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Abstract—Phasor Measurement Units (PMUs) are used in the
measurement, control and protection of power grids. However,
deploying PMUs at every bus in a power system is prohibitively
expensive, necessitating their optimal placement to ensure the
system observability with minimum cost. This partial PMU
placement renders the system vulnerable to False Data Injection
Attacks (FDIAs). This paper proposes a zero-sum game-based
approach to strategically place an additional PMU (after the
initial optimal PMU deployment for full observability) to bolster
robustness against FDIAs by introducing redundancy in attack-
susceptible areas. To compute the Nash equilibrium (NE)
solution, we leverage a reinforcement learning algorithm that
mitigates the need for complete knowledge of the opponent’s
actions. The proposed PMU deployment algorithm increases
the detection rate of FDIA by 36% compared to benchmark
approaches.

Index Terms—Cybersecurity, False Data Injection Attacks
(FDIA), Zero-sum Games, Nash Equilibrium, PMU.

I. INTRODUCTION

Phasor Measurement Units (PMUs) have become pivotal
in power systems thanks to their increased accuracy, high
sampling rate, and time-synchronised measurements. How-
ever, they must be carefully and sparingly deployed because
of their high cost. As a result, optimal PMU placement that
ensures full system observability has been widely investigated
in the literature [1], [2].

PMU measurements play a crucial role in the state estima-
tion of power systems, providing essential data for their accu-
rate operation. However, the communication technologies for
PMU operations (communications channels and global posi-
tioning system for synchronization) introduce cyber security
risks. In particular, the communication channel is susceptible
to attacks aimed at manipulating PMU measurements through
the injection of false data [3].

The presence of a PMU in a bus or its adjacent buses
allows an operator to obtain the necessary measurements to
determine the state of the bus. If all system states can be
obtained through PMU measurements, then the system is
considered fully observable. Full observability of the system
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is necessary for state estimation of the power systems. Con-
sequently, many works including [4], [5] proposed different
methods for optimal PMU placement to guarantee the ob-
servability of the system. In [4], the authors have introduced
statistical criteria to determine the optimal locations for
PMUs and employ a multi-criteria decision-making approach
known as the analytical hierarchical process to optimize
their placement. In [5], a hierarchical process for enhancing
power system observability is introduced, which proposes an
iterative approach in which the operator adds a PMU at a
time to guarantee the maximum observability of the system
with the available number of PMUs. In [6] and [7], authors
propose greedy algorithms for PMU deployment not only to
achieve full observability but also to detect stealthy FDIAs
on the Supervisory Control and Data Acquisition (SCADA)
measurements. It’s worth noting that these papers assume that
the PMUs themselves are secure against FDIAs. Reference
[8] utilizes a modified optimal PMU placement algorithm to
develop a defense solution to attacks causing a surge in the
electricity price due to the false data injected by adversaries.
Authors of [9] propose that PMUs themselves could be
vulnerable to FDIAs. Consequently, they advocate for a
new PMU placement method to mitigate such attacks. Their
research demonstrates that increasing the number of PMUs
reduces the probability of undetected FDIAs. However, they
do not consider the presence of a strategic attacker.

To the best of our knowledge, [10] is the first work to
propose a game theoretic approach to tackle the optimal
PMU placement problem in the presence of cyber threats
initiated by strategic attackers. Their methodology involves
implementing a bi-level game in which the attacker’s objec-
tive is to deviate the state estimation from the true value in
a stealthy manner. On the other hand, the operator tries to
optimally place the PMUs to maintain the full observability
of the system and minimize the state estimation errors.

Previous works have extensively investigated the observ-
ability of the system and enhanced the robustness of PMU
measurements against manipulation in state estimation by
adversaries. However, there remains a gap in the literature
regarding research on mitigating the likelihood of successful
FDIAs in the presence of a strategic attacker. Unlike [10],
which proposes a completely new PMU placement scheme
to achieve robustness against FDIAs, this paper assumes that



optimal PMU placement has already been made to ensure
system observability. Our focus is on adding an additional
PMU to the system to decrease the likelihood of successful
FDIA through the resulting redundancy in measurements.
Thus, our approach is more practical for securing power
systems that are already starting to witness PMU deployment,
mainly with the observability criterion in mind.

In this work, we assume that a strategic attacker aims
to launch such an FDIA on a PMU’s measurement that is
not observable by any other PMU while having the biggest
possible impact on the state estimation. We exploit a two-
player zero-sum non-cooperative game [11] to analyze the
interaction between the attacker and defender and investigate
the robust minimax defense solutions at the NE. The goal of
the defender is to increase the FDIA detection rate against
strategic attacks by adding redundant observing PMU to
attack-prone measurements. Then, we propose a reinforce-
ment learning algorithm drawn from multi-armed bandits,
namely exponential weights for exploration and exploitation
(EXP3), to show that the robust NE solution can be computed
without the full knowledge of the game at the defender’s end
but via iterative interactions with the attacker.

We analyze the impact of incorporating an additional PMU
using a game-theoretic approach applied to the IEEE 14-bus
system. This analysis involves comparing the outcomes with
two benchmarks obtained by: (i) not adding any additional
PMUs and (ii) randomly adding an extra PMU. A higher
attack detection percentage of the proposed solution encour-
ages the expansion of this work to larger systems which
may require more than one PMU to reach a certain level
of detection.

The key contributions of this paper are:
• Devising a minimax NE solution for obtaining a robust

and low-cost defense strategy against strategic FDIA
attacks by placing an additional PMU in the system.

• Exploiting reinforcement learning to find the NE so-
lution in an iterative manner without requiring any
knowledge about the attacker’s actions.

• We present extensive simulation results using the IEEE
14-bus system and compare the performance of the pro-
posed algorithm against a benchmark technique. Results
exhibit an enhanced detection rate for strategic attacks
while using our proposed method.

The rest of the paper is organised as follows: Section II
describes the problem formulation; Section III discusses the
proposed solution while in Section IV, our numerical results
are presented and discussed and, finally, Section V concludes
the paper.

II. PROBLEM FORMULATION

In this section, we first introduce the power system model
and optimal PMU placement problem, before delving into
the issue of the increasing robustness of PMU measurements
against FDIAs.

A. Power system model
Let the graph E = {N ,L} represent the power system,

where N is the set of buses and L is the set of lines. Also,

Fig. 1. An example power system with four buses and two PMUs

NPMU and NPMU are the subsets of buses with and without
PMUs respectively, such that NPMU ∪ NPMU = N and
NPMU ∩NPMU = ∅. There are n = |N | buses and ℓ = |L|
lines in the power system. Also, Ai represents the adjacent
buses to the ith bus. Fig. 1 exhibits a sample 4-bus grid,
where bus 1 is the PMU bus and buses 2, 3, and 4 are non-
PMU buses (before adding the PMU 2). In this system, A1 =
{2, 3} and bus 3 is a zero injection bus (ZIB).

This work is developed based on DC state estimation, so
the states of the system in this work are phase angles denoted
by θ. PMUs measure the state of their host buses directly,
while the states of the buses in NPMU can be calculated as
follows:

θj = θi − pijxij , (1)

where θi is the phase angle of the bus with PMU and θj , j ∈
Ai, is the phase angle of the adjacent bus to the ith bus. Also,
pij represents the flowing power on the line between buses i
and j while xij is the reactance of the line. Note that all pij
values are measured values by PMUs which could be under
attack or not. To make it possible to measure the states of all
buses directly or using (1), each bus is required to either have
a PMU in it or one of its adjacent buses. This requirement
is the basis of optimal PMU placement.

B. Optimal PMU placement

A bus within a power system is considered ”observable”
under two conditions: either it contains a PMU, or a PMU
is installed in any of its adjacent buses. A power system
achieves ”full observability” when every bus within the
system meets the above criteria for observability. Minimizing
the following criterion guarantees the full observability of the
system while placing a minimum number of PMUs [4]:

min

n∑
m=1

wmym s.t. g(Y) ≥ B, (2)

where wm is the cost of installing PMU in the mth bus,
Y = [y1 y2 . . . yn]

T is the binary decision variable for PMU
placement with entries:

ym =

{
1, if there is a PMU in the mth bus
0, otherwise,

(3)

also B = [1 1 . . . 1]T of dimension n. At last, g(Y) is a vector
of the same dimension as B and Y of entries:

gm(Y) =

{
1, if m ∈ NPMU or there is a PMU bus in Am

0, otherwise.
(4)

Equation (4) is a binary function defining whether or not the
bus m is observable by at least one PMU.



Power systems can incorporate zero injection buses (ZIBs),
which do not contain any load or generation components.
According to Kirchhoff’s Current Law (KCL), if the power
flow is known in all lines connected to a ZIB except for one,
then the current in that unknown line can be revealed. Con-
sequently, if all buses connected to a ZIB are observable, ap-
plying KCL makes the ZIB observable as well. Furthermore,
in the case where all buses connected to an observable ZIB
are observable except for one, KCL can also be employed
to make the previously unobservable bus observable as well
[12]. Optimal PMU placement of power systems with ZIB
follows the same steps with just introducing g′m(Y) instead
of gm(Y). Algorithm 1 represent the computation of g′m(Y).

Algorithm 1: Observability of system with ZIB
Data: ZIB, gm(Y)
Result: g′m(Y)

1 if gm(Y) = 1 then
2 g′m(Y) = 1
3 else
4 if (gk(Y) = 1, ∀k ∈ Am) and

(Am ∪ {m}) ∩ ZIB ̸= ∅
5 then
6 g′m(Y) = 1
7 else
8 g′m(Y) = 0
9 end

10 end

In Algorithm 1, ZIB represents the set of ZIB buses. If
an attacker endeavors to alter the value of θi for a PMU
bus, as per (1), all θj for every j within the set Ai will
also be modified. Consequently, if any bus j ∈ Ai is linked
to another PMU within its vicinity, any disparity in the
calculated or observed phase angles between different PMUs
for the same bus will immediately raise an anomaly flag at
the defender’s end. In contrast, if the attacker manipulates
a pij value, only one phase angle, as computed by (1), will
be affected. Therefore, this type of attack can go undetected
if the bus at the opposite end of the target line also lacks a
neighbouring PMU for monitoring purposes.

In conclusion, although certain attack scenarios have more
severe consequences, they also tend to have a higher likeli-
hood of detection.

C. Game theoretic formulation

In this paper, a game-theoretic approach has been devised
to identify the best actions for both attacker and defender
and compute the FDIA detection rate based on them.

The strategic interaction between the attacker
and defender can be formulated as a two-player
zero-sum game [11]. This game, denoted by
G =

(
T ≜ {D,A}; (SD,SA); (FD, FA)

)
, is composed of

the set of players, the sets of possible actions of the players
and the utility (or reward or payoff) functions of the players,
respectively, and which will be defined next.

The set of the players of this game is T = {D,A}, where
D denotes the defender and A the attacker. The set of action
profiles for the game is S = SD×SA, where SD is the set of
discrete defense actions and SA is the set of discrete attacks.

The defense action d ∈ SD ⊆ NPMU is the index of
nominal buses for a potential additional PMU and it is a
subset of buses that do not have a PMU already. Selecting the
candidates for installing additional PMU and forming SD is
based on the knowledge of the defender of the topology of the
system. A set of defensive actions could encompass all non-
PMU buses. However, to streamline the process and minimize
computational costs, we can exclude buses that cause the
same redundant observability as others, thereby reducing the
number of actions required. The process of picking candidate
buses is detailed in Section II-D.

The attacker selects a target PMU to manipulate either part
or all of its measurements consisting of: the phase angle of
the bus and the power flows of connected lines to it. Thus,
a specific attack action can be written as a = (u,Vu), in
which u ∈ NPMU is the index of the bus containing the
PMU under attack and Vu ∈ Π(Pu ∪ {θu}) denotes the
subset of the measurements of the target PMU at bus u that
are manipulated. Also, Π(Pu ∪ {θu}) represents the set of
partitions of Pu ∪ {θu} containing all measurements of the
target PMU and Pu = {puk,∀ k ∈ N | (u, k) ∈ L} is the
set of all the power flows puk of the lines that are connected
to bus u. The set of all possible attacks can be defined as
follows: SA = {(u,Vu) ∈ NPMU × Π(Pu ∪ {θu})}. The
number of such attacks is |SA| =

∑
u∈NPMU

(2|Lu|+1 − 1).
For the attacked line flows, there are two buses affected: (i)

the attacked PMU bus, and (ii) the bus which is at the other
end of the line (the line with manipulated power flow value).
Also, if a phase angle is manipulated, all of the adjacent
buses to the attacked PMU are affected because calculating
their phase angles is dependent on the phase angle of the
PMU bus. For a precise attack a ∈ SA, we form the set of
affected buses and call it Ca. For example in the 4-bus system
depicted in Fig. 1, the measurements of PMU 1 that can be
tampered with are: {p12, p13, θ1}. So the set SA for it is thus:

SA = {(1, {p12}); (1, {p13}); (1, {θ1}); (1, {p12, p13});
(1, {p12, θ1}); (1, {p13, θ1}); (1, {p12, p13, θ1})} .

The attacker aims to maximize the deviations of phase
angles measured by PMUs from their true values. The effect
of the FDIA on the phase angles is:

E(a, d) = Θ−Θbad, (5)

where Θ = [θ1 θ2 . . . θn]
T is the vector of accurate

phase angles and Θbad = [θbad,1 θbad,2 . . . θbad,n]
T is

the measured phase angles vector of under attack power
system. The defender’s goal is to add one extra PMU for the
redundant measurement of attack-prone properties in order
to detect the possible FDIA. Let Ok(d) represent the number
of PMUs observing the bus k,

Ok(d) = |NPMU ∩ Ak| . (6)



In other words, Ok(d) is the total number of PMUs in
the kth bus and its adjacency after the defensive action d.
Consider Fig. 1 as an example. When only PMU 1 (as per
the initial optimal PMU placement) is deployed within the
system, the total number of PMUs observing bus 2 is equal to
1. Now, if the operator introduces another PMU in bus 4 (i.e.,
d = 4), then O2(4) = 2 as there will be two PMUs observing
bus 2. In this scenario, a potential anomaly is highlighted in
the measurements of at least one of the PMUs if the phase
angle calculations from both observing PMUs differ.

We consider that the attacker’s objective is to pick an
action a that remains undetected and that maximizes the
FDIA effect. To rigorously define the attacker’s reward, we
introduce O(a, d) as the number of PMUs observing the bus
with affected phase angle calculation after the attack and
defense actions:

O(a, d) =

∣∣∣∣∣NPMU ∩

{ ⋃
i∈Ca

Ai

}∣∣∣∣∣ , (7)

in which Ca is the set of buses whose phase angle measure-
ments are affected by the attack. If O(a, d) > 1, then the
attack is detected and the reward of the attacker is set to
zero (worst case for the attacker). Otherwise, if O(a, d) = 1,
the attack is undetected and its effect is maximized by
maximizing ∥E(a, d)∥. To sum up, the reward of the attacker
is:

FA(a, d) =

{
∥E(a, d)∥, if O(a, d) = 1

0, if O(a, d) > 1,
(8)

which translates that, if only one PMU observes the target
bus, the attacker is undetected and can stealthily manipulate
measurements, resulting in a reward of ∥E(a, d)∥. However,
if multiple PMUs monitor the target bus, the attack is
detected, rendering null the attacker reward.

We further consider that the defender’s objective is the
exact opposite by maximizing

FD(a, d) = −FA(a, d), (9)

which is always negative and maximized when the FDIA
attack is detected and FD(a, d) = FA(a, d) = 0.

D. Defensive actions

The defender has full knowledge of the topology of the
system and, hence, can use this information to specify more
accurately the candidate defense actions by selecting only a
subset of NPMU . The reason is that the defender wants to
add one extra PMU to increase the system’s observability in
the least observable buses, whereas some buses in NPMU

have guaranteed double observability by the PMUs in place.
Let Bα ⊆ NPMU , ∀ α ∈ NPMU denote the subset of

non-PMU buses with single observability, which turn double
observable after adding a PMU to αth bus. Algorithm 2
describes the process of selecting the candidate buses.

Algorithm 2: Defining defender’s set of actions

Input : NPMU , Ai

Output: SD

1 Specify Bα for all of the non-PMU buses.
2 Classify the non-PMU buses α ∈ NPMU as follows:

buses α1 and α2 belong to the same class if: either
Bα1

≡ Bα2
or Bα1

⊂ Bα2
.

3 From each class, select the one bus with the largest
set Bα.

4 The above-selected buses form SD.

III. ROBUST MINIMAX DEFENSE STRATEGY

Having defined all the components of the two-player non-
cooperative game G under study, we will now proceed to
find the mixed Nash equilibrium solution of this game, which
will lead to the robust minimax defense solution in terms of
placing one additional PMU against a strategic attacker.

The NE is the natural outcome of a non-cooperative game
and is a state, or an action profile, from which the players
cannot unilaterally deviate without losing in terms of their
individual rewards. The mathematical definition of the NE
in pure strategies for the game G under study is given as
follows.

Definition 1. An action profile (a∗, d∗) ∈ S is a NE in pure
strategy of the non-cooperative game G, iff FA(a

∗, d∗) ≥
FA(a, d

∗), ∀ a ∈ SA and FD(a∗, d∗) ≥ FD(a∗, d),(or
equivalently, FA(a

∗, d∗) ≤ FA(a
∗, d)) ∀ d ∈ SD.

Our finite and discrete game G might not have a such
pure NE solution. Instead, the game always has at least one
mixed strategy NE solution [13]. A mixed strategy NE is the
solution of the extension of the game to mixed strategies, in
which the players choose random actions following certain
probability distributions. Therefore, our objective is to find a
mixed-strategy NE solution. In our case, the attacker choose
a random action a ∈ A following a discrete probability distri-
bution σA = (ρ1, ρ2, . . . , ρ|SA|) ∈ ∆A, such that ρk denotes
the probability of selecting the k-th action in SA. Similarly,
the defender choose a random action d ∈ SD following the
discrete probability σD = (µ1, µ2, . . . , µ|SD|) ∈ ∆D such
that µk denotes the probability of selecting the k-th pure
defense action in SD. We will also make use of the notations
ρa and µd to denote the probabilities of selecting arbitrary
actions a ∈ SA and d ∈ SD, respectively. At last, the
sets ∆A and ∆D are the corresponding discrete probability
distribution simplices:

∆A =

σA = (ρ1, . . . , ρ|SA|) ∈ [0, 1]|SA|

∣∣∣∣∣∣
|SA|∑
k=1

ρk = 1


∆D =

σD = (µ1, . . . , µ|SD|) ∈ [0, 1]|SD|

∣∣∣∣∣∣
|SD|∑
k=1

µk = 1

 .

The modified rewards of the extended game are the
mathematical expectations of the obtained rewards given the



randomly chosen actions that follow the distribution σA for
the attacker and σD for the defender:

F̂A(σA, σD) =
∑
a∈SA

∑
d∈SD

FA(a, d) ρa µd. (10)

To sum up, the extended game to mixed strategies can
be defined as Ĝ =

(
T ≜ {D,A}; (∆D,∆A); (F̂D, F̂A)

)
and

the mixed strategy NE is defined as follows.

Definition 2. A mixed strategy profile (σ∗
a, σ

∗
d) ∈ ∆A×∆D

is a mixed NE of the game G, iff it is a NE of the extended
game Ĝ such that F̂A(σ

∗
A, σ

∗
D) ≥ F̂A(σA, σ

∗
D), ∀ σA ∈ ∆A,

and F̂D(σ∗
A, σ

∗
D) ≥ F̂D(σ∗

A, σD), ∀ σD ∈ ∆D.

The mixed strategy NE can be calculated via the Von-
Neumann indifference principle [13] by solving a certain
number of linear systems of equations and inequalities. This
number grows exponentially with the number of actions of
the players. When the number of actions grows large, finding
the NE via the Von-Neumann indifference principle becomes
intractable. The Lemke-Howson method [14] is the most
efficient alternative known to date. However, in the worst
cases, the complexity of the Lemke-Howson algorithm is the
same as the Von-Neumann indifference principle.

Both the Von-Neumann indifference principle and the
Lemke-Howson method require full knowledge of the payoffs
and sets of actions of players. Lack of knowledge about the
payoffs of the opponent player hinders the game from being
solved by them. Inspired by [11], the NE is found using the
EXP3 algorithm from the multi-armed bandits framework.
The main desirable feature of EXP3 is that neither player is
required to have full knowledge of the game.

Indeed, in EXP3 algorithm, the agent A or D draws
a random action at or dt at each iteration t from the
distribution σA,t = (ρ1,t, ρ2,t, . . . , ρ|SA|,t) or σD,t =
(µ1,t, µ2,t, . . . , µ|SD|,t) and observes its own resulting re-
ward. The rewards of the non-chosen actions are not known
and have to be estimated. For instance, at the attacker side,
the estimated rewards are as follows: 1

F̂A,t(a) =
FA(at, dt)1[a = at] + βt

σA,t(a)
, ∀a ∈ Sa (11)

where βt > 0 controls the estimator’s variance. Additionally,
σA,t(a) signifies the probability of choosing action a at
iteration t. The next equation captures the cumulative score
of these actions and determines the performance of actions
in the past.

GA,t(a) =

t∑
τ=1

ητ F̂A,τ (a) (12)

where ητ > 0 is a learning parameter. Then, the updated
probability distribution σA,t+1 is computed,

σA,t+1(a) = γt
1

|SA|
+ (1− γt)

exp(GA,t(a))∑
r∈SA

exp(GA,t(r)
,∀a,

(13)

1Similar equations can be written for the defender and are omitted here.

where γt ∈ (0, 1] is another learning parameter. Similarly, the
defender updates its own probability distribution. The process
repeats until convergence. According to [15], the empirical
frequency of actions of EXP3, defined below, converges to
the NE.

σ̄A,t =
1∑t

τ=1 ητ

t∑
τ=1

ητσA,τ . (14)

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed framework for
the IEEE 14-bus system. The initial optimal PMU locations
for satisfying the full observability condition are chosen as
in [4]. In this grid, as the result of optimal PMU placement,
buses 2, 6, 7, and 9 while not considering ZIB and buses
2, 6, and 9 with considering ZIB are PMU buses. Note that
in this test system, ZIB = {7} as bus 7 is the ZIB. Also,
Following the Section II-D, the set of candidate buses to place
the additional PMU is SD = {1, 3, 8, 10, 13}.

Additionally, the NE has been calculated by the Lemke-
Hawson method with full game knowledge and compared to
the EXP3 algorithm, which is expected to converge to the
NE.

A. Evaluation of the NE solution

We first compute the NE solution via Lemke-Howson and
EXP3 algorithms for comparison purposes. Tables I and II
contain the probability distributions of NE for defender and
attacker. Additionally, they contain the results calculated in
the last iteration of the EXP3. The provided values highlight
the fact that EXP3 enables us to compute the mixed strategy
NE without requiring full knowledge about the set of actions
and payoffs of the opponent. indeed, for two-player zero-sum
games, the EXP3 algorithm converges to the NE solution
[16]. Now, to assess the performance of the NE solution in
terms of FDIA detection rate, we introduce the probability of
detecting and not detecting an attack given a randomly chosen
defense action d ∈ SD and attack action a ∈ SA. Since the
actions of the attacker and the defender are independent of
one another, we can calculate the probability of detecting and
not detecting FDIA as follows:

Pr[O(a, d) > 1] =
∑

a∈SA, d∈SD

Pr(a) Pr(d) 1[O(a,d)>1],

(15)
and Pr[O(a, d) = 1] = 1 − Pr[O(a, d) > 1] given that
O(a, d) ≥ 1 always, where 1[t] is the indicator function that
equals one if the condition t is true and zero otherwise.

At the NE (σ∗
A, σ

∗
D), the attack detection rate is given by:

Pr[O(a, d) > 1] =
∑

a∈SA, d∈SD

ρ∗a µ∗
d 1[O(a,d)>1]. (16)

The above will be compared with a naive defense strategy
where the probability of choosing an action d ∈ SD is
uniformly distributed: Pr(d) = 1/|SD|,∀ d ∈ SD. For this
naive defense strategy, the attack detection rate is given by:

Pr[O(a, d) > 1] =
1

|SD|
∑

a∈SA, d∈SD

ρ∗a 1[O(a,d)>1], (17)



TABLE I
NE SOLUTION FOR THE IEEE 14-BUS SYSTEM WITHOUT ZIB

CALCULATED VIA THE LEMKE-HOWSON AND EXP3 METHODS

Action
(Attacker)

NE probability distributions
Lemke-Howson EXP3

Line 1-2 0.3113 0.3220
Line 2-3 0.4923 0.4726

Lines 6-11, 6-12, 6-13 0.1965 0.2044
Other Actions 0 ≈ 0

Action (Defender)

Bus 1 0.3774 0.3758
Bus 3 0.6071 0.6062

Bus 10 0.0155 < 0.01
Other Actions 0 ≈ 0

TABLE II
NE SOLUTION FOR IEEE 14-BUS SYSTEM WITH ZIB CALCULATED VIA

LEMKE-HOWSON AND EXP3 METHODS

Action
(Attacker)

NE probability distributions
Lemke-Howson EXP3

Line 2-3 0.7685 0.7401
Lines 6-11, 6-12, 6-13 0.2315 0.2254

Other Actions 0 < 0.01

Action (Defender)

Bus 3 0.7685 0.7769
Bus 10 0.2032 0.1584
Bus 13 0.0283 0.0630

Other Actions 0 < 0.01

assuming the attacker follows its NE via the σ∗
A probability

distribution.
The assessment of FDIA detection rate should involve

evaluating their performance against intelligent attacks. Note
that none of the conducted FDIAs can be detected without the
implementation of a defensive measure, such as the addition
of an extra PMU, as outlined in this paper.

Using the obtained NE solution (in Table I and II),
the probability of detecting FDIA has been calculated and
presented in Table III in comparison with the naive defense
described above. Adding the PMU based on the proposed
method in this paper results in 40.75% and 62.50% detection
rates in systems without and with ZIB, respectively. However,
adding the PMU with the naive process with the uniformly
distributed probability for candidate buses as defender’s
action results in 25.90% and 23.81% detection rates. So,
the benefit of following the proposed algorithm is 14.85%
and 36.69% improvements in detection rates with the same
number (one) of additional PMU.

TABLE III
ROBUST NE DEFENSE STRATEGY AND A NAIVE DEFENSE

AGAINST A STRATEGIC ATTACKER.

Defense type Without ZIB With ZIB

FDIA detection
rate (%)

Naive 25.90 23.81
Robust NE 40.75 62.50

V. CONCLUSIONS

In this paper, after the first optimal PMU placement stage,
a two-player zero-sum non-cooperative game is introduced
to find a robust defense solution against FDIA by including

a single additional PMU. The two players (attacker and
defender) have opposite objectives, and neither side has
complete information about the game (e.g., the opponent’s
actions). A reinforcement learning approach called “EXP3”
is exploited to compute the robust Nash equilibrium solution.
Our results show that the proposed method increases the rate
of FDIA detection while being cost-efficient and robust to
strategic attacks which encourages the expansion of this work
to larger systems, which may require more than one PMU to
reach a certain level of detection.
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