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Background: Six thoracic pathologists reviewed 259 lung neuroendocrine tumours (LNETs) from the lungNENomics
project, with 171 of them having associated survival data. This cohort presents a unique opportunity to assess the
strengths and limitations of current World Health Organization (WHO) classification criteria and to evaluate the
utility of emerging markers.
Patients and methods: Patients were diagnosed based on the 2021 WHO criteria, with atypical carcinoids (ACs) defined
by the presence of focal necrosis and/or 2-10 mitoses per 2 mm2.We investigated two markers of tumour proliferation:
the Ki-67 index and phospho-histone H3 (PHH3) protein expression, quantified by pathologists and automatically via
deep learning. Additionally, an unsupervised deep learning algorithm was trained to uncover previously unnoticed
morphological features with diagnostic value.
Results: The accuracy in distinguishing typical from ACs is hampered by interobserver variability in mitotic counting and
the limitations of morphological criteria in identifying aggressive cases. Our study reveals that different Ki-67 cut-offs
can categorise LNETs similarly to current WHO criteria. Counting mitoses in PHH3þ areas does not improve diagnosis,
while providing a similar prognostic value to the current criteria. With the advantage of being time efficient, automated
assessment of these markers leads to similar conclusions. Lastly, state-of-the-art deep learning modelling does not
uncover undisclosed morphological features with diagnostic value.
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Conclusions: This study suggests that the mitotic criteria can be complemented by manual or automated assessment of
Ki-67 or PHH3 protein expression, but these markers do not significantly improve the prognostic value of the current
classification, as the AC group remains highly unspecific for aggressive cases. Therefore, we may have exhausted the
potential of morphological features in classifying and prognosticating LNETs. Our study suggests that it might be
time to shift the research focus towards investigating molecular markers that could contribute to a more clinically
relevant morpho-molecular classification.
Key words: lung neuroendocrine tumours, histological classification, deep learning, Ki-67, PHH3
INTRODUCTION

Lung neuroendocrine neoplasms (NENs) are divided, ac-
cording to the World Health Organization (WHO),1 into
high-grade neuroendocrine carcinomas (NEC), which
encompass small-cell lung carcinoma and large-cell neuro-
endocrine carcinomas, and well-differentiated neuroendo-
crine tumours (NETs). These morphological types
respectively account for 15%, 3%, and 2% of all lung cancer
cases. LNETs can be further subdivided into low-grade (G1)
NET or typical carcinoids (TCs) and intermediate-grade (G2)
NET or atypical carcinoids (ACs). ACs are more aggressive
than TCs, with a fourfold to sixfold higher risk of metastatic
disease and relapse within 10 years after surgery. According
to the WHO classification, the number of mitoses and
presence of necrosis are the criteria to distinguish G1 (TC)
from G2 (AC) LNETs. TCs have <2 mitoses per 2 mm2,
whereas ACs have 2-10 mitotic figures. Any focus of ne-
crosis is diagnostic of AC. The relevance of a classification
system lies in its ability to discriminate the most aggressive
cases specifically and sensitively by classifying them as ACs,
so that these patients can be monitored for longer. Incor-
rect classification may result in costly, distressing, and un-
necessary prolonged clinical management, which is mainly
explained by the low reproducibility of mitotic count and by
the challenge to assess necrosis in a reproducible manner.2,3

To address this problem, the well-known Ki-67 prolifera-
tion index has been tested as a marker to improve repro-
ducibility.4 The 2022 WHO Classification of Endocrine
Tumours introduced Ki-67 as a pillar for NETs of all body
sites. In the specific case of the lung, the use of Ki-67 is
encouraged but not mandatory, even if considered useful in
distinguishing highly proliferative ACs.1,5-7

Ki-67 is expressed during G1, S, G2, and M phases of the
cell cycle, so its correlation with mitotic count is not per-
fect.8 Phospho-histone H3 (PHH3) expression, on the other
hand, is restricted only to the M phase.9 This marker, which
has already been extensively studied for the classification of
gastrointestinal and pancreatic NETs, allows sensitive and
unambiguous counting of dividing cells, which is expected
to lead to a better reproducibility of the metric.10-13 How-
ever, it remains little explored in LNETs, particularly in
AC.9,14

In this study we take advantage of the multicentre, in-
ternational lungNENomics series (https://rarecancersgenom
ics.com/lungnenomics/), including 259 LNETs, enriched for
AC cases, to assess how whole-slide image (WSI) deep
learning analyses, as well as Ki-67 and PHH3 protein
https://doi.org/10.1016/j.esmoop.2024.103591
expression could help overcome the current limitations in
the histopathological classification of LNETs. Haematoxylin
and eosin (HE), Ki-67, and PHH3 stainings for samples of this
large cohort were evaluated by six thoracic pathologists,
providing an unprecedented opportunity to investigate the
reproducibility of the measures. In parallel, WSI deep
learning algorithms were developed and applied on the
same slides, following both supervised and unsupervised
learning paradigms, to extend the pathologists’ observa-
tions to the whole-slide scale, and to explore potential new
morphological features so far unseen by the pathologist’s
eye which may harbour diagnostic and prognostic value.

PATIENTS AND METHODS

Presentation of the cohort and pathological review

The lungNENomics series is a multicentre, international,
retrospective cohort of 259 patients diagnosed with an
LNET, whose clinical data are summarised in Table 1. Par-
ticipants’ samples underwent histopathological and deep
learning-assisted pathology review for this study
(Figure 1A). A panel of six thoracic pathologists from Italy
(MP and GP), France (SL, JMV and AML), and Austria (LB)
diagnosed all the cases according to the 2021 WHO
guidelines. Mitoses were counted on haematoxylin/eosin
(HE)/HE/saffron (HES) sections based on a minimum of
three areas of 2 mm2. In addition, each reviewer had to
analyse subsequently Ki-67 and PHH3 stainings to estimate
the expression of these proteins in hotspot areas
(Supplementary Tables S1-S3, available at https://doi.org/
10.1016/j.esmoop.2024.103591). This study was approved
by the Ethics Committee of the International Agency for
Research on Cancer (IEC Project No. 19-07).

Deep learning-based analyses

Two supervised deep learning algorithms, based on Patho-
net models,15 were independently trained to estimate the
proportion of Ki-67 and PHH3-positive cells, per 1000 and
per 10 000 detected cells, respectively. To exclude most of
the normal areas from the evaluation, tumour areas were
previously extracted using CFlow anomaly detection
model,16 as proposed in the study by Mathian et al.17

Pathonet classified each cell as positive or negative for
the marker, allowing marker expression to be estimated at
the WSI scale, as opposed to pathologists who assessed
protein expression in hotspot areas. The location of the
positive cells was then used to calculate spatial metrics to
Volume 9 - Issue 6 - 2024
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Table 1. Clinical description based on reference diagnosis

Feature Pathological review type Total

Typical Atypical

n % n % n

Sex
Male 72 34.6 28 56.0 100
Female 136 65.4 22 44.0 159

Age, years
Mean 57 57 57
Median 60 61 60
Range 18-83 22-84 18-84

Location
Proximal 51 24.5 11 22.0 62
Distal 49 23.6 9 18.0 59
Metastasis 1 0.5 0 0.0 1
Unreported 107 51.4 30 60.0 137

Stage
IA 89 42.8 14 28.0 103
IB 29 13.9 12 24.0 41
IIA 6 2.9 3 6.0 10
IIB 24 11.5 8 16.0 32
IIIA 13 6.3 6 12.0 19
IIIB 2 1.0 1 2.0 3
IV 3 1.4 0 0.0 3
Unreported 42 20.2 6 12.0 48

Surgery type
Wedge 12 5.8 1 2.0 13
Segmentectomy 5 2.4 2 4.0 7
Lingulectomy 1 0.5 0 0.0 1
Lobectomy 165 79.3 34 68.0 200
Bilobectomy 5 2.4 1 2.0 6
Pneumonectomy 7 3.4 2 4.0 9
Unreported 13 6.3 10 20.0 23

Post-operative treatment
None 169 81.3 41 82.0 211
Somatostatin analogue 1 0.5 0 0.0 1
Chemotherapy 0 0.0 2 4.0 2
Chemotherapy and somatostatin
analogue

1 0.5 0 0.0 1

Radiotherapy 2 1.0 1 2.0 3
Radiotherapy and chemotherapy 1 0.5 0 0.0 1
Unreported 34 16.3 6 12.0 40

Tobacco smoking history
Never 81 38.9 20 40.0 102
Former 45 21.6 15 30.0 60
Current 43 20.7 6 12.0 49
Unreported 39 18.8 9 18.0 48

Cannabis use
Yes 0 0.0 1 2.0 1
No 69 33.2 14 28.0 83
Unreported 139 66.8 35 70.0 175

Other exposures
None 39 18.8 9 18.0 48
Asbestos 5 2.4 3 6.0 8
Lead, other metals 1 0.5 1 2.0 2
Tar 1 0.5 0 0.0 1
Hair spray, colourants 1 0.5 0 0.0 1
Unspecified 2 1.0 0 0.0 2
Unreported 159 76.4 37 74.0 197

Neuroendocrine genetic disorder
Yes 0 0.0 3 6.0 3
No 115 55.3 17 34.0 133
Unreported 93 44.7 30 60.0 123

History of cancer
Yes 37 17.8 4 8.0 41
No 145 69.7 42 84.0 188
Unreported 26 12.5 4 8.0 30

History of radiotherapy
Yes 8 3.8 0 0.0 8
No 169 81.3 35 70.0 205
Unreported 31 14.9 15 30.0 46

Continued

Table 1. Continued

Feature Pathological review type Total

Typical Atypical

n % n % n

Tumour recurrence
Yes 5 3.8 7 20.0 18
No 120 58.2 27 60.0 152
Unreported 83 38.0 16 20.0 89

Census status
Alive 202 97.1 43 86.0 245
Dead 4 2.4 7 14.0 12
Unreported 1 0.0 0 0.0 1
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see if the spatial patterns varied depending on the type of
LNET, as proposed by Bulloni et al.18

We decided to apply an unsupervised learning algorithm,
centred on the Barlow Twins19 and adapted to WSIs by
Quiros et al.,20 to try to discover new morphological fea-
tures associated with typical or atypical tumour types, and
thus not to limit our analysis to criteria already included in
the classification. Barlow Twins19 was trained on a subset of
fragments of WSIs of 100 mm2 with the aim of generating
similar vectors for similar tiles and vice versa for dissimilar
tiles, according to the contrastive learning paradigm. The
inferred low-dimensional representations of the 4.1 million
tiles were then clustered using Leiden community
search19,20 to identify groups of tiles sharing similar
morphological features. Finally, random forest models were
used to predict patient diagnosis based on the proportion
of tiles belonging to each community within a WSI.20
Statistical framework

Cohen’s Kappa coefficient21 and Pearson’s correlations were
calculated to assess agreement between pairs of patholo-
gists and between pathologists and deep learning mea-
surements. This enabled us to identify readers 2 and 6 as
outliers in PHH3 measurements compared to others, lead-
ing to their exclusion from the corresponding analyses
(Supplementary Figure S1A and B, available at https://doi.
org/10.1016/j.esmoop.2024.103591).

Hypothetical classification systems were created by
replacing the mitotic count criteria with the measured
expression of Ki-67 and PHH3, with nine threshold values
chosen for each marker to explore the effect of thresholds,
which is often debated.8,14 The classification’s relevance was
assessed based on the reproducibility of the diagnoses and
the prognostic value of the two groups obtained, by majority
voting, according to recurrence-free survival (RFS) after sur-
gery, which considers patients who have relapsed or died of
the disease or from an unreported cause. To assess whether
the new classification systems defining ‘new groups’ had
similar or different prognostic values to the official classifica-
tion, we measured the differences in prognosis between the
new groups (Cox model 1); we also compared prognosis be-
tween the new ACs and consensus ACs (Cox model 2). To
determine whether the new systems are more sensitive in
https://doi.org/10.1016/j.esmoop.2024.103591 3
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Figure 1. Presentation of the lungNENomics cohort and protocols for pathological review and digital pathology analyses. (A) Study design (created with Bio-
Render.com). (B) Flow diagram of the central pathological review leading to final diagnoses. (C) KaplaneMeier curves of RFS according to the reference diagnoses.
Grey dashed lines indicate median survival; P value corresponds to the log-rank test.
AC, atypical carcinoid; HE, haematoxylin and eosin; PHH3, phospho-histone H3; RFS, recurrence-free survival; TC, typical carcinoid; WSI, whole-slide image.

ESMO Open É. Mathian et al.
detecting cases with a higher risk of relapse, we compared the
RFS data between TCs reclassified as ACs according to the
new rules and those remaining classified as TCs (Cox model 3).

To assess these hypothetical scenarios at the level of
individual pathologists, which is more representative of
common clinical practice, the 10-year RFS rate was reported
for each diagnosis type according to the majority vote and
at the reader level. Mixed Cox models incorporating pa-
thologists’ individual observations were calculated to esti-
mate the marginal effect of the hypothetical classifications,
and to compare multivariable models. More details are
provided in Supplementary Methods, available at https://
doi.org/10.1016/j.esmoop.2024.103591.
4 https://doi.org/10.1016/j.esmoop.2024.103591
RESULTS

Limitations of the current morphological criteria

Out of the 259 cases initially diagnosed as LNET, 143 were
unanimously classified as TC and 21 as AC by the six pa-
thologists (Figure 1B). This represents 68.8% of the 208
cases with a reference diagnosis (majority vote based on
WHO criteria) of TC, and 42% of the 50 with a reference
diagnosis of AC. AC are therefore more likely to be mis-
diagnosed than TC (Fisher’s exact test P ¼ 5e-4)2

(Figure 1B). One case was not classified due to disagree-
ment over mitoses counting criteria. The overall Kappa
Fleiss score was 0.56; however, Kappa scores were highly
Volume 9 - Issue 6 - 2024
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variable depending on the pair of readers compared,
ranging from 0.38 to 0.78 (Supplementary Figure S2A,
available at https://doi.org/10.1016/j.esmoop.2024.103
591). Individual pathologists’ diagnoses were considered
to be incorrect if they differed from the reference one. To
explain these misclassifications, we examined the interob-
server variability between the two criteria used for classi-
fication: the number of mitoses and the presence/absence
of necrosis. Focal necrosis was observed in 14%-36% of
cases with a reference diagnosis of AC, corresponding to 6-
15 patients depending on the reader. Thus, the overall
Kappa score of 0.52 for observation of necrosis represents
moderate agreement for this feature (Supplementary
Figure S2B, available at https://doi.org/10.1016/j.esmoop.
2024.103591). For the number of mitoses on HE/HES, the
mean Pearson’s correlation score between readers was 0.61
and ranged from 0.48 to 0.89 (Supplementary Figure S2C,
available at https://doi.org/10.1016/j.esmoop.2024.103
591). The distribution of this variable differed significantly
between readers (analysis of variance [ANOVA] P < 2e-16)
(Figure 2A and B). As necrotic foci were rarely observed,
most misclassifications would then be explained by the low
reproducibility of mitotic counts on HE/HES.

The value of a classification system lies in its ability to
specifically identify patients with a poorer prognosis, as this
requires tailored clinical management. However, it has pre-
viously been shown that the current classification system for
LNETs is imperfect at identifying patients at high risk of
progressing towards a more aggressive disease.22,23 In the
lungNENomics series, RFS data were available for 171 pa-
tients, with a median follow-up of 56 months. For patients
with a reference diagnosis of TC, the RFS rates at 2, 5, and 10
years are 95.8%, 92.7%, and 92.7%, respectively, compared
to 86.0%, 66.6%, and 46.5% for ACs, respectively (Figure 1C,
Supplementary Table S4, available at https://doi.org/10.
1016/j.esmoop.2024.103591, for detailed data on cases
with event). Nine TCs (4.3%) and 14 ACs (38.9%) relapsed or
died of the disease, in the first 10 years following surgery
(log-rank test P ¼ 2e-9), with these numbers varying when
considering individual pathologist’s diagnoses. Given the
importance of mitotic count to decide on the diagnosis, we
investigated whether shifting the mitotic count threshold
would create TC and AC groups that better fit the prognosis
of the patients. For all the different thresholds tested (from
one to nine mitoses), AC always showed worse prognosis
than TC but none of the thresholds generated a group of AC
with worse prognosis than the reference group (Figure 2C). It
is noteworthy that LNETs are not only rare cancers, but also
have a relatively good prognosis, thus the number of pa-
tients with an event in our large cohort (23/171) is relatively
small, limiting the statistical power (Supplementary
Figure S3, available at https://doi.org/10.1016/j.esmoop.
2024.103591).24 Nevertheless, these data also suggest that
increasing the size of the cohort may not solve this cut-off
problem, as a wide range of cut-offs allows for both spe-
cific and sensitive detection of cases associated with an
event (Supplementary Figure S4, available at https://doi.org/
10.1016/j.esmoop.2024.103591). This finding suggests that
Volume 9 - Issue 6 - 2024
there may be limited utility in debating changes to mitotic
count thresholds.

Altogether, the results in the large lungNENomics series
confirm the limitations of the current classification criteria
that have already been pointed out over the past years in
single-centre or smaller series.2,25,26 Our data also show
that it is not through multiple pathologist reviews or
changing the threshold for the number of mitoses to define
ACs that will substantially improve the prognostic value of
such classification. The question now is whether emerging
criteria such as Ki-67 and PHH3 expression could bring
something new to the table.
Added value of Ki-67 expression assessment in the
evaluation of proliferative activity

The expression levels of Ki-67 were assessed by the six
pathologists on 253 samples of the lungNENomics series.
We found a strong correlation between average mitotic
counts on HE/HES and percentage of Ki-67-positive cells,
indicating the high performance of pathologists’ measure-
ments (r ¼ 0.68, P < 2e-16) (Supplementary Figure S5A,
available at https://doi.org/10.1016/j.esmoop.2024.103
591). As expected, ACs showed higher proliferative activ-
ity than TCs, with median Ki-67 indices of 10% and 2.5%,
respectively (Supplementary Figure S5B, available at
https://doi.org/10.1016/j.esmoop.2024.103591). Despite
the high correlation coefficient between pathologists, with
a mean coefficient of 0.79 (Supplementary Figure S5C,
available at https://doi.org/10.1016/j.esmoop.2024.103
591), the distribution of Ki-67 indices differed significantly
between readers (ANOVA P ¼ 7e-5), as illustrated by the
median values that varied between 2% and 4% depending
on the pathologist (Supplementary Figure S5D, available at
https://doi.org/10.1016/j.esmoop.2024.103591).

Based on a Ki-67 index cut-off of 20%, two ACs show the
morphological features expected for the LNET grade 3
emerging subtype6 (Supplementary Figure S6, available at
https://doi.org/10.1016/j.esmoop.2024.103591). These two
ACs show one and seven mitotic counts, respectively, based
on the average counts of the six readers. Five TCs have a
percentage of Ki-67-positive cells >10%; two out of the
three with RFS data available relapsed within the first year
after diagnosis, further supporting the prognostic value of
Ki-67 expression levels27-29 (Supplementary Figure S7A,
available at https://doi.org/10.1016/j.esmoop.2024.103
591). However, according to this hypothetical classification
system, the AC group remains unspecific for cases with poor
RFS (Supplementary Figure S7B and C, available at https://
doi.org/10.1016/j.esmoop.2024.103591). Similarly to what
we observed for the mitotic count, there was no clear cut-
off that best separates LNETs based on prognosis, but rather
a range of values with different sensitivity/specificity ratios.
Any threshold between 5% and 17% of Ki-67-positive cells
allowed us to define two groups that had different prog-
nosis, but with no difference in prognosis between the Ki-
67-based ACs and the reference AC group (Figure 3A and E).
Thresholds of 5% and 6% identified a small group of 16 and
https://doi.org/10.1016/j.esmoop.2024.103591 5
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Figure 2. Assessment of number of mitoses counted on HE/HES slides for the classification of LNETs. (A) Reference WHO LNET classification system. (B) Distributions
of the number of mitoses per 2 mm2 by reader based on reference diagnosis. (C) Prognostic value of TC and AC groups for different mitotic count thresholds. Left
panel: forest plot for AC versus TC groups based on RFS. Elements are coloured if the Wald test is significant (P < 0.05). The error bars around the hazard ratios
correspond to the 95% CI. When the error bars end in an arrow, this means that the confidence intervals are associated with a large value. For ease of reading, this
value is not shown and the arrow indicates that the true value is to the right. The name of the group in bold in the panel titles is the target group for which hazard
ratios are reported in comparison to the reference group, which is not written in bold. Middle panel: forest plot for AC versus reference AC based on PFS. Right panel:
percentages of cases diagnosed as TC and AC. AC cases diagnosed as such because of the presence of necrotic foci are labelled as AC.Necrosis. The proportion of NA
represents cases with no majority vote for TC or AC (three votes each).
AC, atypical carcinoid; CI, confidence interval; HE, haematoxylin and eosin; HES, haematoxylin, eosin and saffron; LNET, lung neuroendocrine tumours; NA, not
available; Nb, number; PFS, progression-free survival; RFS, recurrence-free survival; TC, typical carcinoid; WHO, World Health Organization.
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6 reference TCs, now reclassified as ACs, respectively, with
worse prognosis than TCs based on the same thresholds.
Similar results were seen in the multivariate analysis
(Supplementary Table S5, available at https://doi.org/10.
1016/j.esmoop.2024.103591). Of note, despite a cut-off of
5% Ki-67-positive cells improving the mean Kappa score
between pathologists by 2 points, this does not translate
into a significant improvement of the reproducibility
(Supplementary Figure S8, available at https://doi.org/10.
1016/j.esmoop.2024.103591). For all readers, this cut-off
identifies the group of TCs at higher risk of relapse, while
6 https://doi.org/10.1016/j.esmoop.2024.103591
the prognostic value of the AC group remains identical to
the reference group (Figure 3E).

When applying a deep learning algorithm to Ki-67 expres-
sion assessment in WSI, the good correlation between
manually and automatically measured Ki-67 indices proved
the reliability of the algorithm (r ¼ 0.77, P < 2e-16), although
a different density between AC and TC cannot be proved
(Supplementary Figure S9A and B, available at https://doi.
org/10.1016/j.esmoop.2024.103591). This automatic variable
confirmed the higher proliferative activity of reference ACs,
with a median index of 16& versus 6& for TCs. Despite the
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Figure 3. Effect of including Ki-67 or PHH3 assessment in the LNET classification system. First column: hypothetical classification system. Individual pathologists’
diagnoses were combined by majority vote, meaning that some cases may remain unclassified if observations resulted in three AC and three TC diagnoses. The four
hypothetical classification systems are the following: (A) Based on manual assessment of Ki-67 expression. (B) Based on automatic assessment of Ki-67 expression. (C)
Based on manual mitotic count on regions with PHH3 expression. (D) Based on automatic assessment of PHH3 expression. Second to fourth columns: effects of the
hypothetical classification system on the prognostic value of the two resulting groups. The significance of the Wald tests associated with the Cox models described on
the left is colour-coded for the different thresholds of the variable studied. Fifth column: percentages of cases diagnosed as TC or AC according to the hypothetical
classification system. AC cases with foci of necrosis diagnosed by more than three pathologists were labelled AC.Necrosis. The name of the group in bold in the panel

É. Mathian et al. ESMO Open

Volume 9 - Issue 6 - 2024 https://doi.org/10.1016/j.esmoop.2024.103591 7

https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591


ESMO Open É. Mathian et al.
different scaling due to the way Ki-67 is automatically
measured on the WSI, instead of counting in hotspots as is
done manually by pathologists, the results observed for
different thresholds led to similar conclusions (Figure 3B).

Overall, these results suggest that while specific thresh-
olds of Ki-67 expression might be useful for the identifica-
tion of the few TC cases with higher risk of relapse, the AC
cases at a given threshold remain highly unspecific of
aggressiveness (Figure 3A, B and E). Therefore, the added
value of Ki-67 expression assessment to the current WHO
classification is limited. In terms of automated measure-
ment of this marker, time-effective deep learning algorithms
could be confidently used by pathologists to quantify Ki-67;
however, it would not add any additional information to
what pathologists already measure within hotspots, mean-
ing that the region assessed would have minimal impact on
the results. As Ki-67 is a broader marker of cell proliferative
activity in which mitotic stage is included, it seems perti-
nent to analyse now whether a more precise a priori
detection of mitoses via PHH3 would lead to better results.
Added value of PHH3 expression for the counting of
mitotic figures

Similar to Ki-67, PHH3 expression levels were also assessed
by immunohistochemistry (IHC) on 246 of the samples of
the lungNENomics series. Despite differences in distribution
between readers (Supplementary Figure S1A and B, avail-
able at https://doi.org/10.1016/j.esmoop.2024.103591), we
also found a strong correlation between mean mitotic count
on HE/HES and on areas with PHH3 expression (PHH3þ),
demonstrating the quality of the marker (r ¼ 0.83, P < 2e-
16) (Supplementary Figure S10A, available at https://doi.
org/10.1016/j.esmoop.2024.103591). As already re-
ported,14 the number of mitoses counted on PHH3þ areas
was higher (1.8 times) than on HE/HES. As expected,
reference ACs have higher count of mitotic figures on
PHH3þ areas than TCs, with a median value of four mitoses
versus one for TCs (Supplementary Figure S10B, available at
https://doi.org/10.1016/j.esmoop.2024.103591). The two
putative LNET grade 3 based on Ki-67 showed 10 and 2
mitoses based on PHH3, respectively, further confirming
that Ki-67 and PHH3 (and consequently mitotic counts) are
not measuring the same feature (Supplementary Figure S6,
available at https://doi.org/10.1016/j.esmoop.2024.103
591). Similar to the results observed for Ki-67, thresholds
between 2 and 10 mitoses counted on PHH3þ areas
defined TC and AC groups with different prognosis but with
the prognosis of the AC group being similar to that of the
reference AC (Figure 3C and E). We note that although the
titles is the target group for which hazard ratios are reported in comparison to the re
system, the coloured bar corresponds to the 10-year RFS rate based on the diagn
confidence intervals. Middle panel: percentages of cases diagnosed as TC or AC accord
panel: Harrell’s C-index, also known as the correspondence index, comparing the
resulting from the classification system mentioned on the left. Error bars around the e
of the confidence interval resulting from the reference classification system used for c
the diagnoses resulting from each pathologist’s observations (one model for each p
AC, atypical carcinoid; HR, hazard ratio; LNET, lung neuroendocrine tumours; PFS, pro
TC, typical carcinoid; NA, not available.

8 https://doi.org/10.1016/j.esmoop.2024.103591
threshold of four mitoses implied little change in classifi-
cation, it improves the Kappa index by 1 point
(Supplementary Figure S8, available at https://doi.org/10.
1016/j.esmoop.2024.103591). The multivariate Cox model
including PHH3 fit the RFS data better than a model based
on reference criteria alone (Supplementary Table S5, avail-
able at https://doi.org/10.1016/j.esmoop.2024.103591).

Regarding the automatic counting of PHH3, there was as
expected a correlation between the mean number of mi-
toses on PHH3þ areas counted manually and automatically,
but a drop in performance compared with Ki-67, probably
linked to the scarcity of positive cells (r ¼ 0.64, P < 2e-16)
(Supplementary Figure S10C, available at https://doi.org/
10.1016/j.esmoop.2024.103591). In PHH3 WSIs, as in Ki-
67 WSIs, the pattern of proliferative activity does not pro-
vide sufficient evidence to support the idea that ACs are
more prone to areas of high mitotic density than TCs
(Supplementary Figure S10D, available at https://doi.org/
10.1016/j.esmoop.2024.103591). Surprisingly, counting mi-
toses on PHH3þ areas automatically failed to identify the
TC group with a worse prognosis suggesting that manual
counting would be better in the case of PHH3 (Figure 3D
and E).

The above-mentioned results suggest that once the
techniques are established in the laboratory and the pa-
thologists are familiar with the deep learning automatic
counting algorithms, the automatic assessment of Ki-67 and
PHH3 could reduce the time that a given pathologist would
spend in making a diagnosis, but would not help to signif-
icantly improve the clinical meaningfulness of the current
WHO classification criteria. The remaining question is
whether deep learning could uncover novel clinically
meaningful morphological features beyond those current
and emerging that might have escaped the pathologist’s
eye.
Using deep learning to uncover novel clinically relevant
morphological features

Applying a state-of-the-art unsupervised deep learning al-
gorithm20 to 257 HE/HES WSIs failed to separate the two
histological types of LNETs, as evidenced by the distribution
of tiles (subparts of WSIs) in the two-dimensional map of
morphological features (Figure 4A). To enhance model
interpretation and bolster its predictive capabilities, we
grouped tiles into communities, which are expected to
consist of tiles with similar morphological features
(Figure 4B; the full description of communities and their
associated features is provided in Supplementary Table S6,
available at https://doi.org/10.1016/j.esmoop.2024.103
ference group, which is not written in bold. (E) Left panel: For each classification
oses resulting from majority voting; these rates are associated with the 95%
ing to the hypothetical classification system resulting from majority voting. Right
quality of univariate Cox models for RFS incorporating the different diagnoses
stimator correspond to confidence intervals. Vertical lines indicate the boundary
omparison. Coloured dots indicate the results obtained from Cox models built on
athologist).
gression-free survival; PHH3, phospho-histone H3; RFS, recurrence-free survival;
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Figure 4. Unsupervised deep learning experiment on HE/HES WSI of LNET patients. (A) Two-dimensional morphological map resulting from the uniform manifold
approximation and projection (UMAP) dimensionality reduction technique45 applied to Barlow Twins-encoded vectors, each tile is coloured according to the reference
diagnosis of the patients. (B) Representation of the 18 communities on (A). Some communities are annotated according to enrichment for certain morphological features,
in line with the annotations of pathologists on the WSI. (C) Proportion of tiles in each Leiden community by tumour type. The horizontal black line represents the total
proportion of TC versus AC tiles included in the experiment. At the top of the bar, the presence of a star indicates whether a community is significantly enriched for a type;
the colour of the star indicates for which tumour types it is enriched. (D) KaplaneMeier curves of PFS as a function of predicted diagnoses using random forest. The purple
curves correspond to the diagnoses with the highest probability between the two types. The green curves correspond to the diagnoses predicted if the 50 most likely ACs
were classified as such to obtain a group of the same size as the reference diagnosis. The P values of the log-rank test associated with the type of predictions are shown in
the legend.
AC, atypical carcinoid; HE, haematoxylin and eosin; HES, haematoxylin, eosin and saffron; LNET, lung neuroendocrine tumours; STAS, spread through alveolar spaces; TC,
typical carcinoid; WSI, whole-slide image.
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591). The random forest trained on the proportions of tiles
in each of the 18 communities calculated per patient
allowed us to predict the reference diagnosis with very low
accuracy (Figure 4C). Indeed, if we took the highest prob-
ability between the two classes as the predicted diagnosis,
we obtain a receiver operating characteristic (ROC) score of
only 0.59; a score equal to or greater than this was obtained
by chance 19 times out of 500 permutation tests (permu-
tation test P ¼ 0.04) (Supplementary Figure S11A and B,
available at https://doi.org/10.1016/j.esmoop.2024.1035
91). The Kappa score between predicted and reference di-
agnoses is much lower than that obtained by pathologists,
with a value of 0.15, in comparison to 0.56. Interestingly,
several communities were enriched for specific morpho-
logical features, described at the WSI level, for example
spread through alveolar spaces (STAS) and vascular invasion
(Figure 4B; Supplementary Table S6, available at https://doi.
org/10.1016/j.esmoop.2024.103591). However, the distri-
bution of morphological features described at the WSI level
within communities does not show a clear association
with the reference diagnosis (Supplementary Table S6,
available at https://doi.org/10.1016/j.esmoop.2024.1035
91), as highlighted by the statistics on additional features
(STAS, vascular invasion, etc.) reported by pathologists
(Supplementary Figure S12, available at https://doi.org/10.
1016/j.esmoop.2024.103591). In fact, none of these char-
acteristics were significantly associated with one of the two
histological types, according to the summary of the majority
vote (Supplementary Figure S12, available at https://doi.
org/10.1016/j.esmoop.2024.103591). The validity of our
implementation of the models of Quiros and colleagues20
Volume 9 - Issue 6 - 2024
was demonstrated by a respectable performance in the
classification of lung adenocarcinomas from lung squamous
cell carcinoma in a set of WSIs available from The Cancer
Genome Atlas (TCGA) Program database, with a ROC score
of 0.93 (Supplementary Figure S13A-C, available at https://
doi.org/10.1016/j.esmoop.2024.103591). As shown in
Figure 4D, the TC and AC groups predicted by deep learning
have a similar prognosis, whether the groups are defined
according to the highest probability, or ACs are defined as
the 50 most probable cases (to obtain a group of the same
size as the reference diagnosis).
DISCUSSION

The current WHO classification of LNETs established ac-
cording to the number of mitotic figures counted on HE
slides, and the presence of necrotic foci, is moderately
reproducible as previously suggested30 and as confirmed in
our large, multi-centric, and international lungNENomics
series. This interobserver variability is mainly explained by
the low reproducibility on the counting of mitotic figures,
given that the presence of necrosis represents a marginal
feature only present in a minority of ACs. Our series also
confirms the limitations of the current classification in pre-
dicting prognosis as shown by the up to 11% of TC patients
who had an event within the first year after resection of the
primary tumour (13/121), and the up to 73% of ACs who did
not have an event after 10 years (45/62) (Figure 3E).

The interobserver variability associated with mitotic
counting on HE has a strong impact on diagnosis. In addi-
tion, the limitations of the current morphological criteria to
https://doi.org/10.1016/j.esmoop.2024.103591 9
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specifically identify aggressive cases translates in longer
follow-up for all patients with an LNET, which is costly and
difficult for the patient, creating a lot of anxiety. The sys-
tematic reporting of Ki-67 index has been encouraged by
the European and North American NET societies31,32 but the
debate over the inclusion of the Ki-67 index in the classi-
fication of LNETs (as used for gastroenteropancreatic NET
since 2010) has revolved around the optimal threshold for
distinguishing TC and AC.4,8,28,33-35 Here we demonstrate
that there is a wide range of cut-offs of Ki-67 expression
that allow LNETs to be divided into two groups with similar
prognostic values to those defined by the current WHO
criteria. And while the use of Ki-67 seems to improve the
identification of some TCs with higher risk of relapse,
demonstrating that intense proliferative activity should
redirect the diagnosis towards the AC type,6,36,37 the use of
this marker does not improve the specificity of the group of
ACs to aggressive cases. In addition, we have shown that Ki-
67 does not reduce interobserver variability, despite the
fact that staining was carried out centrally, which has pre-
viously been shown to reduce inter-laboratory variability in
Ki-67.38 Similarly, mitoses can be counted on PHH3þ areas
without a major improvement when compared to the cur-
rent criteria, for a wide range of thresholds. This is partic-
ularly true for a threshold of four mitoses, which is
consistent with the results of the studies by Tsuta et al., Kim
et al., and Laflamme et al.9,13,14 While PHH3 reduces the
time required by the pathologist to count mitoses,10,11,14

we cannot prove that it significantly reduces interobserver
variability, as previously claimed.10,14 Finally, our data on
the automatic evaluation of Ki-67 and PHH3 by supervised
deep learning algorithms show that these algorithms reach
the performance of expert pathologists in terms of prog-
nostic value, as they allow division of LNET into two groups
with a similar prognostic value to that defined by the ex-
perts, they mechanically reduce the interobserver vari-
ability, and are widely recognised as being time efficient.
However, they do not provide any additional information to
the manual assessment, either for Ki-67 or PHH3. Overall, if
these markers were to be adopted, optimal thresholds
should be defined on the basis of the best clinical strategy
that can be implemented for patients, taking into account
the costs, benefits, and risks of over- or under-diagnosis of
AC, and not simply on the basis of RFS or overall survival
data, as these prognostic data are inherent to the cohort
and may not represent the ‘true’ distributions, given the
low frequency of events among such rare cancers. Given the
degree of interobserver variability in detecting foci of ne-
crosis, it would be interesting to investigate the potential
added value of expression of HIF-1-alpha, a protein that is
expressed under hypoxic conditions and localised close to
the necrotic area.39

Finally, applying unsupervised state-of-the-art deep
learning methods to WSIs does not help in distinguishing TC
from AC, given the great histological similarity between
these entities. This suggests that we might have reached a
plateau on what morphology can bring to the distinction
10 https://doi.org/10.1016/j.esmoop.2024.103591
between TCs and ACs and, more importantly, to predicting
aggressive disease in LNET patients. On the other hand,
although with some limitations, the prognostic value of the
current morphological classification is unarguable, it is not
useful for personalised treatments.
Conclusions

While not having an added value in terms of prognostica-
tion, the assessment of Ki-67 and PHH3 by IHC could be
suggested in the upcoming WHO Classification of Thoracic
Tumours to guide the assessment of tumour proliferation.
However, our data suggest that efforts should be put else-
where if we want to make a breakthrough in improving the
diagnosis, prognostication, and clinical management of
these diseases. There are emerging molecular markers that
may complement the current morphological criteria to
predict aggressive disease. For example, the prognostic
value of CD44, ASCL1, and OTP expression,40,41 or TERT42

has been suggested. Beyond single-molecular markers, we
and others have shown through multi-omics data analyses
the existence of robust molecular groups that only partially
match the separation into TC and AC.43,44 These kinds of
studies are needed to better understand the biology and
aetiology of LNETs and therefore to open new avenues for
the clinical management of these rare and understudied
diseases, through a more clinically relevant morpho-
molecular classification.

ACKNOWLEDGEMENTS

The lungNENomics project is part of the Rare Cancers Ge-
nomics initiative (www.rarecancersgenomics.com/) led by
the Rare Cancers Genomics team at the IARC (https://www.
iarc.who.int/teams-gem-rcg/). This work is also part of the
European Neuroendocrine Tumor Society (ENETs) lung task
force. We thank the Hospices Civils de Lyon (CRB-HCL BB-
0033-00046) and Centre Léon Bérard (CRB-CLB BB-0033-
00050) biobanks in Lyon, France, both authorised by the
French Ministry of Research, for sharing human biological
samples and associated data. We thank the 12 centres that
voluntarily participated in the lungNENomics project by
providing one FFPE block per patient: The Tumour Bank of
the François Baclesse Centre in Caen (France), the Institut
für Diagnostik und Forschung in Pathologie of the Medical
University of Graz (Austria), the Department of Bio-
pathology of the Léon Bérard Centre in Lyon (France), the
Institute of Pathology of the Hospices civils de Lyon
(France), the Department of Surgical Oncology of St Vin-
cent’s Hospital in Melbourne (Australia), the Department of
Oncology and Haemato-Oncology of the University of Milan
(Italy), the Department of Biopathology at the Nancy
Regional Hospital (France), the Laboratory of Clinical and
Experimental Pathology at the Pasteur Hospital in Nice
(France), the Departments of Pathology and Oncology at
Oslo University Hospital (Norway), the Pathology Depart-
ment at the Cochin Hospital in Paris (France), the Oncology
Unit at the IRCCS Cas Sollievo della Sofferenza Foundation
Volume 9 - Issue 6 - 2024

http://www.rarecancersgenomics.com/
https://www.iarc.who.int/teams-gem-rcg/
https://www.iarc.who.int/teams-gem-rcg/
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591


É. Mathian et al. ESMO Open
in Rotondo (Italy), and the Oncology Department at the
University of Turin (Italy). We thank the 2 anonymous re-
viewers for their insightful comments and suggestions,
which significantly contributed to the improvement of our
manuscript. The results published here are in whole or part
based upon data generated by the TCGA Research Network:
https://www.cancer.gov/tcga. We also acknowledge the
contribution of Associate Professor Gavin Wright and Dr
Behnoush Abedi-Ardekani.
FUNDING

This work was supported by HPC resources from GENCI-
IDRIS [grant numbers 2022-AD011012172R1 and 2024-
AD010315173]. This work was also supported by the
Neuroendocrine Tumor Research Foundation (NETRF,
Investigator Award 2022 to M.F.), Worldwide Cancer
Research (WCR) [grant number 21-0005 to L.F.C.], the
French National Cancer Institute (INCa) [grant number PRT-
K-17-047 to L.F.C], and LYRICANþ [grant number INCa-
DGOS-INSERM-ITMO cancer_18003].
DISCLOSURE

Where authors are identified as personnel of the Interna-
tional Agency for Research on Cancer/WHO, the authors
alone are responsible for the views expressed in this article
and they do not necessarily represent the decisions, policy,
or views of the International Agency for Research on Can-
cer/WHO. The rest of the authors declare no conflict of
interest.
DATA SHARING

The data used in the current study are available in the
ESMOOpen_LungNENomicsCohort repository https://
github.com/IARCbioinfo/ESMOOpen_LungNENomicsCohort.
The scripts needed to reproduce the deep learning experi-
ments are available at:
� WSIs pre-processing: https://github.com/IARCbioinfo/
WSIPreprocessing

� Tumour segmentation by anomaly detection: https://
github.com/IARCbioinfo/TumorSegmentationCFlowAD
(based on: https://github.com/gudovskiy/cflow-ad)

� Pathonet adapted to LNET: https://github.com/IARCb
ioinfo/PathonetLNEN (based on: https://github.com/
SHIDCenter/PathoNet)

� Barlow Twins for LNET: https://github.com/IARCbioinfo/
LNENBarlowTwins (based on: https://github.com/facebo
okresearch/barlowtwins)

Access to WSI is available on request to sylvie.
lantuejoul@lyon.unicancer.fr.

REFERENCES

1. WHO Classification of Tumours. Thoracic Tumors (ed 5). Lyon, France:
IARC Press; 2021.

2. Swarts DRA, van Suylen RJ, den Bakker MA, et al. Interobserver vari-
ability for the WHO classification of pulmonary carcinoids. Am J Surg
Pathol. 2014;38(10):1429-1436.
Volume 9 - Issue 6 - 2024
3. Lee CH, Chang HK, Lee HW, Shin DH, Roh MS. The interobserver
variability for diagnosing pulmonary carcinoid tumor. Korean J Pathol.
2010;44(3):267.

4. Warth A, Fink L, Fisseler-Eckhoff A, et al. Interobserver agreement of
proliferation index (Ki-67) outperforms mitotic count in pulmonary
carcinoids. Virchows Arch. 2013;462(5):507-513.

5. Pelosi G, Travis WD. The Ki-67 antigen in the new 2021 World Health
Organization classification of lung neuroendocrine neoplasms. Patho-
logica. 2021;113(5):377-387.

6. Rekhtman N. Lung neuroendocrine neoplasms: recent progress and
persistent challenges. Mod Pathol. 2022;35(suppl 1):36-50.

7. Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classi-
fication of neuroendocrine neoplasms. Endocr Pathol. 2022;33(1):115-
154.

8. Pelosi G, Rindi G, Travis WD, Papotti M. Ki-67 antigen in lung neuro-
endocrine tumors: unraveling a role in clinical practice. J Thorac Oncol.
2014;9(3):273-284.

9. Tsuta K, Liu DC, Kalhor N, Wistuba II, Moran CA. Using the mitosis-
specific marker anti-phosphohistone H3 to assess mitosis in pulmo-
nary neuroendocrine carcinomas. Am J Clin Pathol. 2011;136(2):252-
259.

10. Voss SM, Riley MP, Lokhandwala PM,Wang M, Yang Z. Mitotic count by
phosphohistone H3 immunohistochemical staining predicts survival
and improves interobserver reproducibility in well-differentiated
neuroendocrine tumors of the pancreas. Am J Surg Pathol.
2015;39(1):13-24.

11. Villani V, Mahadevan KK, Ligorio M, et al. Phosphorylated histone
H3 (PHH3) is a superior proliferation marker for prognosis of
pancreatic neuroendocrine tumors. Ann Surg Oncol. 2016;23(suppl 5):
609-617.

12. Dumars C, Foubert F, Touchefeu Y, et al. Can PPH3 be helpful to assess
the discordant grade in primary and metastatic enteropancreatic
neuroendocrine tumors? Endocrine. 2016;53(2):395-401.

13. Kim MJ, Kwon MJ, Kang HS, et al. Identification of phosphohistone H3
cutoff values corresponding to original WHO grades but distinguish-
able in well-differentiated gastrointestinal neuroendocrine tumors.
Biomed Res Int. 2018;2018:1-10.

14. Laflamme P, Mansoori BK, Sazanova O, et al. Phospho-histone-H3 im-
munostaining for pulmonary carcinoids: impact on clinical appraisal,
interobserver correlation, and diagnostic processing efficiency. Hum
Pathol. 2020;106:74-81.

15. Negahbani F, Sabzi R, Pakniyat Jahromi B, et al. PathoNet introduced as
a deep neural network backend for evaluation of Ki-67 and tumor-
infiltrating lymphocytes in breast cancer. Sci Rep. 2021;11(1):8489.

16. Gudovskiy D, Ishizaka S, Kozuka K. CFLOW-AD: real-time unsupervised
anomaly detection with localization via conditional normalizing flows
[Internet]. arXiv [cs.CV]. 2021:98-107 [cited 2022 Dec 19]. Available at
https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_
CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Locali
zation_via_Conditional_Normalizing_WACV_2022_paper.html.

17. Mathian E, Liu H, Fernandez-Cuesta L, Samaras D, FollM, Chen L. HaloAE:
a local transformer auto-encoder for anomaly detection and localization
based on HaloNet. In: Proceedings of the 18th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and
Applications [Internet]. SCITEPRESS - Science and Technology Publica-
tions; 2023. https://doi.org/10.5220/0011865900003417.

18. Bulloni M, Sandrini G, Stacchiotti I, et al. Automated analysis of
proliferating cells spatial organisation predicts prognosis in lung
neuroendocrine neoplasms. Cancers (Basel). 2021;13(19):4875.

19. Zbontar J, Jing L, Misra I, LeCun Y, Deny S. Barlow twins: self-supervised
learning via redundancy reduction. In: Meila M, Zhang T, editors.
Proceedings of the 38th International Conference on Machine Learning.
Vol. 139. PMLR; July 18-24, 2021:12310-12320.

20. Quiros AC, Coudray N, Yeaton A, et al. Self-supervised learning in non-
small cell lung cancer discovers novel morphological clusters linked to
patient outcome and molecular phenotypes [Internet]. arXiv [cs.CV].
2022. http://arxiv.org/abs/2205.01931.

21. Cohen J. Weighted kappa: nominal scale agreement provision for
scaled disagreement or partial credit. Psychol Bull. 1968;70(4):213-220.
https://doi.org/10.1016/j.esmoop.2024.103591 11

https://www.cancer.gov/tcga
https://github.com/IARCbioinfo/ESMOOpen_LungNENomicsCohort
https://github.com/IARCbioinfo/ESMOOpen_LungNENomicsCohort
https://github.com/IARCbioinfo/WSIPreprocessing
https://github.com/IARCbioinfo/WSIPreprocessing
https://github.com/IARCbioinfo/TumorSegmentationCFlowAD
https://github.com/IARCbioinfo/TumorSegmentationCFlowAD
https://github.com/gudovskiy/cflow-ad
https://github.com/IARCbioinfo/PathonetLNEN
https://github.com/IARCbioinfo/PathonetLNEN
https://github.com/SHIDCenter/PathoNet
https://github.com/SHIDCenter/PathoNet
https://github.com/IARCbioinfo/LNENBarlowTwins
https://github.com/IARCbioinfo/LNENBarlowTwins
https://github.com/facebookresearch/barlowtwins
https://github.com/facebookresearch/barlowtwins
mailto:sylvie.lantuejoul@lyon.unicancer.fr
mailto:sylvie.lantuejoul@lyon.unicancer.fr
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref1
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref1
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref2
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref2
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref2
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref3
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref3
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref3
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref4
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref4
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref4
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref5
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref5
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref5
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref6
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref6
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref7
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref7
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref7
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref8
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref8
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref8
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref9
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref9
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref9
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref9
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref10
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref10
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref10
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref10
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref10
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref11
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref11
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref11
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref11
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref12
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref12
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref12
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref13
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref13
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref13
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref13
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref14
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref14
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref14
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref14
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref15
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref15
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref15
https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Localization_via_Conditional_Normalizing_WACV_2022_paper.html
https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Localization_via_Conditional_Normalizing_WACV_2022_paper.html
https://openaccess.thecvf.com/content/WACV2022/html/Gudovskiy_CFLOW-AD_Real-Time_Unsupervised_Anomaly_Detection_With_Localization_via_Conditional_Normalizing_WACV_2022_paper.html
https://doi.org/10.5220/0011865900003417
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref18
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref18
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref18
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref19
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref19
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref19
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref19
http://arxiv.org/abs/2205.01931
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref21
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref21
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591


ESMO Open É. Mathian et al.
22. Dermawan JK, Farver CF. The prognostic significance of the 8th edition
TNM staging of pulmonary carcinoid tumors. Am J Surg Pathol.
2019;43(9):1291-1296.

23. Fernandez-Cuesta L, Sexton-Oates A, Bayat L, Foll M, Lau SCM, Leal T.
Spotlight on small-cell lung cancer and other lung neuroendocrine
neoplasms. Am Soc Clin Oncol Educ Book. 2023;43:e390794.

24. Schoenfeld DA. Sample-size formula for the proportional-hazards
regression model. Biometrics. 1983;39(2):499-503.

25. Travis WD, Gal AA, Colby TV, Klimstra DS, Falk R, Koss MN. Repro-
ducibility of neuroendocrine lung tumor classification. Hum Pathol.
1998;29(3):272-279.

26. Skov BG, Krasnik M, Lantuejoul S, Skov T, Brambilla E. Reclassification
of neuroendocrine tumors improves the separation of carcinoids and
the prediction of survival. J Thorac Oncol. 2008;3(12):1410-1415.

27. Pelosi G, Massa F, Gatti G, et al. Ki-67 evaluation for clinical decision in
metastatic lung carcinoids: a proof of concept. Clin Pathol. 2019;12:
2632010X19829259.

28. Marchiò C, Gatti G, Massa F, et al. Distinctive pathological and clinical
features of lung carcinoids with high proliferation index. Virchows Arch.
2017;471(6):713-720.

29. Centonze G, Maisonneuve P, Simbolo M, et al. Lung carcinoid tumours:
histology and Ki-67, the eternal rivalry. Histopathology. 2023;82(2):
324-339.

30. Swarts DR. Interobserver variability for the WHO classification of
pulmonary carcinoids. Am J Surg Pathol. 2014;38:1429-1436.

31. Singh S, Bergsland E, Card C. CommNETs/NANETS guidelines for the
diagnosis and management of patients with lung neuroendocrine tumors:
an international collaborative endorsement and update of the 2015
ENETS expert consensus guidelines. J Thorac Oncol. 2020;15:1577-1598.

32. Caplin ME, Baudin E, Ferolla P, et al. Pulmonary neuroendocrine
(carcinoid) tumors: European Neuroendocrine Tumor Society expert
consensus and recommendations for best practice for typical and
atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604-1620.

33. Swarts DRA, Rudelius M, Claessen SMH, et al. Limited additive value of
the Ki-67 proliferative index on patient survival in World Health
Organization-classified pulmonary carcinoids. Histopathology. 2017;70(3):
412-422.
12 https://doi.org/10.1016/j.esmoop.2024.103591
34. Garg R, Bal A, Das A, Singh N, Singh H. Proliferation marker (Ki67) in
sub-categorization of neuroendocrine tumours of the lung. Turk
Patoloji Derg. 2019;35(1):15-21.

35. Fabbri A, Cossa M, Sonzogni A, et al. Ki-67 labeling index of neuro-
endocrine tumors of the lung has a high level of correspondence be-
tween biopsy samples and surgical specimens when strict counting
guidelines are applied. Virchows Arch. 2017;470(2):153-164.

36. Dermawan JKT, Farver CF. The role of histologic grading and Ki-67 index
in predicting outcomes in pulmonary carcinoid tumors. Am J Surg
Pathol. 2020;44(2):224-231.

37. Marchevsky AM, Hendifar A, Walts AE. The use of Ki-67 labeling index
to grade pulmonary well-differentiated neuroendocrine neoplasms:
current best evidence. Mod Pathol. 2018;31(10):1523-1531.

38. Focke CM, Bürger H, van Diest PJ, et al. Interlaboratory variability of
Ki67 staining in breast cancer. Eur J Cancer. 2017;84:219-227.

39. Daskalakis K, Kaltsas G, Öberg K, Tsolakis AV. Lung carcinoids: long-term
surgical results and the lack of prognostic value of somatostatin re-
ceptors and other novel immunohistochemical markers. Neuroendo-
crinology. 2018;107(4):355-365.

40. Centonze G, Maisonneuve P, Simbolo M, et al. Ascl1 and OTP tumour
expressions are associated with disease-free survival in lung atypical
carcinoids. Histopathology. 2023;82(6):870-884.

41. Swarts DRA, Henfling MER, van Neste L, et al. CD44 and OTP are strong
prognostic markers for pulmonary carcinoids. Clin Cancer Res.
2013;19(8):2197-2207.

42. Werr L, Bartenhagen C, Rosswog C, Cartolano M, et al. TERT expression
defines clinical outcome in pulmonary carcinoids. In: J Clin Oncol. 2024;
In Press.

43. Alcala N, Leblay N, Gabriel AAG, et al. Integrative and comparative
genomic analyses identify clinically relevant pulmonary carcinoid groups
and unveil the supra-carcinoids. Nat Commun. 2019;10(1):3407.

44. Laddha SV, Silva D, Robzyk EM. Integrative genomic characterization
identifies molecular subtypes of lung carcinoids. Cancer Res.
2019;79(17):4339-4347.

45. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation
and projection for dimension reduction [Internet]. arXiv [stat.ML].
2018. http://arxiv.org/abs/1802.03426.
Volume 9 - Issue 6 - 2024

http://refhub.elsevier.com/S2059-7029(24)01360-7/sref22
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref22
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref22
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref23
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref23
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref23
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref24
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref24
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref25
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref25
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref25
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref26
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref26
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref26
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref27
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref27
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref27
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref28
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref28
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref28
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref29
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref29
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref29
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref30
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref30
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref31
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref31
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref31
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref31
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref32
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref32
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref32
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref32
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref33
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref33
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref33
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref33
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref34
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref34
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref34
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref35
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref35
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref35
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref35
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref36
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref36
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref36
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref37
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref37
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref37
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref38
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref38
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref39
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref39
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref39
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref39
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref40
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref40
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref40
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref41
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref41
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref41
http://refhub.elsevier.com/S2059-7029(24)01360-7/optNovcXNdqWR
http://refhub.elsevier.com/S2059-7029(24)01360-7/optNovcXNdqWR
http://refhub.elsevier.com/S2059-7029(24)01360-7/optNovcXNdqWR
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref42
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref42
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref42
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref43
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref43
http://refhub.elsevier.com/S2059-7029(24)01360-7/sref43
http://arxiv.org/abs/1802.03426
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591
https://doi.org/10.1016/j.esmoop.2024.103591

	Assessment of the current and emerging criteria for the histopathological classification of lung neuroendocrine tumours in  ...
	Introduction
	Patients and methods
	Presentation of the cohort and pathological review
	Deep learning-based analyses
	Statistical framework

	Results
	Limitations of the current morphological criteria
	Added value of Ki-67 expression assessment in the evaluation of proliferative activity
	Added value of PHH3 expression for the counting of mitotic figures
	Using deep learning to uncover novel clinically relevant morphological features

	Discussion
	Conclusions

	Acknowledgements
	Funding
	Disclosure
	Data Sharing
	References


