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Survey of severe acute respiratory syndrome 
coronavirus 2 in captive and free‑ranging 
wildlife from Spain
Leira Fernández‑Bastit1,2†, David Cano‑Terriza3,4†, Javier Caballero‑Gómez3,4,5, Adrián Beato‑Benítez3, 
Antonio Fernández6, Daniel García‑Párraga7, Mariano Domingo1,8,9, Cecilia Sierra10,11, Rocío Canales12, 
Santiago Borragan13, Manuel de la Riva‑Fraga14, Rafael Molina‑López15, Óscar Cabezón1,16, Maria Puig‑Ribas1,16, 
Johan Espunyes1,16, Daniel B. Vázquez‑Calero17, Júlia Vergara‑Alert1,2*, Ignacio García‑Bocanegra3,4* and 
Joaquim Segalés1,8,9*   

Abstract 

Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), considered a zoonotic agent of wildlife origin, can 
infect various animal species, including wildlife in free‑range and captive environments. Detecting susceptible spe‑
cies and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emer‑
gence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection 
by SARS‑CoV‑2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from dif‑
ferent regions of Spain during the 2020–2023 coronavirus disease 19 (COVID‑19) pandemic. In total, 8/137 animals 
were positive for SARS‑CoV‑2 antibodies against the receptor binding domain and/or viral nucleoprotein according 
to independent ELISAs. However, only one ELISA‑positive sample of a captive bottlenose dolphin (Tursiops truncatus) 
tested positive for SARS‑CoV‑2 neutralizing antibodies with a low titre  (SNT50 38.15) according to a virus neutralization 
test. Cetaceans are expected to have a high risk of infection with SARS‑CoV‑2 according to early predictive studies due 
to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals 
analysed for SARS‑CoV‑2 RNA using RT‑qPCR, none tested positive. Our results reinforce the importance of consider‑
ing cetaceans at risk for SARS‑CoV‑2 infection and support taking preventive biosecurity measures when interacting 
with them, especially in the presence of individuals with suspected or confirmed COVID‑19. Although most animals 
in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and poten‑
tially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.
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Introduction
Wildlife has been proposed as the source of significant 
emerging viral diseases in humans (zoonosis), including 
coronavirus disease 19 (COVID-19), which is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1]. The emergence of these diseases may, in part, 
be attributed to human behaviour (e.g., hunting practices 
or consumption of wild meat), population growth 
and urbanization, and the modification of the wildlife 
habitat structure, which leads to evident human-animal 
interactions [2]. Although humans are the main hosts 
of SARS-CoV-2, from the outset of COVID-19, SARS-
CoV-2 has demonstrated the ability to cross species 
barriers in free-ranging and captive scenarios [3].

According to early in silico studies, nonhuman primates 
(NHPs), several carnivore species (mainly felines), and 
cetaceans are considered at moderate or high risk of 
infection with SARS-CoV-2 [4–6]. These studies were 
mainly based on comparative and structural analyses 
of the sequence of angiotensin-converting enzyme 2 
(ACE2), the host cell receptor of SARS-CoV-2 [7]. The 
ACE2 sequence of NHP, carnivores and cetaceans has 
been demonstrated to have high homology with human 
ACE2 (hACE2), which is also considered a critical amino 
acid residue for binding with the SARS-CoV-2 receptor 
binding domain (RBD) [4, 6, 8]. Additionally, predictive 
results for the risk of infection based on comparative 
analysis of the transmembrane serine protease 2 
(TMPRSS2) sequence of these species were consistent 
with those obtained from the ACE2 sequence [6]. 
TMPRSS2 is a protease that facilitates membrane fusion 
of cell membranes by S protein priming and subsequent 
viral entry [7]. To date, natural and experimental SARS-
CoV-2 infections have confirmed the ability of the virus 
to infect many NHP and carnivore species [3, 9].

Zoological parks are scenarios in which SARS-CoV-2 
animal infections have been documented globally 
during the pandemic. Most infections were described in 
great apes (Gorilla gorilla), tigers (Panthera tigris), lions 
(Panthera leo), and a variety of large and medium-sized 
felines [3]. Other mammals, mainly carnivores, have 
also been infected under captive conditions worldwide, 
including species from the families Atelidae (brown-
headed spider monkey [Ateles fusciceps]), Canidae 
(red fox [Vulpes vulpes]), Hyaenidae (spotted hyena 
[Crocuta crocuta]), Hippopotamidae (hippopotamus 
[Hippopotamus amphibius]), Mustelidae (American 
mink [Neogale vison]; Asian small-clawed otter 
[Aonyx cinereus]), Rhinocerotidae (white rhinoceros 
[Ceratotherium simum]), and Viverridae (South 
American coati [Nasua nasua]) [10–12]. Sequencing 

analysis and/or epidemiological history supported 
reverse zoonosis (human-to-animal transmission) as 
the origin of these animal infections [3].

Although animals living in a free-range environment 
are rarely as close to humans as domesticated or captive 
animals are, the risk of SARS-CoV-2 infection in wildlife 
has also been proven [6, 13, 14]. Human household 
waste, SARS-CoV-2-contaminated elements (e.g., food 
and water), and contact with other susceptible animals 
(e.g., farmed minks) are potential sources of infection 
in free-ranging wild animals [15–17]. In this regard, 
many spillover events from humans to white-tailed 
deer (WTD; Odocoileus virginanus) and even from 
the WTD back to humans have been described in the 
United States and Canada based on sequencing analysis 
[18–20]. WTD are highly abundant in urban and peri-
urban areas in North America and are in close contact 
with humans and human-produced waste. Of concern, 
SARS-CoV-2 and its variants can infect, persist, adapt 
and be transmitted within the WTD population, 
suggesting that this species could serve as a reservoir 
for SARS-CoV-2 [18, 19, 21]. Mustelid species have 
also been exposed and/or infected by SARS-CoV-2 
in the wild [15, 17, 22]. Mustelidae species have been 
involved in one of the most important SARS-CoV-2 
animal events to date owing to the number of outbreaks 
on mink farms in multiple countries (the Netherlands, 
Denmark, the United States, Canada, France, Greece, 
Italy, Spain, Sweden, Poland and Lithuania) [3]. 
Farming has been shown to favour the spread of 
SARS-CoV-2 in other species, as indicated by the 
recently reported outbreak of the SARS-CoV-2 Delta 
(B.1.617.2) variant in farmed beavers (Order Rodentia; 
Castor fiber) in Mongolia [23]. In this sense, several 
rodent species have shown susceptibility to a variety of 
SARS-CoV-2 variants (Alpha [B.1.1.7], Beta [B.1.351], 
Gamma [P.1] and Omicron [B.1.1.529]), although not 
to the ancestral SARS-CoV-2 lineage (B.1.) [24–26]. In 
Northern Spain, the populations of two wild species 
of farming origin, the American mink and the coypu 
(order Rodentia, Myocastor coypus), have significantly 
increased in recent years and are considered exotic 
invasive  species. Both species live near aquatic 
environments, representing a threat to autochthonous 
biodiversity [27–29]. However, SARS-CoV-2 exposure 
and infection have yet to be evaluated for most exotic 
and native wild species in Spain.

The present work aimed to investigate SARS-CoV-2 
exposure and infection of different free-ranging and 
captive wildlife species during the COVID-19 pandemic 
(from 2020 to 2023) in Spain.
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Materials and methods
Animals and samples
A total of 420 animals (119 captive and 301 free-ranging) 
from 40 different species were opportunistically sampled 
during the 2020–2023 COVID-19 pandemic to detect 
SARS-CoV-2 RNA or specific antibodies (Table 1).

Serum samples were obtained from 137 out of 420 ani-
mals belonging to 33 different species, encompassing all 
captive animals and exclusively free-ranging aquatic spe-
cies from different regions of Spain (Figure  1; Table  1). 
Serum samples (n = 33) collected before the COVID-19 
pandemic (prior to 2019; pre-pandemic period) from 17 
different species were included and considered negative 
controls (Additional file 1).

Oropharyngeal swabs (OS), rectal swabs (RS) and 
lung tissue samples were collected from the remaining 
animals (283/420). The numbers of free-ranging 
terrestrial animals sampled in the Catalonia region were 
141 American minks, 2 Beech marten (Martes foina), 
3 common genets (Genetta genetta), 48 coypus, 48 
Eurasian badgers (Meles meles), 25 Eurasian otters (Lutra 
lutra), 1 European wildcat (Felis silvestris silvestris), and 
15 red foxes (Figure  1; Table  1). Each type of sample 
was collected from almost all the animals depending on 
availability (282 from each type of sample). OS and RS 
were collected using sterile dry swabs or flocked swabs 
in 2  mL of viral transport media (VTM) (Deltalab, S.L. 
Catalunya, Spain). Lung tissue samples were placed 
into cryotubes with 500 μL of Dulbecco’s modified 
Eagle medium (DMEM) (Lonza, Basel, Switzerland) 
supplemented with 100  U/mL penicillin, 100  μg/mL 
streptomycin, and 2 mM glutamine (all from Gibco Life 
Technologies, Madrid, Spain) and containing single zinc-
plated, steel 4.5-mm beads. All the samples were kept 
at − 20  °C until they were transported properly to the 
laboratory for further analysis.

Zoological animals were sampled by Zoo Management 
veterinarian specialists during routine health assessments 
or surgical interventions. Sera from free-ranging 
wildlife were sampled by veterinarians from wildlife 
rehabilitation centres during routine health assessments. 
OS, RS, and lung tissues were sampled from free-ranging 
animals from Catalonia (NE-Spain) during necropsies at 
the Torreferrusa Wildlife Rehabilitation Centre (license 
number B2300083). All procedures followed the ethical 
principles of animal research. Sera from free-ranging 
cetaceans were obtained from individuals stranded on 
the Atlantic and Mediterranean coasts of Spain, and 
sampling was performed according to Spanish legislation. 
Ethical approval by the Institutional Animal Care and 
Use Committee was not, therefore, deemed necessary. 
American minks and coypus, subjected to population 
control programs of the National Government of 

the Generalitat de Catalunya, were sampled during 
necropsies.

Detection of antibodies against SARS‑CoV‑2
Available serum samples (137 and 33 from the pandemic 
and pre-pandemic periods, respectively) were tested with 
two commercial ELISA kits to detect the presence of spe-
cific antibodies against SARS-CoV-2 (Figure 2; Additional 
file  1): (ELISA 1) the SARS-CoV-2 NeutraLISA assay 
(EUROIMMUNE, Germany), which detects neutralizing 
antibodies (nAbs) against the RBD, and (ELISA 2) the ID 
Screen® SARS-CoV-2 Double Antigen Multispecies assay 
(Idvet, France), which detects antibodies against the viral 
nucleocapsid (N) protein. Both tests were performed fol-
lowing the manufacturer’s instructions.

Briefly, sera were analysed by ELISA 1, which provides 
S1/RBD-coated 96-well plates for capture and soluble 
biotinylated ACE2 receptor detection. Briefly, each sam-
ple was diluted 1:5 with sample dilution buffer contain-
ing soluble biotinylated ACE2, and each mixture was 
added to S1/RBD precoated wells. Following an incuba-
tion period at 37 °C for 60 min, three washing steps were 
conducted with 300 μL of washing solution each. Subse-
quently, streptavidin-HRP conjugate and the substrate 
solution were added, and the plate was incubated at RT 
for 15 min. Finally, the stop solution was added to visu-
alize the optical density (OD) at 450 nm. The results are 
expressed as an inhibition percentage (% IH) according to 
the formula provided by the manufacturer’s protocol: % 
IH = 100% − (sample OD × 100%/mean OD of blank con-
trols). An inhibition (IH) < 20 was considered negative 
neutralization, an IH  of 20–35% was considered doubt-
ful, and an IH ≥ 35% was considered positive neutraliza-
tion. In addition, the samples were tested in parallel using 
ELISA 2, which provides N-coated plates for capture and 
HRP-conjugated SARS-CoV-2 N for detection. In sum-
mary, 25 μL of each sample was diluted 1:1 with dilution 
buffer and added to each well of a 96-well plate. Follow-
ing incubation at 37  °C for 45  min, five washing steps 
with 300  μL of each washing solution were performed. 
Then, 100  μL of recombinant N protein-HRP conjugate 
was added to each well and incubated at RT for 20 min. 
Finally, 100  μL of the stop solution was added, and the 
OD at 450 nm was read. The results were analysed by the 
following formula provided by the manufacturer’s proto-
col: Sample/Positive control (S/P) % = [(OD sample − OD 
negative control)/(OD positive control – OD negative 
control)] × 100. Samples with S/P% ≤ 50% were consid-
ered negative, 50% < S/P% < 60% were considered doubt-
ful, and S/P% ≥ 60% were considered positive. All positive 
and doubtful samples were tested in duplicate by both 
ELISAs.
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Table 1 Wild Animals tested for SARS‑CoV‑2 RNA and/or antibodies 

The sample size, animal source (captive or free‑ranging) and animals tested for the detection of SARS‑CoV‑2 RNA or antibodies are indicated.

NA: not available.

Animal species Family Sample size Animal source SARS‑CoV‑2 RNA 
detection

SARS‑CoV‑2 
antibody 
detection

Red panda (Ailurus fulgens) Ailuridae 3 Captive zoo NA 3

Fennec fox (Vulpes zerda) Canidae 2 Captive zoo NA 2

Grey wolf (Canis lupus) Canidae 1 Captive zoo NA 1

Iberian wolf (Canis lupus signatus) Canidae 1 Captive zoo NA 1

Red fox (Vulpes vulpes) Canidae 15 Free‑ranging 15 NA

Atlantic spotted dolphin (Stenella frontalis) Delphinidae 1 Free‑ranging NA 1

Bottlenose dolphin (Tursiops truncatus) Delphinidae 46 Captive zoo NA 48

2 Free‑ranging

Killer whale (Orcinus orca) Delphinidae 8 Captive zoo NA 8

Risso’s dolphin (Grampus griseus) Delphinidae 1 Free‑ranging NA 1

Striped dolphin (Stenella coeruleoalba) Delphinidae 14 Free‑ranging NA 14

African lion (Panthera leo) Felidae 7 Captive zoo NA 7

Asian tiger (Panthera tigris tigris) Felidae 1 Captive zoo NA 1

Asiatic lion (Panthera leo persica) Felidae 2 Captive zoo NA 2

Chetaah (Acinonyx jubatus) Felidae 4 Captive zoo NA 4

European wildcat (Felis silvestris silvestris) Felidae 1 Free‑ranging 1 NA

Jaguar (Panthera onca) Felidae 3 Captive zoo NA 3

Ocelot (Leopardus pardalis) Felidae 1 Captive zoo NA 1

Persian leopard (Panthera pardus saxicolor) Felidae 2 Captive zoo NA 2

Sri Lankan leopard (Panthera pardus kotiya) Felidae 2 Captive zoo NA 2

Sumatran tiger (Panthera tigris sumatrae) Felidae 2 Captive zoo NA 2

Spotted hyena (Crocuta crocuta) Hyaenidae 2 Captive zoo NA 2

Striped skunk (Mephitis mephitis) Mephitidae 2 Captive zoo NA 2

Beluga whale (Delphinapterus leucas) Monodontidae 1 Captive zoo NA 1

American mink (Neogale vison) Mustelidae 141 Free‑ranging 141 NA

Asian small‑clawed otter (Aonyx cinereus) Mustelidae 1 Captive zoo NA 1

Beech marten (Martes foina) Mustelidae 2 Free‑ranging 2 NA

Eurasian badger (Meles meles) Mustelidae 48 Free‑ranging 48 NA

Eurasian otter (Lutra lutra) Mustelidae 25 Free‑ranging 25 NA

Coypu (Myocastor coypus) Myocastoridae 48 Free‑ranging 48 NA

California sea lion (Zalophus californianus) Otariidae 4 Captive zoo NA 4

South American sea lion (Otaria flavescens) Otariidae 9 Captive zoo NA 9

Grey seal (Halichoerus grypus) Phocidae 1 Captive zoo NA 1

Harbor seal (Phoca vitulina) Phocidae 1 Captive zoo NA 1

Asian black bear (Ursus thibetanus) Ursidae 1 Captive zoo NA 1

Black bear (Ursus americanus) Ursidae 1 Captive zoo NA 1

Brown bear (Ursus arctos) Ursidae 7 Captive zoo NA 7

Giant panda (Ailuropoda melanoleuca) Ursidae 1 Captive zoo NA 1

Sun bear (Helarctos malayanus) Ursidae 1 Captive zoo NA 1

Binturong (Arctictis binturong) Viverridae 1 Captive zoo NA 1

Common genet (Genetta genetta) Viverridae 1 Captive zoo NA 1

3 Free‑ranging 3 NA

Total 420 283 137
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Furthermore, to confirm the presence of nAbs against 
SARS-CoV-2, positive and doubtful samples from at least 
one of the ELISAs were further tested in duplicate using 
a virus neutralization test (VNT) as previously described 
(Figure  2) [30]. Briefly, serum samples were inactivated 
(37  °C; 1  h) and diluted 1:10. Then, twofold serial dilu-
tions were performed in supplemented DMEM. The 
samples were mixed 1:1 with 100  TCID50 of an isolate of 
SARS-CoV-2 (D614G strain) from a COVID-19 patient 
(GISAID ID EPI ISL 471472) and incubated at 37 °C for 
1  h. Subsequently, the mixtures were transferred onto 
Vero E6 (ATCC® repository, Manassas, VA, USA, CRL-
1586™) cell monolayers and cultured for 3 days at 37 °C 

and 5%  CO2. Nine ELISA-negative samples from eight 
different species were randomly selected and included 
as negative controls for VNT analyses (Additional file 1). 
The presence of cytopathic effect (CPE) was evaluated at 
3 days post-inoculation using the CellTiter-Glo lumines-
cent cell viability assay (Promega, Madison, WI, USA) 
following the manufacturer’s protocol. Luminescence 
was measured as relative luminescence units (RLUs) 
in a Fluroskan Ascent FL luminometer (ThermoFisher 
Scientific, Waltham, MA, USA). The 50% serum virus 
neutralization titre  (SNT50) was defined as the recip-
rocal dilution of the sample at which 50% of the cells 
were protected. The dose–response curve of the serum 

Figure 1 Geographical distribution of animals sampled in Spain during the COVID‑19 pandemic (2020–2023), categorized by 
family taxonomy. Zoos and rehabilitation centres are represented by letters (A–N), and the animal source (free‑ranging or zoo) is indicated 
by the corresponding figure (triangle or square, respectively). Positive results in diagnostic tests are indicated by yellow, blue and violet 
when positive according to ELISA 1, ELISA 2 or both ELISAs, respectively. ELISA 1 corresponds to the SARS‑CoV‑2 NeutraLISA assay (EUROIMMUNE, 
Germany), while ELISA 2 refers to the ID Screen® SARS‑CoV‑2 Double Antigen Multispecies assay (Idvet, France). VNT positivity is marked with a red 
star.
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sample was adjusted to a nonlinear fit regression model 
calculated with a normalized logistic curve with variable 
slope. Uninfected cells and virus-infected cells were used 
as negative and positive controls for data normalization, 
respectively (%Neutralization = (RLUmax − RLUexperi-
mental)/(RLUmax − RLUmin) × 100). All the statisti-
cal analyses were performed with GraphPad Prism 8.4.3 
(GraphPad Software, Inc., San Diego, CA, USA).

RNA extraction and detection of SARS‑CoV‑2 by RT‑qPCR
A total of 283 out of 420 animals were tested for acute 
SARS-CoV-2 infection by the detection of viral RNA in 
OS, RS, and lung tissue (Table 1; Figure 2).

The dry sterile OS and RS were transferred into 
cryotubes containing 500 μL of supplemented DMEM 
and vortexed. The samples obtained by using DeltaSwab 
Virus with VTM were directly vortexed. Lung tissue was 
mechanically homogenized at 30  Hz for 1  min using a 
TissueLyser II (QIAGEN GmbH, Hilden, Germany) and 
centrifuged for 3 min at 10 000 rpm.

All samples were subjected to viral RNA extraction 
using the Indimag Pathogen Kit (Indical Biosciences 
Leipzig, Germany) on a BioSprint 96 workstation 
(Qiagen, Hilden, Germany) following the manufacturer’s 
instructions. Subsequently, SARS-CoV-2 RNA was 
quantified by RT-qPCR using a previously described 
protocol, which targets the envelope protein 
(E)-encoding gene [31] with some modifications [30]. 
The RT-qPCR was performed using AgPath-ID™ One-
Step RT-PCR Reagents (Applied Biosystems, Life 
Technologies, Waltham, MA, USA), and amplification 
was performed using a 7500 Fast Real-Time PCR System 
(Applied Biosystems, Life Technologies). Samples with a 

Cq value < 40 were considered positive for SARS-CoV-2 
genomic detection.

Results
Eight out of the 137 (pandemic) serum samples tested 
positive for antibodies against SARS-CoV-2 by ELISA 
(Figures  1 and 2). These samples corresponded to five 
free-ranging striped dolphins (Stenella coeruleoalba), 
two captive bottlenose dolphins (Tursiops truncatus) and 
one captive Sumatran tiger (Panthera tigris sumatrae) 
(Table  2). Among these ELISA-positive samples, only 
one captive bottlenose dolphin from Zoo B (Madrid 
Province) tested positive for VNT, although with low 
titres of nAbs  (SNT50 38.15) (Figure 1; Table 2). Two out 
of the 33 pre-pandemic samples, one captive Eurasian 
lynx (Lynx lynx) and one free-ranging Risso dolphin 
(Grampus griseus), also tested positive by ELISA but 
negative by VNT (Figure 1; Table 2).

All animals tested (n = 283) for SARS-CoV-2 RNA in 
OS, RS and/or lung tissue were negative by RT-qPCR 
(Ct ≥ 40).

Discussion
Owing to the capacity of SARS-CoV-2 for interspecies 
transmission, surveillance studies in wildlife are neces-
sary to monitor viral spread and maintenance in wildlife 
populations, which subsequently may act as reservoirs, 
promoting genetic evolution and posing a risk for global 
health. In the present study, we performed an extensive 
survey of SARS-CoV-2 infection or past exposure in a 
variety of captive and free-ranging terrestrial and aquatic 
species of Spain during the whole pandemic period 
(2020–2023). We detected exposure to SARS-CoV-2 

Figure 2 Number of animals surveyed during the COVID‑19 pandemic (2020–2023) and the results of each laboratory technique 
(RT‑qPCR, ELISA‑1, ELISA‑2, and VNT). VNT: virus neutralization test.
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(nAbs) in a captive bottlenose dolphin living in a zoologi-
cal park, whereas no other animals showed evidence of 
SARS-CoV-2 exposure or acute infection according to 
molecular and a set of serological analyses.

The bottlenose dolphin is commonly housed in zoo-
logical collections. Consequently, close contact between 
this species and zookeepers or zoo visitors increases 
the probability of cross-species transmission of infec-
tious pathogens such as SARS-CoV-2. Importantly, the 
bottlenose dolphin was predicted to have a high risk 
of infection with SARS-CoV-2 according to in silico 
studies due to the high homology between the ACE2 
receptor of this host and that of humans [4]. Only five 
of the 25 critical SARS-CoV-2 S-binding residues differ 
between the bottlenose dolphin and hACE2 receptors, 
and there is only one nonconserved amino acid sub-
stitution between them [4]. Accordingly, cells express-
ing ACE2 from bottlenose dolphins allowed cell entry 
of pseudoviruses expressing the spike (S) protein of an 
early pandemic isolate of SARS-CoV-2 and Delta and 
Omicron variants [32]. Additionally, the expression of 
ACE2 in the respiratory tract of the bottlenose dolphin 
also supports the potential susceptibility of this ani-
mal host under natural conditions [33]. Taken together, 
the findings of these studies may explain the putative 
SARS-CoV-2 exposure of the seropositive bottlenose 
dolphin in the present study. This animal was originally 
from a zoological park in Madrid and was sampled in 
May 2020 during the first wave of the COVID-19 pan-
demic. N protein antibodies against SARS-CoV-2 were 
detected by ELISA in serum samples, and afterwards, 
the presence of nAbs was confirmed by VNT. Consider-
ing that the majority of nAbs are known to target the 

RBD and not the N protein of SARS-CoV-2, an ELISA 
detecting RBD-nAbs could provide false-negative 
results. This is consistent with the low sensitivity of the 
commercial kit found in previous comparative analyses 
of a variety of serological assays using VNT as a refer-
ence, although human samples were tested [34]. ELI-
SAs from our study also revealed seropositivity against 
SARS-CoV-2 in other cetaceans (Tursiops truncatus 
and Stenella coeruleoalba) samples, including one pre-
pandemic sample, but all tested negative by VNT. Con-
sidering that VNT is the gold standard technique for 
detecting specific nAbs, these results suggest potential 
cross-reactivity with antibodies against other known or 
unknown CoVs infecting cetaceans [35].

Cetaceans can be infected with CoVs from the genera 
Alphacoronavirus and Gammacoronavirus, including 
bottlenose dolphin CoVs (BdCoVs) [36]. To date, no 
cases of SARS-CoV-2 infection have been reported in 
captive or free-range cetacean animal species; this is the 
first study detecting SARS-CoV-2 exposure in a captive 
dolphin. Audino et  al. described the absence of SARS-
CoV-2 infection in a variety of marine mammals from the 
Italian coastline, consistent with negative results obtained 
by RT-qPCR and/or immunohistochemistry (IHC) 
tests. Nevertheless, past infection or exposure in those 
animals tested could not be completely ruled out since 
both RT-qPCR and IHC detect only acute infections, 
contrary to serological analyses [33]. Due to the likely 
susceptibility of dolphins to SARS-CoV-2, future studies 
should focus on elucidating the potential impact of this 
virus on dolphin individual and population health [33].

The SARS-CoV-2 genome has been detected 
in wastewater and rivers and is used even for 

Table 2 Results of the serological analysis, including ELISAs detecting RBD (ELISA 1) and N protein (ELISA 2) antibodies 
against SARS‑CoV‑2 and VNT 

Only ELISA‑positive samples are included. The following serum samples were considered positive for each test: IH% ≥ 35 (ELISA 1), S/P% ≥ 60 (ELISA 2) and  SNT50 > 20 
(VNT).

NA not analysed due to insufficient volume.

Species ELISA 1 ELISA 2 VNT

IH% Results S/P% Results SNT50 Results

Bottlenose dolphin (Tursiops truncatus) < 20 Negative 186.5 Positive 38.2 Positive

Bottlenose dolphin (Tursiops truncatus) < 20 Negative 712.2 Positive < 20 Negative

Striped dolphin (Stenella coeruleoalba) 51.4 Positive ≤ 50 Negative < 20 Negative

Striped dolphin (Stenella coeruleoalba) < 20 Negative 902.2 Positive < 20 Negative

Striped dolphin (Stenella coeruleoalba) < 20 Negative 69.8 Positive NA NA

Striped dolphin (Stenella coeruleoalba) 35.7 Positive ≤ 50 Negative NA NA

Striped dolphin (Stenella coeruleoalba) 49.0 Positive ≤ 50 Negative < 20 Negative

Sumatran tiger (Panthera tigris sumatrae) < 20 Negative 146.6 Positive < 20 Negative

Eurasian Lynx (Lynx lynx) 81.5 Positive 93.0 Positive < 20 Negative

Risso’s dolphin (Grampus griseus) < 20 Negative 699.1 Positive < 20 Negative
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epidemiological and predictive studies of the incidence 
of SARS-CoV-2 in human populations [37, 38]. This fact 
suggests the possibility of exposure to SARS-CoV-2 in 
aquatic and semiaquatic animals and, thus, supports the 
relevance of monitoring this group of animals. Indeed, 
there is a report describing SARS-CoV-2 positivity 
in water pool samples from a zoological park in 
Belgium in which two infected hippos (Hippopotamus 
amphibious) were living [12]. However, it should be 
noted that water treatment procedures (wastewater or 
pools) and marine water factors (salinity, pH or dilution 
effect) may contribute to SARS-CoV-2 inactivation and 
reduce the viral load, decreasing the risk of infection 
[33].

In our study, we also included samples from wild 
mustelid species that live in aquatic environments. These 
species were predicted to have a low risk of infection by 
in silico studies due to the low binding affinity between 
the SARS-CoV-2 RBD and the host ACE2 receptor [4]. 
However, in  vivo experiments and previous reports 
describing natural infections have already demonstrated 
their high susceptibility to SARS-CoV-2, probably due to 
the high levels of ACE2 in the respiratory tract [39–42]. 
SARS-CoV-2-seropositivity or infection in mustelids has 
been reported mainly in the livestock industry (American 
minks), households (ferrets; Mustela putorius furo) and 
zoos (Asian small-clawed otter) but also in free-ranging 
environments (Eurasian otters, American mink, pine 
martens [Martes martes] and badgers) [3]. To date, most 
of the studies have focused on monitoring infection in 
domestic rather than in free-ranging mustelids, probably 
due to the difficulties involved in sampling them. 
Notably, our study prioritized the surveillance of free-
ranging mustelid species, with a particular emphasis 
on the American mink. None of the sampled animals 
tested positive for acute infection. It is important to 
note that viral exposure cannot be excluded in this 
species since serum samples for the detection of SARS-
CoV-2 antibodies were unavailable, as sampling was 
conducted post-mortem. Experimental infections have 
demonstrated that American minks usually manifest 
severe COVID-19-like conditions, including pronounced 
lesions in both the nasal mucosa and lungs, similar to 
those observed in severe cases in humans [39, 43]. In 
natural infections, minks succumb to mortality mainly 
due to interstitial pneumonia associated with viral 
infection [44]. Consequently, detecting PCR-positive 
minks for SARS-CoV-2 infection may pose challenges, 
given their high susceptibility and mortality rates, 
unless diseased individuals are sampled or during active 
outbreak investigations.

The present study did not detect SARS-CoV-2 RNA 
or SARS-CoV-2 antibodies in any other captive or 

free-ranging wild animals. In contrast to our results, 
many natural infections have been described in wild 
mammals, mainly carnivore species, and most of them 
occurred in zoological parks [3, 9]. Zoos are suitable for 
viral cross-species transmission due to the large diversity 
of animal species and frequent human–animal interac-
tions. In particular, medium- and large-sized wild felids 
have shown high susceptibility to SARS-CoV-2 infec-
tion even when they present no to mild-moderate clini-
cal signs (respiratory and digestive) [45–48]. Notably, 
the Delta (B.1.612.2) variant has been suggested to cause 
more severe disease in this group of species and is con-
sidered a contributing cause of death in some animals 
[49]. Additionally, feline species can generate a significant 
humoral immune response against SARS-CoV-2 after 
natural infection via the presence of RBD nAbs and lim-
ited levels of antibodies against the N protein [45, 50, 51]. 
RBD nAbs persist for at least 4 months, and total nAbs 
may be present at least 18  months after natural infec-
tion in lions [45, 52]. In our study, one Sumatran tiger 
exhibited positive results for N protein antibodies, and 
one pre-pandemic Eurasian lynx tested positive for RBD 
nAbs and N protein antibodies. Nevertheless, the VNT 
results suggested false-positive results in both cases and 
potential cross-reactivity of antibodies from other feline 
CoVs [53]. A similar study conducted in zoo animals 
from France reported positive ELISA results for N pro-
tein antibodies and RBD nAbs in serum samples from 
three Springbok  sheep (Antidorcas marsupialis), three 
Cameroon sheep (Ovis aries Cameroon) and two vicunas 
(Vicugna vicugna) [54]). However, these results were not 
confirmed by VNT, leading us to consider them potential 
false positives (51). Regarding free-ranging felid animals, 
one study described the case of an infected leopard (Pan-
thera pardus fusca) by the Delta (B.1.617.2) variant in 
India, and a recent study demonstrated the case of virus 
exposure in free-ranging Iberian lynx (Lynx pardinus) in 
southern Spain with high titres of nAbs [55].

Notably, the animals included in this study were tested 
for both acute infection and/or exposure to SARS-CoV-2. 
Thus, the number of samples for some species was low 
and sporadic over time, which could have contributed 
to the failure to detect positive animals. Additionally, 
the animals could have overcome the infection at the 
time of sampling, or their immune responses could have 
decreased below the limit of detection of the techniques. 
Importantly, ELISAs cannot have the same levels of 
sensitivity or specificity when used in wild species as 
in domestic species or humans [56]. The difficulty in 
obtaining species-specific positive and negative controls 
for serological analyses hinders the validation of these 
diagnostic tests in wildlife. Additionally, it would be 
necessary to include other groups of species (e.g., bats 
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and ungulates), so we could acknowledge whether some 
other species could be infected and missed by our study. 
Monitoring wildlife species for emerging diseases poses 
many challenges. Wildlife that runs freely in the wild can 
be vast and dispersed, making it difficult to access and 
sample individuals effectively. Additionally, monitoring 
wildlife animals requires specialized techniques, 
trained professionals, special equipment or permissions 
to capture and handle specific species [56]. Overall, 
limitations and challenges to wildlife disease surveillance 
stand out.

The results from our study provide a favourable 
perspective regarding the absence of SARS-CoV-2 in 
wild animals from captive and free-range environments 
in Spain. However, the promiscuity of SARS-CoV-2 for 
multiple animal species and its ability to cross-species 
barriers reinforce the importance of continuing to 
monitor wildlife. In particular, surveillance of SARS-
CoV-2 infection in species living at high densities, in 
potential animal reservoirs and in areas with close 
animal-human interactions has been performed. Our 
study agrees with previous in silico and in  vitro studies 
showing that SARS-CoV-2 infection in marine mammals 
is feasible. This finding also supports preventive 
biosecurity measures when interacting with cetaceans 
and other potentially susceptible species in cases of 
suspected or confirmed COVID-19.
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