need
much more (14 iterations) to converge. This means that we
can perform real-time tracking at higher rates (the algorithm
has been tested up to 60 frames per second using a pyramidal
implementation for a total of 80000 pixels tracked). Finally,
despite the approximation made on the reference Jacobian, the
performances of the RJ and CJ algorithm are almost equivalent
for small displacements corresponding to small σ (similarly to

what it has been observed in [18]).

V. EXPERIMENTAL RESULTS

We have tested our algorithm on a sequence of 1000 images
acquired by a camera mounted on a mobile robot. Three
different planar patches have been selected from the scene
observed by the camera in the first image. Each patch belongs
to a different plane. The camera is calibrated and the normal
vectors to the 3 planes have been roughly estimated. In Figure
3, excerpts from the sequence of tracked images can be seen.
We can see that the different patches selected were well
tracked along the whole sequence (see the submitted mpeg
video). In addition, the 3D displacement of the camera has
been accurately estimated (as illustrated by the curves in Fig-
ure 4) along a trajectory of more than 6 meters length. Indeed,
when compared to a very precise odometry measure obtained
by the robot sensors, the visual tracking makes it possible
to obtain an accurate estimation of the robot translation (the
error is less than 12 cm for a 7 meter long trajectory) and
an accurate estimation of the robot rotation (the error is less
than 1.6 degrees knowing that the robot did rotations up to 15
degrees).



Image 0000 Image 0250 Image 0350 Image 0500

Image 0650 Image 0750 Image 0900 Image 1000
Fig. 3. Excerpts from a sequence of tracked images of 3 different planes.

0 200 400 600 800 1000−0.5

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000−10

−5

0

5

10

15

20

Robot translation (in meters) Robot rotation (in degrees)
Fig. 4. Comparison between the motion estimation obtained by the tracking
algorithm (with solid lines) and obtained by accurate odometry sensors (with
dashed lines): the green curves are about the axis, the red are about the y axis
and the blue are about the z axis.

VI. CONCLUSION

In many applications, a camera is used as a sensor for
controlling a robot. Tracking the pose of the camera (up to
a scale factor for the translation) with respect to a reference
frame is as important as tracking in the image space. Extract-
ing the camera pose from the 2D projective transformations
(the homographies) of a piecewise-planar scene can be very
inaccurate. In order to improve the accuracy of the pose
estimation, some known constraints on the environment or
on the movement of the camera can be added to the relative
motion model. Adding in the projective space an “a priori”
knowledge on the observed scene can be possible only in some
special cases. In this paper, we have shown that the Euclidean
constraints can be added directly in the template-based visual
tracking framework. Then, we have proposed a second-order
optimization algorithm that enlarges the convergence domain
and has faster convergence rate than standard first-order algo-
rithms. Future work will be devoted to the generalization of
our algorithm to the tracking of a scene with any structure (not
necessarily piecewise-planar) and to the on-line estimation of
the structure.

REFERENCES

[1] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” ITRA, vol. 12, no. 5, pp. 651–670, 1996.

[2] S. Baker and I. Matthews, “Lucas-kanade 20 years on: a unifying
framework,” IJCV, vol. 56, no. 3, pp. 221–255, February 2004.

[3] G. Hager and P. Belhumeur, “Efficient region tracking with parametric
models of geometry and illumination,” IEEE Trans. on PAMI, vol. 20,
no. 10, pp. 1025–1039, 1998.

[4] B. Lucas and T. Kanade, “An iterative image registration technique with
application to stereo vision,” in Int. Joint Conf. on Artificial Intelligence,
1981, pp. 674–679.

[5] H. Shum and R. Szeliski, “Construction of panoramic image mosaics
with global and local alignment,” IJCV, vol. 16, no. 1, pp. 63–84, 2000.

[6] S. Benhimane and E. Malis, “Real-time image-based tracking of planes
using efficient second-order minimization,” in IROS, 2004, pp. 943–948.

[7] O. Faugeras and F. Lustman, “Motion and structure from motion in a
piecewise planar environment,” Int. Journal of Pattern Recognition and
Artificial Intelligence, vol. 2, no. 3, pp. 485–508, 1988.

[8] E. Marchand, P. Bouthemy, and F. Chaumette, “A 2d-3d model-based
approach to real-time visual tracking,” Image and Vision Computing,
vol. 19, no. 13, pp. 941–955, November 2001.

[9] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. on PAMI, vol. 24, no. 7, pp. 932–946, 2002.

[10] W. Sepp and G. Hirzinger, “Real-time texture-based 3-d tracking.” in
DAGM-Symposium, ser. Lecture Notes in Computer Science, vol. 2781.
Springer-Verlag, 2003, pp. 330–337.

[11] D. Cobzas and M. Jagersand, “3D SSD tracking from uncalibrated
video,” in Proc. of Spatial Coherence for Visual Motion Analysis
(SCVMA 2004), in conjunction with ECCV, 2004.

[12] S. Baker, R. Patil, K. Cheung, and I. Matthews, “Lucas-kanade 20 years
on: Part 5,” Robotics Institute, Carnegie Mellon University, Tech. Rep.
CMU-RI-TR-04-64, November 2004.

[13] J. Buenaposada and L. Baumela, “Real-time tracking and estimation of
planar pose,” in CVPR, 2002, pp. 697–700.

[14] H. Jin, P. Favaro, and S. S., “A semi-direct approach to structure from
motion,” The Visual Computer, vol. 6, no. 19, pp. 377–394, 2003.

[15] K. Levenberg, “A method for the solution of certain problems in least
squares.” Quart. Appl. Math., vol. 2, pp. 164–168, 1944.

[16] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM JAM, vol. 11, pp. 431–441, 1963.

[17] E. Malis, “Improving vision-based control using efficient second-order
minimization techniques,” in ICRA, 2004, pp. 1843–1848.

[18] S. Baker and I. Matthews, “Equivalence and efficiency of image align-
ment algorithms,” in CVPR, 2001, pp. 1090–1097.


