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The distance function to a finite set is

a topological Morse function

Charles Arnal∗

Abstract

In this short note, we show that the distance function to any finite set X ⊂ Rn is a
topological Morse function, regardless of whether X is in general position. We also precisely
characterize its topological critical points and their indices, and relate them to the differential
critical points of the function.
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1 Introduction

The distance function dX to a compact set X ⊂ Rn and its sublevel sets are central objects
of study in computational geometry [CCSL06, CL06, ABE09] and in topological data analysis
[EH22, CDSGO16, OPT+17, CVJ21]. In general, the function dX is not particularly regular,
even when the set X itself is (e.g. when X is a smooth submanifold). Nonetheless, dX does
enjoy some weak Morse-like properties: though it is not differentiable, one can consider its
generalized gradient ∇dX , as defined in [Lie04]. Let ΠX(z) denote the set {x ∈ X : d(z, x) =
d(z,X)} of projections of z on X, and let σX(z) denote the projection of z onto the convex hull
Conv(ΠX(z)). Then

∇dX(z) :=
z − σX(z)

dX(z)

if z ̸∈ X, and ∇dX(z) := 0 if z ∈ X.1 A differential critical point of dX is a point z ∈ Rn such
that ∇dX(z) = 0, and a differential critical value of dX is the image by dX of a differential
critical point. Then it can be shown that the Isotopy Lemma from Morse theory still holds, i.e.
that changes in the homotopy type of the offsets Xt := {z ∈ Rn : dX(z) ≤ t} can only occur at
critical values of dX (see e.g. [Gro93]).

On the other hand, there is no analogue to the Handle Attachment Lemma (see [Mil63]), and
no simple way to control the potential changes in topology at critical values. In fact, differential
critical values need not even correspond to changes in topology; among other examples, consider

∗Université Paris-Saclay, CNRS, Inria, Laboratoire de Mathématiques d’Orsay
1It can be shown that the generalized gradient ∇dX(z) as defined here coincides with the projection of 0 onto

the similarly named generalized gradient ∂dX(z) ⊂ Rn as defined by Clarke in [Cla90].
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the half-circle X := {x2 + y2 = 1, x ≤ 0}. The point (0, 0) is a differential critical point of dX ,
but all offsets {Xt}t>0 are homeomorphic.

The case where X is a finite point cloud is of particular importance, as it features preemi-
nently in applications where one only has access to discrete samplings of sets of interest, rather
than to the sets themselves. When X is in general position, the frameworks of continuous se-
lections of functions [JP88] or of Min-type functions [GR97] can be applied to show that the
distance function dX : Rn → R is a topological Morse function:

Definition 1.1 (Topological Morse functions [Mor59]). Let U ⊂ Rn be an open set and let
f : U → R be a continuous function.

• A point z ∈ U is said to be a topological regular point of f if there is a homeomorphism
ϕ : V1 → V2 between open neighborhoods V1 of 0 in Rn and V2 of z in U with ϕ(0) = z and
such that for all p = (p1, . . . , pn) ∈ V1,

f ◦ ϕ(p) = f(z) + p1. (1)

• A point z ∈ U is said to be a topological critical point of f if it is not a topological regular
point of f .

• A point z ∈ U is said to be a non-degenerate topological critical point of f of index
m if there exist an integer 0 ≤ i ≤ n and a homeomorphism ϕ : V1 → U2 between
open neighborhoods V1 of 0 in Rn and V2 of z in U with ϕ(0) = z such that for all
p = (p1, . . . , pn) ∈ V1,

f ◦ ϕ(p) = f(z)−
m∑
i=1

p2i +
n∑

i=m+1

p2i . (2)

• The function f is said to be a topological Morse function if all its topological critical points
are non-degenerate.

Topological Morse functions do satisfy the Handle Attachment Lemma (see e.g. [SYM23,
Theorem 5]), which in turns allows for the computation of the homology of the sublevel sets of
the function, which is one of the main goals in topological data analysis. As a result, settings
in which X is assumed to be in general position have been extensively studied in the literature
[BA14, BW15, BE16, BO19, dKTV19, RB24, BR24].

On the other hand, no such result was known for an arbitrary point cloud X ⊂ Rn, though
a classification of critical configurations in R2 can be found in [Sie96]. Distance functions to
arbitrary compact sets are not topologically Morse (consider e.g. two parallel segments), and
the methods used in the case where X is a point cloud in general position fail without the
genericity assumption, as the differential critical points of dX need not be non-degenerate in the
sense of Min-type functions or of continuous selections of functions. This was unsatisfactory, as
there are many settings where X cannot be expected to be in general position, nor can it be
perturbed to be made so, e.g. when X is a subsampling of a manifold (as in [NSW08, AKC+19,
ABL23, ACSD23, ACSD24]).

In this short note, we prove that the distance function to an arbitrary finite set is, in fact, a
topological Morse function, and give a description of its topological critical points. Let Span(S)
denote the linear span of a set S ⊂ Rn.
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Theorem 1.2. Let X ⊂ Rn be a finite set. Then dX : Rn → R is a topological Morse function.
Furthermore,

• The points of X are topological critical points of dX of index 0.

• Let z ∈ Rn\X be such that z ∈ Conv(ΠX(z)). If there exists v ∈ Span(ΠX(z) − z)\{0}
such that ⟨v, x − z⟩ ≤ 0 for all x ∈ ΠX(z), then z is a topological regular point of dX .
Otherwise, z is a topological critical point of dX of index dim(Span(ΠX(z)− z)).

• All other points of Rn are topological regular points of dX .

Note that the points z ∈ Rn\X such that z ∈ Conv(ΠX(z)) are precisely the differential
critical points of dX that do not belong to X. Hence the topological critical points of dX are (in
general) a strict subset of its differential critical points, and a simple criterion specifies whether
a given differential critical point is also topologically critical. Techniques similar to those used
in the proof of Theorem 1.2 could allow for a generalization of the notion of Morse Min-type
functions from [GR97], though this is beyond the scope of this article and might be investigated
in future work.

2 Proof of Theorem 1.2

Figure 1: The level sets of the distance function to three sets of points are represented. From left
to right, the central point is a non-degenerate topological critical point of index 1, a topological
regular point and a non-degenerate topological critical point of index 2 respectively.

Given a point p ∈ Rn, we let pi denote its i-th coordinate. We also let Aff(S) ⊂ Rn denote
the affine hull of a set S ⊂ Rn, and S̊ denote its interior.

We split the core of the proof of Theorem 1.2 into two propositions. The first one corresponds
to the cases (in the statement of Theorem 1.2) where there is no v ∈ Span(ΠX(z)− z)\{0} such
that ⟨v, x − z⟩ ≤ 0 for all x ∈ ΠX(z); examples of such configurations can be seen on the left
and the right of Figure 1.

Proposition 2.1. Let k ≥ 2 and X = {x1, . . . , xk} ⊂ Rm be such that Aff(X) = Rm and that
there exists z ∈ Rm with ΠX(z) = X and z ∈ Conv(X). Assume that there exists no v ∈ Rm\{0}
such that ⟨v, x− z⟩ ≤ 0 for all x ∈ X. Then z is a topological critical point of dX of index m.
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Proof. Let us assume that z = 0 to simplify notations, and let us write R = dX(0). For any
p ∈ Rm\{0}, there exists x = x(p) ∈ X such that ⟨p, x⟩ ≥ ⟨p, x′⟩ for all x′ ∈ X (note that x(p)
is not necessarily unique - it matters not). In particular, for any x′ ∈ X,

∥p− x∥2 = ∥p∥2 − 2⟨p, x⟩+ ∥x∥2

≤ ∥p∥2 − 2⟨p, x′⟩+ ∥x′∥2 = ∥p− x′∥2,

hence dX(p) = d(p, x(p)) (in other words, p belongs to the Voronoi cell of x(p)). Now by
hypothesis,

λ := min
∥v∥=1

max
x∈X

2⟨v, x⟩ > 0.

Let ε ∈ (0, λ/2), and observe that for any p ∈ B(0, ε)\{0}, we have

dX(p)2 = ∥x− x(p)∥2 = ∥p∥2 − 2⟨p, x(p)⟩+ ∥x(p)∥2 ≤ ∥p∥(∥p∥ − λ) +R2 < R2.

Hence 0 is the maximum of dX over B(0, ε), and R − dX(p) > 0 for any p ∈ B(0, ε)\{0}. Now
consider the continuous map

Φ : B(0, ε) → Rm, p 7→ p

√
R− dX(p)

∥p∥
.

Let us show that Φ is injective. Indeed, let p ̸= p′ ∈ B(0, ε). If one of those points is 0 or if
R+ · p ̸= R+ · p′, then clearly Φ(p) ̸= Φ(p′). Otherwise, let ρ > 0 be such that p′ = ρp, and
assume without loss of generality that ρ > 1. Note that the definition of x(p) above depended
only on p/∥p∥; hence we can assume that x(p) = x(p′) := x. Then

dX(p′)2 = ∥p′∥2 − 2⟨p′, x⟩+ ∥x∥2 = ρ2∥p∥2 − 2ρ⟨p, x⟩+ ∥x∥2

= (ρ2 − 1)∥p∥2 − 2(ρ− 1)⟨p, x⟩+ dX(p)2.

But

(ρ2 − 1)∥p∥2 − 2(ρ− 1)⟨p, x⟩ ≤ (ρ− 1)((ρ+ 1)∥p∥2 − λ∥p∥)
= (ρ− 1)∥p∥(∥p′∥+ ∥p∥ − λ) ≤ (ρ− 1)∥p∥(2ε− λ) < 0,

hence dX(p′)2 < dX(p)2 and Φ(p) ̸= Φ(p′). Thus Φ is injective, and Brouwer’s Theorem on the
Invariance of Domain states that Φ(B(0, ε)) is open, and that Φ : B(0, ε) → Φ(B(0, ε)) is a
homeomorphism. Finally, ∥Φ(p)∥2 = R − dX(p) for p ∈ B(0, ε), hence ∥q∥2 = R − dX ◦ Φ−1(q)
for q ∈ Φ(B(0, ε)) and

dX ◦ Φ−1(q) = R−
m∑
i=1

q2i ,

which proves the proposition.

Our second proposition corresponds to the case where there exists v ∈ Span(ΠX(z)− z)\{0}
such that ⟨v, x − z⟩ ≤ 0 for all x ∈ ΠX(z); an example of such a configuration can be seen in
the middle of Figure 1.

Proposition 2.2. Let k ≥ 2 and X = {x1, . . . , xk} ⊂ Rm be such that Aff(X) = Rm and that
there exists z ∈ Rm with ΠX(z) = X and z ∈ Conv(X). Assume that there exists v ∈ Rm\{0}
such that ⟨v, x− z⟩ ≤ 0 for all x ∈ X. Then z is a topological regular point of dX .
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Figure 2: Three level sets of the distance function to the set X = {x1, . . . , x4} and the points
P , p and π(p) as defined in the proof of Proposition 2.2.

Proof. Let us assume without loss of generality that z = 0, and let us write R = dX(0).
Lemma 2.3 below states that there exists v ∈ Rm\{0} such that ⟨v, x⟩ ≤ 0 for all x ∈ X, and
such that maxx∈X⟨x,w⟩ > 0 for all w ∈ Rm\{0} with ⟨v, w⟩ ≤ 0. By compactness, there exists
λ > 0 such that

min
∥w∥=1,⟨v,w⟩≤0

max
x∈X

⟨w, x⟩ > λ. (3)

Up to rescaling v and applying an isometric change of coordinates, we can assume that v is
equal to the m-th standard basis vector em. Let ρ ∈ (0, λ/4), and define P := ρem. Let also
ε ∈ (0,min(ρ/2, R/2, λ/4)).

Now for any p ∈ B(0, ε), let π(p) denote the first m − 1 coordinates of the projection
p+(p−P ) pm

ρ−pm
of p onto the hyperplane {q ∈ Rm : qm = 0} along the direction p−P . Consider

the continuous map

Ψ : B(0, ε) → R× Rm−1, p 7→ (dX(p)−R, π(p)).

The situation is illustrated in Figure 2. We are going to show that thanks to our careful choices
of P and ε, Ψ is injective.

It is obvious that Ψ(p) ̸= Ψ(p′) if p, p′ ∈ B(0, ε) do not belong to the same line passing
through P . Thus we only need to show that dX is injective on the intersection of any line
passing through P with B(0, ε). Let p′ ̸= p′′ ∈ B(0, ε) belong to the same line passing through
P . As dX is Lipschitz, Lebourg’s Mean Value Theorem [Cla90, Theorem 2.3.7] states that there
exists p ∈ [p′, p′′] such that

dX(p′′)− dX(p′) ∈ {⟨u, p′′ − p′⟩ : u ∈ ∂dX(p)}, (4)

where ∂dX(p) is Clarke’s generalized gradient for dX at p. Theorem 2.5.1 from [Cla90] then
shows that

∂dX(p) = Conv

({
p− x

∥p− x∥
: x ∈ ΠX(p)

})
.

As p, p′, p′′ belong to the same line passing through P , we have p′′−p′ = µ(P−p) for some µ ∈ R∗.
Without loss of generality, we can assume that µ > 0. Let x ∈ ΠX(p); as in Proposition 2.1, x
is necessarily such that ⟨p, x⟩ = maxx′∈X⟨p, x′⟩.
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If pm ≤ 0, then Inequality (3) states that ⟨p, x⟩ > λ∥p∥, hence

⟨P − p, p− x⟩ = ⟨P, p⟩ − ⟨P, x⟩ − ∥p∥2 + ⟨p, x⟩ > −∥P∥∥p∥ − ∥p∥2 + λ∥p∥
≥ ∥p∥(−ρ− ε+ λ) ≥ λ∥p∥/2,

where we also use the fact that ⟨P, x⟩ ≤ 0 by construction. Likewise, if pm > 0, then

⟨P − p, p− x⟩ =⟨P − p, p⟩ − ⟨P − p, x⟩
≥ρpm − ∥p∥2 − ⟨P − pmem, x⟩+ ⟨p− pmem, x⟩.

But Inequality (3) applied to p−pmem states that ⟨p−pmem, x⟩ ≥ λ∥p−pmem∥. As ⟨em, x⟩ ≤ 0,
we also have that

−⟨P − pmem, x⟩ = −(ρ− pm)⟨em, x⟩ ≥ −(ρ− ε)⟨em, x⟩ ≥ 0.

Hence

⟨P − p, p− x⟩ ≥ρpm − ∥p∥2 + λ∥p− pmem∥ ≥ ρ∥p∥ − ∥p∥2 ≥ ρ∥p∥/2,

where we use the facts that ρ ≤ λ, that pm + ∥p − pmem∥ ≥ ∥p∥ and that ∥p∥ ≤ ε < ρ/2. By
combining the cases pm ≤ 0 and pm > 0, we find that there exists C > 0 such that

⟨P − p, p− x⟩ ≥ C∥p∥.

Thus for any x ∈ X such that d(x, p) = dX(p),

⟨p− x, p′′ − p′⟩ = ⟨p− x, µ(P − p)⟩ ≥ Cµ∥p∥,

and any u ∈ ∂dX(p) = Conv
({

p−x
∥p−x∥ : x ∈ ΠX(p)

})
satisfies

⟨u, p′′ − p′⟩ ≥ 1

∥p− x∥
Cµ∥p∥ ≥ Cµ

2R
∥p∥.

Equation (4) then states that

dX(p′′)− dX(p′) ≥ Cµ

2R
∥p∥.

This is enough to immediately conclude that dX(p′′) ̸= dX(p′) when the segment [p′, p′′] does
not contain 0 (as in that case ∥p∥ > 0). When it does, additional elementary arguments yield
the same conclusion. Hence we have proved the injectivity of dX , and thereby that of Ψ.

Brouwer’s Theorem on the Invariance of Domain then states that Ψ(B(0, ε)) is open, and
that Ψ : B(0, ε) → Ψ(B(0, ε)) is a homeomorphism. As Ψ(p)1 = dX(p)−R for any p ∈ B(0, ε),

dX ◦Ψ−1(q) = R+ q1

for any q ∈ Ψ(B(0, ε)), which proves the proposition.

Let us now prove the Lemma used in the proof of Proposition 2.2. Remember that the dual
of a cone C ⊂ Rm is defined as C∗ = {v ∈ Rm : ⟨v, u⟩ ≥ C ∀u ∈ C}.
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Lemma 2.3. Let X ⊂ Rm be such that Aff(X) = Rm. Assume that there exists v0 ∈ Rm\{0}
such that ⟨v0, x⟩ ≥ 0 for all x ∈ X. Then there exists v ∈ Rm\{0} such that ⟨v, x⟩ ≤ 0 for all
x ∈ X and that

⟨v, w⟩ ≤ 0 ⇒ max
x∈X

⟨x,w⟩ > 0

for all w ∈ Rm\{0}.

Proof. Consider the closed convex cone K := {w ∈ Rm : ⟨w, x⟩ ≥ 0 ∀x ∈ X}. By hypothesis,
we know that K ̸= {0}, as v0 ∈ K. Consider now the dual cone K∗ of K. The cone K∗ is
salient, i.e. it does not contain any non-trivial linear subspace, as otherwise the set X would be
included in the orthogonal of such a subspace, contradicting the hypothesis that Aff(X) = Rm.
It is known that the interior of the dual of any closed, convex and salient cone is non-empty
(e.g. as a consequence of [Roc70, Theorems 6.2 and 14.1]), hence the convex cone C := K∗ has
non-empty interior. Remember that the dual of the dual of a closed convex cone is equal to the
cone itself (see e.g. [Roc70, Chapter 14]); thus C∗ = (K∗)∗ = K.

We can now apply Lemma 2.4 below to the convex cone C and its dual C∗ = K; it states that
C̊ ∩C∗ = ˚(K∗)∩K ̸= ∅. Let v be such that −v ∈ ˚(K∗)∩K. As K ̸= {0} implies that 0 ̸∈ ˚(K∗),
v is necessarily non-zero. Since −v ∈ K, we have ⟨v, x⟩ ≤ 0 for all x ∈ X. Furthermore, the
fact that −v belongs to the interior of K∗ directly implies that ⟨v, w⟩ < 0 for all w ∈ K\{0}.
Let us show that this means that ⟨v, w⟩ ≤ 0 ⇒ maxx∈X⟨x,w⟩ > 0 for all w ∈ Rm\{0}, which is
enough to conclude the proof.

Indeed, if w ∈ Rm\{0} is such that maxx∈X⟨x,w⟩ ≤ 0, then ⟨x,−w⟩ ≥ 0 for all x ∈ X, hence
−w ∈ K\{0}. As shown above, this means that ⟨v,−w⟩ < 0, or equivalently that ⟨v, w⟩ > 0.
By contraposition, this proves our claim.

Lemma 2.4. Let C ⊂ Rm be a convex cone whose interior C̊ is non-empty, and assume that
C∗ ̸= {0}. Then C̊ ∩ C∗ ̸= ∅.

Proof. Suppose that C̊ ∩ C∗ = ∅. Then C̊ is the interior of a convex set, and as such it is a
non-empty convex open set. The dual cone C∗ is a non-empty convex set. Hence we can apply
Hahn-Banach’s Separation Theorem, which states that there exists v ∈ Rm such that

sup
u∈C̊

⟨v, u⟩ ≤ inf
w∈C∗

⟨v, w⟩ (5)

and
⟨v, u⟩ < inf

w∈C∗
⟨v, w⟩ (6)

for all u ∈ C̊; in particular, v ̸= 0. As infw∈C∗⟨v, w⟩ ∈ {0,−∞}, Inequality (6) implies that
infw∈C∗⟨v, w⟩ = 0. This, in turn, means that supu∈C̊⟨v, u⟩ = 0.

Consequently, the vector −v is such that infu∈C̊⟨−v, u⟩ = 0. As C̊ = C ⊇ C (this holds for
any convex set), and as u 7→ ⟨−v, u⟩ is continuous, we have infu∈C⟨−v, u⟩ = 0. This means that
−v ∈ C∗, but we have shown above that infw∈C∗⟨v, w⟩ = 0, hence ⟨v,−v⟩ = −∥v∥2 ≥ 0, which
contradicts the fact that v ̸= 0.

We can now prove Theorem 1.2. It is essentially a combination of Propositions 2.1 and 2.2.
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Proof of Theorem 1.2. By definition, the only differential critical points of dX are the points
z ̸∈ X such that z ∈ Conv(ΠX(z)), and the points x ∈ X. The fact that differential regular
points of dX are also topologically regular is shown in [ACSD23, Section 7] (see also [Gro93]),
which proves the last point of the statement of Theorem 1.2.

If x ∈ X, then dX coincides with d{x} on a small ball B(x, ε) around x. Consider the map

Ξ : B(x, ε) → B(x, ε2), p 7→ x + (p−x)√
∥p−x∥

. It is a homeomorphism, and dX ◦ Ξ−1(q) =
∑n

i=1 q
2
i

for all q ∈ B(x, ε2), hence x is a non-degenerate topological critical point of dX of index 0. This
proves the first point of the statement of the Theorem.

Now let z ∈ Rn\X be such that z ∈ Conv(ΠX(z)). On a small open neighborhood W of z,
the functions dX and dΠX(z) coincide. Up to an isometric change of coordinates, we can assume
that z = 0 and that Aff(ΠX(z)) = Rm × {0} ⊂ Rn for some m ≥ 1 (note that with this change
of coordinates, Span(ΠX(z)− z) = Aff(ΠX(z))). Let us also write R := dX(z).

If there exists no v ∈ Aff(ΠX(z))\{0} such that ⟨v, x⟩ ≤ 0 for all x ∈ ΠX(z), then Propo-
sition 2.1 applies to the set ΠX(z) and the subspace Aff(ΠX(z)) ∼= Rm, and there exist open
neighborhoods U1, U2 ⊂ Rm of 0 and a homeomorphism Φ1 : (U1, 0) → (U2, 0) such that
dΠX(z) ◦ Φ−1

1 (q) = R−
∑m

i=1 q
2
i for all q ∈ U2. We define the homeomorphism

Φ2 : U2 −→ Φ2(U2) =: U3,

p 7−→ p

∥p∥
√
R2 − (R− ∥p∥2)2,

and we write p = (pm, pn−m) ∈ Rm × Rn−m for all p ∈ Rn. Consider the homeomorphism

Φ3 : U1 ×Bn−m(0, ε) −→ U3 ×Bn−m(0, ε),

(pm, pn−m) 7−→ (Φ2 ◦ Φ1(p
m), pn−m),

where Bn−m(0, ε) is the ball of radius ε centered at 0 in Rn−m. For any p = (pm, pn−m) close

to 0, we have dX(p) = dΠX(z)(p) =
√
(dΠX(z)(pm))2 + ∥pn−m∥2, hence

dX ◦ Φ−1
3 (q) =

√
(dΠX(z) ◦ Φ−1

1 ◦ Φ−1
2 (qm))2 + ∥qn−m∥2

=

√
(R− ∥Φ−1

2 (qm)∥2)2 + ∥qn−m∥2

=

√
(R− (R−

√
R2 − ∥qm∥2))2 + ∥qn−m∥2

=
√
R2 − ∥qm∥2 + ∥qn−m∥2 =

√√√√R2 −
m∑
i=1

q2i +
n∑

i=m+1

q2i .

Up to making the sets U1, U2, U3 smaller, Morse’s Lemma then states that there exists a dif-
feomorphism Φ4 : U3 × Bn−m(0, ε) → Φ4(U3 × Bn−m(0, ε)) =: U4 that maps 0 to 0 such that
dX ◦Φ−1

3 ◦Φ−1
4 (q) = R−

∑m
i=1 q

2
i +

∑n
i=m+1 q

2
i . Hence z is a non-degenerate topological critical

point of index m = dim(Span(ΠX(z)− z)) of dX .
Likewise, if there exists v ∈ Aff(ΠX(z))\{0} such that ⟨v, x⟩ ≤ 0 for all x ∈ ΠX(z), then

Proposition 2.2 applies to the set ΠX(z) and the subspace Aff(ΠX(z)) ∼= Rm, and there exist
open neighborhoods V1, V2 ⊂ Rm of 0 and a homeomorphism Ψ1 : V1 → V2 such that dΠX(z) ◦
Ψ−1

1 (q) = R+q1 for all q ∈ V2. As in the case above, one can define (using Ψ1) a continuous local
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change of coordinates Ψ defined on an open neighborhood of 0 in Rn such that dΠX(z) ◦Ψ(q) =
R+ q1 (the Implicit Function Theorem is applied instead of Morse’s Lemma).

Hence z is a topological regular point: this completes the proof of the theorem.
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