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Abstract. Wi-Fi stands out as one of the most prominent and widespread
wireless technologies in use today. Smartphones and various other Wi-
Fi-enabled devices employ management frames called probe-requests to
discover nearby networks.
In this study, we reveal that it is possible to fingerprint based on the
probe-requests they emit while connected to a network. Leveraging dis-
tinctive features of probe-request bursts we use a Random Forest-based
approach to successfully fingerprint devices. This demonstrate that de-
vice randomizing their MAC addresses between networks can still be
tracked. Through an assessment conducted on a real-world measurement
comprising Wi-Fi devices with diverse operating systems, and spanning
a month duration, we demonstrate that our model fingerprints individual
devices with ∼40% accuracy with 1 burst and perfect re-identification if
two or more bursts are available.
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1 Introduction

The proliferation of Wi-Fi enabled devices has facilitated applications such as
user trajectory tracking and pedestrian flow estimation [5, 6]. Conversely, there
is a growing concern regarding user privacy stemming from issues related to user
anonymity and device traceability through Wi-Fi sensing [7].

Contemporary devices equipped with Wi-Fi capabilities utilize the active
scan method, a prominent technique within the Wi-Fi protocol standard, to
discover nearby networks. During these active scans, mobile devices emit man-
agement frames known as probe-requests to locate nearby Access Points (APs).
Intercepting probe-requests is relatively straightforward and can be leveraged to
track users thanks to the MAC address exposed in those frames.

To mitigate obvious privacy issues induced by MAC-based device tracking,
vendors have implemented countermeasures such as MAC address randomiza-
tion [9]. As a result, non-connected devices change the address in their probe
request frequently (e.g. at every probe burst or every 15 minutes). Randomizing
addresses while a device is not connected is straightforward. But as soon as the
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device connects to a network, it must keep the same address all along the ses-
sion to communicate with the access point. As a result, the address can only be
changed at each connection, by using a per-network1 random address [12].

Devices in the connected state probe using their per-network MAC address,
either to find better networks or respond to location-based service requests. This
study demonstrates that the probing behaviour of connected Wi-Fi devices can
be used to fingerprint them and thus defeat per-network MAC addresses ran-
domization. Furthermore, we show that the observation of only a handful probe-
requests observation is enough to derive a unique fingerprint. Consequently, those
devices, and their users, can be successfully tracked across their networks and
session(cf. Section 3.2) despite address randomization schemes.

We examine various device-specific attributes, including the timing of bursts,
the duration of advertised randomized MAC addresses, and the content of probe
requests. This study represents the first attempt, to our knowledge, focusing
solely on per-network MAC addresses and demonstrating successful fingerprint-
ing of observed devices.

The contributions of this paper are as follows:

– We identify various information from passively captured probe-requests that
exhibit distinct behavior for devices in the connected state.

– Using the described features, we present a machine-learning method that
utilizes a device’s per-network MAC addresses solely from its probe-requests
to create efficient fingerprints.

– Through a month-long measurement involving various devices, we show that
robust fingerprinting is attainable with just two or more bursts. Our findings
suggest that devices should randomize their MAC addresses per burst even
while connected to prevent tracking.

2 Background

In the upcoming section, we delve into the active scanning process in Wi-Fi, with
a specific emphasis on probe-request messages. Our examination covers temporal
patterns, content, and the use of random MAC addresses.

2.1 Wi-Fi Active Scanning

Devices with Wi-Fi capabilities utilize active scanning to identify nearby wireless
networks, commonly known as APs [1]. In the active scanning process, mobile
devices explore accessible networks by sending out management frames known
as probe-request frames.

When an AP detects a probe-request frame that matches its Service Set
Identifier (SSID) or advertises a wildcard SSID, it responds by sending a probe-
response frame. The probe-response is a unicast message directly addressed to
1 In Android, the randomized MAC address is bound to the SSID, while iOS binds it

to the BSSID.



Fingerprinting devices with per-network MACs 3

MAC2MAC1 MAC3

Burst

Time

Inter-burst
time (IBT)

Fig. 1: Wi-Fi active scanning.

the requesting client. Upon receiving probe-response frames from nearby access
points, the client can evaluate its choices and select a network to connect to
based on criteria such as signal strength, security settings, and user preferences.

To conserve energy, devices periodically broadcast probe-request frames. Fig-
ure 1 depicts the active scanning process over time for a Wi-Fi device. Mobile
devices repeatedly send probe-requests on available channels to receive responses
from all nearby access points. Each device conducts multiple rounds of active
scanning across the available channels.

The information element (IE) field in a probe-request frame enables devices
to communicate their capabilities and connection preferences, crucial for the
association process. The content within IE fields may be potentially unique to a
specific device or its current state [10].

2.2 Per-network MAC randomization

To counter tracking issues, vendors have implemented address randomization
while performing active scanning: the address field in the probe-request is pe-
riodically changed for a random value. As illustrated in Figure1, this change
can done as often as every burst. This randomization can be straightforwardly
applied when the device is not connected to a network; but as soon the device
connects to an access point, it must keep the same address for the duration of
the connection.

Nevertheless, to provide a minimum level of protection, vendors have en-
forced per-network random addresses: a distinct random address is used for each
network [12]. With the current implementation, all the frames, including the
probe requests, are using the same address while the device is connected.

3 Dataset and Threat model

In this section, we begin by examining the dataset under investigation, followed
by a description of the threat model we consider. We then build upon the de-
scribed threat model to introduce an attack successfully linking per-network
MAC addresses. Finally, we introduce a new scheme for randomizing MAC ad-
dresses efficiently in Wi-Fi.
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3.1 Dataset

We utilize an extensive dataset, named UJI dataset for the investigation of per-
network MAC addresses, released in 2024. The UJI dataset is the first long-term
public probe request trace which also contains randomized MAC addresses [2].
The dataset contains more than 1.4 million (1,410,834) probe-requests, originat-
ing from a variety of Wi-Fi-enabled devices.

The dataset was collected at the University of Jaume I, Spain. It captures
a realistic office scenario with a dynamic environment that features up to 30
individuals frequently entering and leaving the office Wi-Fi network.

The office space is rectangular, measuring approximately 16.71m in length
and 10.76m in width. The dataset was created in March 2023 to include regular
work weeks, weekends, and special events. The collection period coincided with
a local holiday week as well capturing an actual real-world monitoring scenario
of a workplace that an adversary might be keen on tracking.

3.2 Threat model

The attacker’s aim is to successfully fingerprint a device to track its user across
network connections. We consider a passive attacker with the ability to passively
collect Wi-Fi frames in a targeted area, potentially spanning extended periods.
In this scenario, we assume target devices are unmodified, and the attacker lacks
physical access to them. The attacker simply listens to emitted probe-requests
on various frequency bands.

To collect the data, the attacker can be located in an area where the tar-
geted devices connects to a known network. Alternatively, the attacker can use
techniques such as Evil-Twin attacks to trigger a connection [4] even if there is
no known network in range.

4 Fingerprinting connected Wi-Fi devices

In this section, we first extract the potential MACs that are per-network from
the set of all MACs observed in probe-requests. Then, we select features to fin-
gerprint the devices emitting them. We conclude by selecting a machine-learning-
based model that successfully fingerprints Wi-Fi devices.

4.1 Separating per-network MACs

UJI dataset contains probe-requests sent by devices in both connected as well as
non-connected states. In this work, we only focus on the per-network random-
ized addresses that were transmitted by devices when already connected to the
network.

We separate per-network MACs from the pool of observed ones utilizing two
thresholds on the minimum sojourn time. We set the bound of 6 hours (T )
to cover cases when devices change their per-network MACs every day (e.g. in
Android under the developer mode 2).
2 https://source.android.com/docs/core/connect/wifi-mac-randomization-behavior
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We apply the threshold T over our dataset and illustrate the behavior of
per-network MAC addresses in Figure 2. Our analysis reveals the presence of
927 persistent per-network addresses.
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Fig. 2: Per-network MACs

4.2 Characterizing per-network MACS

We start our investigation by considering five features (cf. Table 1) that char-
acterize the behavior of a smartphone’s probe-request burst, which could be
classified into three broad categories:

Metric Feaure Notation

Time-based Mean burst duration µTb

Mean inter-burst time µIBT

Content-based Mean num. of present IE fields µNie

Behavior-based Sojourn time of burst’s MAC Tmac

Mean hour of probing µH

Table 1: Considered features.

1. Time-based features: We select two such features.

– Mean burst duration (µTb): µTb measures the average duration for which
bursts are observed at the receiving sniffer for a particular MAC address.

– Mean inter-burst time (µIBT ): The mean time gap between two successive
probe-request bursts from a device is denoted by µIBT .

2. Content-based features: We choose the mean num. of present IE fields
(µNie). The probe-requests have IE element fields that contain information about
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the device’s capabilities and preferences. Out of the 256 specific elements that
a smartphone could advertise, many of them are not included in practice. µNie

denotes the average number of non-empty IE fields for a random frame chosen
from each of the bursts with a particular MAC.

3. Behavior-based features: We select two behavior-based features from the
extracted bursts.

– Sojourn time of burst’s MAC (Tmac): Tmac denotes the duration for which
a particular MAC address is observed.

– Mean hour of probing (µH): µH is the average hour of the day when a
particular per-network MAC is seen in the dataset.

As depicted in Figure 3a, distinct differential probe-request burst behavior is
observed across various per-network MAC addresses in the dataset. Bursts are
sent with distinct temporal and content-wise behavior for different states for all
five features.

For instance, the figure shows that bursts display varied frequency and dura-
tion across devices. Probing in the associated state is also quite discriminating
in terms of content as a variety of advertised IE fields is available. The behavior
of user devices in terms of the time of the day at which they start probing also
varies widely. These findings hold across all per-network MACs that are there in
UJI dataset. The differential behavior can be attributed to the heterogeneity
of devices, their states, as well as the user itself. Subsequently, significant vari-
ance in the data motivated us to study the unique trends in burst behavior for
fingerprinting devices using per-network MAC addresses.

4.3 Model and Feature selection

Per-network MAC prediction can be analyzed as a multi-class classification prob-
lem. The input is the features extracted from a particular probe-request burst,
while the output associates it with a certain per-network MAC address. For
efficiently using features from the set {µTb , µIBT , µNie , Tmac, µ

H}, we utilize a
Random Forest (RF) based model. RF is fast, robust to outliers, can identify
non-linear patterns, and, does not suffer from overfitting even if more trees are
appended [3].

5 Fingerprint’s performance

In this section, we first define our evaluation methodology before showcasing
the robustness of device fingerprinting using per-network randomized MAC ad-
dresses.

5.1 Evaluation Methodology

We split the probe-requests from each device seen in the dataset into individual
bursts by separating frame sequences that have an inter-frame duration longer
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than 1s. We only consider bursts with multiple frames containing the already
selected MAC address. We compute the time, content, and, behavior-based met-
rics to train the model. The model takes bursts (bn) for training as well as the
input for prediction.

We train the model on bursts with per-network randomized MACs in UJI
dataset. To obtain a robust model against unseen data bursts in the dataset are
split into two subsets: the first p bursts are used for training, and the remaining
bursts are only exploited during the testing phase. We train the model on UJI
dataset and utilize the trained model to predict per-network MAC addresses
on respective datasets. We use the scikit-learn [8] Python library3, which
provides the implementation of the Random Forest model.

5.2 Results

We use balanced accuracy as the measure to evaluate the effectiveness of the
extracted fingerprints. The balanced accuracy is defined as the average recall
obtained in each of the per-network MAC predictions. We observe in Figure 3b
that beyond two observed bursts, we can perfectly fingerprint each of the per-
network MAC addresses seen in our dataset. For a single burst, the accuracy
drastically drops to ∼40%.
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(b) Accuracy of device fingerprints.

Fig. 3: Investigating features and accuracy.

We next look at the impact of each feature on device fingerprinting utiliz-
ing permutation feature importance 4. This approach evaluates the influence of
individual features on a model’s statistical performance. It involves randomly
shuffling the values of a single feature and measuring the resulting decrease in
the model’s performance. This manipulation of the feature-target relationship
exposes the degree to which the model relies on that particular feature.

As we illustrate in Figure 4, the relative importance of each feature is uniform
for short-term training of 5 bursts (selected to have a stable contribution of
3 https://scikit-learn.org/stable/index.html (version 1.3.2)
4 https://scikit-learn.org/stable/modules/permutation_importance.html
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(a) Short-term training (5 bursts).
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(b) Long-term training (20 bursts).

Fig. 4: Permutation feature importance.

all features). The time-based features (µTb and µIBT ) do contribute more to
fingerprinting accuracy. On the other hand, when undergoing long-term training
of 20 bursts, user behavior-based features like the mean hour of probing (µH)
naturally contribute highly towards the achieved balanced accuracy.

5.3 Discussion

Based on the presented results, we conclude that even in the associated mode,
MAC addresses must change every burst to protect users from getting tracked.
With a per-burst identifier, adversaries will find it hard to obtain effective fin-
gerprints for a particular device.

Per-network MAC address randomization in the connected state could be
implemented using a mechanism similar to the one currently employed for non-
connected MAC randomization. However, this implementation may not be en-
tirely straightforward due to concurrent data traffic along with the probe re-
quests. Thus, careful consideration and testing are necessary to ensure seamless
integration without disrupting existing functionalities, while protecting against
known attacks (e.g. replay) [11].

6 Conclusion

We demonstrate the possibility of precisely fingerprinting connected Wi-Fi de-
vices solely through passive monitoring of Wi-Fi probe-requests. Devices in the
connected state often broadcast a per-network randomized MAC address, mak-
ing them susceptible to fingerprinting and subsequent tracking. By analyzing
probe-request burst behaviors, we identify key features that differ among de-
vices. Our Random Forest based model achieves high classification accuracy in
fingerprinting when observing a device in the connected state for two or more
bursts. Therefore, we advocate for the extension of per-burst MAC randomiza-
tion to the case of connected devices.
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