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Light Scattering by an Ellipsoid

according to A.F. Stevenson's method

Frédéric Gruy
Laboratoire Ondes et Matiere d’Aquitaine, CNRS, UMR 5798, Université de Bordeaux

Email : frederic.gruy@u-bordeaux.fr

Résumé : ce papier reprend le calcul du champ électromagnétique diffusé par un ellipsoide, dont le
grand axe est plus petit que la longueur d’'onde du champ incident, selon la méthode de A.F. Stevenson
(1953). Contrairement a la publication originale de Stevenson, les calculs y sont détaillés et complétés.
Ceci devrait autoriser et faciliter d’autres applications que celles proposées par Stevenson.

Abstract: This paper computes the electromagnetic field scattered by an ellipsoid, whose major axis is
smaller than the wavelength of the incident wave. Calculations have been achieved according to the
method of A.F. Stevenson (1953). Unlike Stevenson's original publication, the calculations are detailed
and completed. This should allow and facilitate other applications than those proposed by Stevenson.
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1. Introduction

The interaction between an electromagnetic wave and an object results in the existence of an
electromagnetic field inside and outside the object (the scattered field). The electromagnetic
field is obtained by solving Maxwell's equations associated with boundary conditions (the
surface of the object and the surface of a sphere of infinite radius having the same center as
the object). The corresponding exact solutions exist for very few objects: the sphere (Mie
theory, 1908), the doublet of spheres (Trinks, 1935). Consequently, a large number of
numerical methods were developed from 1960 onwards (Kahnert, 2003).

Recently, these latter have been extended to compute not only the fields, but the normalized
(Quasi-Normal) Modes of a scattering system (one or several nanoparticles, possibly above a
multi-layered substrate) (Bai et al. ,2013 ; Yan et al., 2018).

Despite this impressive progress on the numerics side, it is still an issue to derive analytical
expressions at least in some physical regimes, to describe the field inside and outside a (non-
spherical) particle. At the single particle level, this would be helpful to compute accurately
e.g. the torques exerted by light on a trapped anisotropic nanoobject (Bellando et al., 2022),
what is difficult to do with numerical methods, e.g. Finite Element Methods, when the particle
is lossless. This could also permit to answer fundamental questions on the Rayleigh Hypothesis
in the case of non-spherical particles (Augiué et al., 2016), comparing the sought expansions
to an analytical expression instead of numerical calculations. At a higher level of complexity,
when many coupled anisotropic nanoparticles are involved (Bertrand et al., 2020) , the
scattering system can be modeled by an ensemble of coupled multipoles, each of them being
computed from the sole knowledge of the internal field only (Radescu et al., 2002). These
multipoles could be derived in a convenient way, if one could obtain an analytical expression
for the internal field. From the very start of the search for a solution to this problem, and in
view of its difficulty, investigators proposed approximate solutions applicable in restricted
domains of the plane defined by

- the ratio of object size to the wavelength of the incident electromagnetic wave

- the optical contrast between the material of the object and the medium in which it is
immersed.

We thus speak of the Rayleigh approximation for objects that are very small compared to the
wavelength, the Rayleigh-Debye-Gans approximation for small objects with low optical

contrast, Fraunhofer diffraction for very large objects with high optical contrast, etc....



These approximations, which result in much simpler computations, are applicable to objects
of any shape.

An intermediate approach goes beyond the Rayleigh approximation by expanding the
electromagnetic field, which is a function of the wave vector, as an (ik)’1 series, where k is the

modulus of the wave vector. This approach was formally discussed by Stevenson (1953) and
later criticized by Kleinman (1965). Stevenson applied it to the simplest non-spherical object:
the ellipsoid (1953). The topic was subsequently abandoned; however, it has been recently
revived by the possibility of synthesizing nanometric ellipsoidal particles and their use in

nanooptics. , in the field of vacuum levito-dynamics (Gonzalez-Ballestero, 2022).
Stevenson's article on ellipsoids is difficult to read, as various researchers have mentioned:

- no intermediate calculation is provided, only the final result, with this indication: “The
calculations are somewhat long and involved, but are fairly straightforward applications of
ellipsoidal harmonics”.

- The calculation shows the result to 0% and 1 orders (7 = 0,1) and very partially to 2" order,

bearing in mind that the higher the order, the more complex the computations. Stevenson has
strictly limited himself to calculations enabling the far-field scattering to be obtained.

The aim of this paper is to present, based on Stevenson's paper, the detailed calculations
leading to the expansion of the electromagnetic field to 2" order (complete). This will enable
the reader to calculate the electromagnetic field at any point (inside, outside the ellipsoid), to
continue the calculation at higher orders, to compute, for instance, the polarizability of the
object as a function of the modulus of the wave vector.

This paper is based on the analysis of three documents:

- Stratton's well-known book on electromagnetism (1941)

- Stevenson's papers (1953)

- Dassios’ book on ellipsoidal harmonics (2012).

For reasons of anteriority of published work, | have approached 0*" and 1% orders from Stratton
and Stevenson's ideas without explicitly using ellipsoidal harmonics, then using them; on the
other hand, for 2" order requiring more complex calculations, the use of ellipsoidal harmonics
proved necessary. The notations used in this paper will, if possible, be those of Stevenson and
Dassios.

The following table lists, for each order, the main equations required to calculate the Stevenson

functions and hence the electromagnetic field. Note that the harmonic potentials

Vs, Vo(i),Ul ,Ul(i), V,, Vz(i) appear in the field expressions as their gradients:



E,=VV, E/=VV"

H =G +VU, H"=G"+vU"

E,=F,+VV, E=F"+VV

Maxwell’s equations are invariant under the substitutions £ — H, H ——-E, & <> u.So,
HO,Héi),—El, —El(i),HZ, Hg) are directly obtained from EO,E(gi),Hl, Hl(i), EZ,ES) if we make
the substitutions for the direction cosines (of the incident electric and magnetic fields) and the
material properties:

(4, m n)—>(, m, ny)

(L, my n)—>—(, m n)

e u

Main results :

The table below describes the main results of the paper. Note that both the cartesian and
ellipsoidal coordinates appear in the field expressions (which are valid for any aspect ratio of the
ellipsoid). This is at the difference with the theory developed in (Boyde et al., 2009), which was focused
on larger objects, close to spheres.



0t order 4.25,5.1 VO’V()@

1* order 5.12 G,,G"
5.71,5.72 "
U,,U,
5.110,5.112,5.113
2" order 6.3 F,
6.14,6.17

Tables 1 and 2

6.45, 6.56 x
F(i)

6.58 2

Table 3

6.89, 6.90 vy, v

6.167

6.186, 6.189, 6.191
6.196, 6.198, 6.199

The corresponding software may be required to the author

Biographical details: Arthur.F. Stevenson (1899-1968), a mathematician by training, was a researcher
in mathematical physics who worked in atomic physics from the early 1930s. While at Wayne State
University, he turned his attention to the study of the interaction between electromagnetic waves

(microwaves and light) and various objects. His last publication dates from 1968.



2. Fundamentals on Stevenson’s method

Using Stevenson's notations, the incident polarized plane electromagnetic wave is

characterized by the three sets of direction cosines :
(1,m,n) for the vector k

(I;,m1,n1) for the vector E©

(I,mz,n,) for the vector H®

then,

k(D )
E(O) — (ll ml nl )et ( r+m}+nz)

i (2.1)
H(O) — (12 m, n, ) elk(lx+my+nz)
Incident fields and scattered fields can be expressed as a power series :
p p
EO =% EV(ik) E=)E,(ik)
p=0 p=0
p » (2.2)
HO =Y H"(ik) H=YH,(ik)
p=0 p=0

The power series truncated at the order 2 for the incident wave is:

Eéo)z(ll m, ”1) El(o):(l1 m, nl)(lx-i-my-i-nz) Eéo):l(l1 m, nl)(l)c+my+nz)2

(0)
HO

2

(L, my n) Hl(o)z(l2 m, n,)(bx+my+nz) Hgo):%(lz m, nz)(lx+my+nz)2

(2.3)

According to Stevenson, we distinguish the field inside the ellipsoid, denoted (E”,H"), and the

scattered field (E,H). They obey the equations (coming directly from the Maxwell’s equations)



E,=VV, E=vy"

H =G, +VU, H”=G"+vU"
E,=F,+VV, EP=F"+vyY"
VAG =-E, VAG"”=-¢E
VAF,=H, VAFE"=uH"
VeG =VeG" " =VeF,=VeF" =0

A is the cross product, e is the scalar product.

with the boundary conditions (ellipsoid surface) :

nAV(Vy =V )=-nAE
neV(V,—eVy")=-neE)

n AV (U, -U")=-nn(G -G +H")
neV(U,—uU")=-ne(G,—uG" +H?)
n AV (V, =V ) =—na(F, - F" + E)
neV(V,—eVy")=-ne(F,—¢F" +E)

n is the outward pointing unit normal.
with

[neEdS=[neHds=[neE,ds=0

(2.4)

(2.5)

(2.6)

It should be mentioned that, according to Stevenson, the functions V,,U,,V, and

T/O(i),Ul(i), V1 are harmonic functions in the mathematical sense and not electrical potentials

(E, =VV, and not E, ==V in physics).



3. Scatterer: the ellipsoid
A point of the 3D space is specified by it cartesian coordinates x1,x2,Xs.
The ellipsoid is defined by it three semi-axes ai,az,as (denoted a,b and c by Stevenson). The

equation of the surface of the ellipsoid is :

2 2
X%

s
a, a, a

2
X

> =1 with @, >a, >a, (3.1)
3

The following notation will be used :
! 1 !
h = (c122 —af)z h, :(al2 —af)z h, :(al2 —af)z (3.2)

In the future, it will be useful to use ellipsoidal coordinates (£,77,{ homogeneous to squared

lengths) defined using the following expressions:

2 2 2
x x x 5
- T =1 8> a
a+& a,+& a;+¢§
2 2 2
X X X
L4 = =1 ;-a;>n>-a, (3.3)

2 2
a +n a,+n a+n

2 2
x x x
1 2 3 _ . 2 2
1 -a; >¢ >—q

al+¢ a+¢ al+l

These coordinates cover the whole of three-dimensional space and are linked to Cartesian

coordinates by the relationships :

N (e (@ -a)
X _(§+a§)(77+a22)(é’+a22) .4
(a7 —a:) (@ ~az)

Since we are interested in harmonic functions, we will need to write the Laplacian in ellipsoidal

coordinates:

Au = (g—n)(gfg)(,]_,;) [(7=¢) R0, (R0,u)+(5 =&)R,0, (R,B,u)+(E =) R0, (R0.u)]

(3.5)

with



R, :\/(s+a12)(s+a22)(s+a32)

The ellipsoidal coordinate & is a function of x;,Xx,,x;. The gradient of £ is obtained by taking the

derivative of the equation 3.3 :

szh—zz(xl /(§+af),x2/(§+a22),x3/(§+a32)) (3.6)

N | —

with h:(xf/(g+a3)2+x;/(§+a;)2+x;/(§+a;)z) (37)

The Laplacian of & is:

2 1 1 1
AE=— 3.8
g h2(§+a12+§+a22+§+a§] 3.8)

The surface of the ellipsoid corresponds to & =0.

The normal at a surface point of the ellipsoid is:

n:(xl/af,xz/azz,x3/a32)/ho (3.9)

1
with A, :(xl2 la} +x3/al +x; /a;‘)2 (3.10)

10



4. Zeroth order term

The zeroth order, which corresponds to k=0, is the so-called “static” solution of the Maxwell equations :
AV,=0 AV =0 (4.1)

with, on the surface of the ellipsoid (corresponding to & = O,‘v’(n,é’)) ,

nAV(Vy =V )=-nAE

_ (4.2)
neV(V, -V’ )=-neE"
and
VO(O) =[x, +mx, +nx, (4.3)

Following Stratton's ‘intuitive’ approach, we propose a solution with separable variables in ellipsoidal

coordinates for the external field (idem for the internal field):
Vo =Voe ()0, (m)Vi (€) (4.4)

Given the linearity of the expression of VO(O) (Eq.4.3), it is sufficient to look for a solution for the case

(+al)(n+al)(¢+ai)

2 2\(,2 2
(a3 -a) (a5 -a7)

of [, =1m, =0n, =0 and then Vo(o):xl:

. This expression suggests a

solution for V as:

Vy = Ve (E)(n+a2)(¢ +a}) (4.5)

Hence,

AV, =0 = (n_g)Réaé(R§a§%§)+((§—§)(g+¥j+(§—ﬂ)(%+%J]Vog -0

(4.6)

which, surprisingly, leads to the ordinary differential equation:

R(RV,:)+ f(E)Ve =0 with f(§)=—%(2§+a22+a32) (4.7)

11



a particular solution of which is :

Vier =(&+a ); (4.8)

Another particular solution can be obtained using the latter:

Vog,z = Vog,lz(é:) (4.9)
This leads to
T du
Z=C[———+C, (4.10)
0 RuI/Ou,l

C,and C, are two integration constants (the integration constants, to be determined later, will be

referred to generically as C,and C,),

and then to the general solution:

£
Voe =|:Cljd—bg+c2j|%§,l (4.11)
0 “u’ Ou,d
finally
< d 1 1 1
Oy e G A C w1
or
T d
VO = CII')‘WLLCZ]Z)-FCZ X, (4.13)

Expression 4.13 is also valid for V" with C{”,CY".

The boundary conditions can be rewritten as :

i) 0.(V,—eV"+1x)=0 on  £=0 (4.14)
(i) 1 1 (@)
thus  (C,—&C")——+—(C,-&Cy" +1,)=0 (4.15)
q,a,4,

12



ii)

0,(Vo—Vi" +1x,)=0
on E=0 VvVn,¢ (4.16)
0, (Vo—V" +1x)=0
thus C,—C +1 =0 (4.17)
i)
oo V,>0 (4.18)
thus  C, j +c2 =0 (4.19)
u+a1
iv)
Es—a; 0.V X (4.20)
thus C7=0 (4.21)
Finally,
C =(e-1)f(¢)]
C,=-ClI (4.22)
; 21
e =—2h_ 1)
@,a,4,
by calling,
I = and +(e—-1)1
: '([R u+a1 f( ) (alaz% ( ) 1]

The harmonic solutions are :

external : V, =-Cx,1, (5) (4.23)
and

internal : V") = C{"x, (4.24)
with 1,(£)= [ —2

¢ Ru(u+a12)

13



that are the Stevenson’s solutions, by adopting its notations : 4, =—C,, 4" =C{".

In the expressions of VO(” and V,, we find the ellipsoidal harmonic functions (see, Dassios) of degree 1

(to within one multiplicative constant) : internal (inside the ellipsoid) x, and external x,/; (5)

Given the linearity of the treated PDE’s, for any polarization of the incident field (by performing the

appropriate index permutations to obtain the expressions for A/ and A;i) ) we have :

3
Vo= Zijjlf (&)
=1
3

0 _ (i)
Vo _ZAJ X;

J=1

(4.25)

In the previous development, equation 2.6, which reduces to jn e £,dS =0 to order 0, was not used.

We can check this equality by directly computing In oV V,dS (using4.25). Another method would be

to use Green-Ostrogradsky's theorem :

[neEyds = [VE,aV =[AV,dv =0.
E E

OE

However, the application of this theorem requires a few precautions: its classical use is limited to a

closed surface OF and the volume E inside this surface. A priori, therefore, it does not apply to the

complementary of this volume in R*, which is our case since we are talking about the external
potential and external electric field. In order to apply Green-Ostrogradsky's theorem, the external field

must have additional properties :

- decrease monotonically with distance from the body

-2 -1
- decrease faster than " or &

but
tim|x, 7, (&)=, | ﬁ <pslll; ﬁ <hollll ] <3hle =5l )
u J u J

which does not guarantee sufficiently rapid decay. We will therefore settle for the less elegant direct

method:

14



OE J=1 OF
3 1 ' X.
=>4 (zj (0)—5+21, (0)] | ~Lds
Jj=1 j oE "0
given,
[Zras=0
OF hO

we therefore have .[ neEdS=0.
OFE

(4.26)

(4.27)

15



5. First order term

Stevenson's idea was to introduce vector functions Gl,Gl(i) and to base (apply) the boundary

conditions on Ul,Ul(i) . So first we look for a particular solution G,, G to the problem.
5.1. Calculation of G,,G”

In the following we will call A the vector with components Aj and P (respectively P(i))the vector

with components lej (f) (respectively X, ). We then have (2.4 and 4.25) :

Vy=AeP
Vo(z‘) — 4D ¢ pO (5.1)
We need to find solutions for:
VAG =-V(AeP)
: . ) (5.2)

VAG! ==ev(4” e P?)

VeG =0
with ) (5.3)

Ve Gl(’) =0

What are the properties of A4, P, A(i),P(i) vectors when the nabla operator is applied to them?
A, A” being constant, we obviously have :

VeAd=VeA" =0

_ (5.4)
VAAd=V A4 =0
P being the position vector, we have :
VAP?=0 VepP" =3 (5.5)
P vector requires more attention (using 3.6) :
VAP =(es0,B=0,P,sn) = | | =0 E =0 £ || = (0,0 =0 (5.6)
J J R§ §+aj é:+ai J

16



VeP=31, (£ 2500, (6) =X () Ex (1,(6)

ST T ()

7 h’R. (§+af) 7

Considering the equality :

? 17 TR 'du
21 ij —R—21nR 2jR

4 ¢ u 4 u

One deduces

VeP=0

)'0,¢ =;11(§)—;&+2

Using the two canonical vectorial equations, involving any two vectors ¥,V :

Ve(V,AV,)=V,o(VAV,)-V,o(VAV,)

VA AV =V (Vb)) =V, (Vo) +(V, o V)V, =(V; o V)V,

(5.7)

(5.8)

and applying them to the pairs (Vl,Vz)z(A,P) and (T/I,T/z)z(A(i),P(i)) and using the above-

mentioned properties, we check that :

Ve(AAP)=0
v-(A<”>AP<">)=0

and (reminding that the 4 vector is a constant)

VA(AAP)=~(AeV)P==13 4,(0,P)=-124,(2,P,

(@)
Al

VA(A?APP) =347 —(47 eV )r =347 -3 4P =24 =2V (47 e P?)

()
A3

Finally, by comparison (between 5.2 and 5.10, 5.11), we find the Stevenson’s result :

(5.9)

(5.10)

(5.11)

17



G =AAP

GY = _E 40, pti (5.12)
2
5.2 Calculation of U, U/”
5.2.1 Harmonic functions for ellipsoid
We search for the harmonic solutions of the PDE’s,
AU, =0 AU"” =0 (5.13)
with, on the ellipsoid surface (corresponding to & = O,V(n,é')) ,
n/\V( U(’)) —n/\( Gl([)+H1(O))
(5.14)

I’ZOV(U ,uU(l))=—no(G ,UG(l)-I—H(O))

withH” =(L, m, n,)(bx+my+nz)

Here again, let's use the intuitive approach: the vector of the right-hand side of the boundary

conditions is linear in x;, so we expect a quadratic solution (Cxl.xj ), more precisely a linear

combination of quadratic terms like (using 3.4) :

1 1 1 1

W, (&n.0)= §U(f)(n+ai2)5(é’+af)5(n+af)5(§+af)5avec i,j=12,3 (5.15)
the calculation of AW, (5,77,4’) =0 leads to
R (Réqu )'+f(§)W§,,.,j =0 (5.16)
with f(g‘) :—i(6§+af +a_/2. +4a,2> where [ #i,jeti# j (5.17)
a particular solution of which is,

1 1

We, o =(E+a] )2 (E+a)). (5.18)

Another particular solution can be obtained using the latter:

Eij2 T W§,i,j,lz(§) (5.19)

18



This leads to

3
=¢ | du (5.20)
l 0 RuVVuzl 7.l

And therefore to the general solution :

N | —
N | =

(¢+ai ) (n+q; );(“af ); (5.21)

¢
— 2
llj{q}[Ru u+a (u+af)+C2}Wf”"f»l(n+al)

or

¢
111_{C1'([R u+a (u+ajz)+czilxixj (5.22)

u

Expression 5.22 is also valid for U” with C{”,C".

The case i=j requires special treatment. The solution proposed for i # j by taking i=j, i.e.
W, (&n.¢)= W, (f)(77+ai2)(é'+al.2), leads to AW, #0; so we propose to generalize the

latter expression by replacing al.2 with —v (parameter to be determined later and not imposed) :

W,(&n.8)=W.,(&)(n-v)({-V) (5.23)

We therefore need to determine v (if this solution makes sense). So,

AW, =0=(n-¢)(n-v)(£-v) RO, (ROW, )+ ZW., =0 (5.24)
with
Z=3(¢=)(¢-v)eln)+5(E=n)(n-)e(¢) (525
and
g(x):(x+a12)(x+a22)+(x+a12)(x+a32)+(x+a§)(x+a32) (5.26)

This polynomial of degree 2, which always has two real roots, can be expressed as :
g(x):3(x—v)(x—v') (5.27)
v and Vv’ are also solutions of the equation :

19



(x-i—alz)_1 +(x+azz)_l+(x-|-a32)_1 =0 (5.28)

Thus,

3 ' ' 3 '
Z=2(¢=v)(n=-v)[(¢=&)(n-v)+(E=n)(¢ —v)]= (=) (n=v)(E-m)(E-v)

(5.29)
Hence (things are working out wonderfully)
AW,=0=>R.(RW., ')'—%(g—v')%v =0 (5.30)
A particular solution of this equation is: £ —v
Finally,
U, = ] —H i, () n-v)(c-v) (5.31)
1Lv l0 Ru (u —V)2 2 :

At this point, we need to express Eq.5.31 in the same form as Eq.5.22, i.e. to express

(&§-v)(n—-v)(< —v) as afunction of x,,x,,x,.To do this, let's rewrite £q.3.4 :

(azz—af)(%2 —alz)xl2 :(§'+v+a12)(77'+v+a12)(§'+v+af)
(a32 —a;)(al2 —azz)xz2 (§'+V+a22)(77'+v+a22)(§'+v+a22) (5.32)

(alz—af)(af —af)xf (§'+V+a32)(77'+v+a32)(§'+v+a§)

§'=E-v n'=n-v {'=¢-v

This gives us a system of 3 equations with 3 unknowns (&'n'¢", &'n'+&'C'+n'd', &'+n'+d!

), whose solution for the unknown &'n'd'= (f—v)(n—v)(é’—v), called X by Stevenson, is :

fw=(§—v)(n—v)<¢—v):f{i J —1} (5.3

2
Sv+a

with

5=H(v+af)

3
Jj=1
Finally, the general solution for i = j is written as :

20



(5.34)

Obviously, the roles of v et v’ are interchangeable. So we have U, ,,..

The boundary conditions, away from the ellipsoid and at its centre, specify the expressions for

(@) (i) @ .

Ul,i,j 4 Ul,i,j ° Ul,v ° Ul,v" Ul,v s Ul,v' :

i) oo U, ,,U,U,—>0 (5.35)

2 (i) (i) ()]

i) & ——a anl,i,j’ 8§U1,v ’ aéUl,v'><°° (5.36)
Hence, using Stevenson's notations (except for the integration constants) :
Ul,i,j = Ai,j [i,j (f)xzxj
U,=4T, ()X, (5.37)
Ulv = Av' R'(f)Xv
U, = A1) xx,
U =4" X, (5.38)

@ — 4
U =49 X,

with
i du * du
I (&)= d T =|l—Q
i (6) '!Ru (u+ai2)(u+a?) o (&) '!Ru (u—v)2
Here again, we find in the expressions of Ul,i,j’Ul(,i‘),j’Ul,v’Ul,v"Ul(,iv)’Ul(,iv)' the ellipsoidal harmonic

functions (see Dassios) of degree 2 (to within one multiplicative constant), of which there are 10.
Internal harmonics :

E, =X, ;E; =X, E; =(hhh)hxx, ; B =(hhh ) hyxx, B = (b by ) hx,x, (5.39)
External harmonics :

5 5 5 5 5
Yy = DB (6): Y3 =B (6): s = D Ea o (6): Yo = D Ealy (6): Yo = D ESL, (&) (5.40)

14
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The solution of the PDE’s (5.13) are linear combinations of the set of harmonic functions 5.37 (or 5.40)

for U, and linear combinations of 5.38 (or 5.39) for Ul(i) .

The integration constants (Egs. 5.37 and 5.38) will be determined using the boundary conditions:

WAV (U, U ) =-n (G, -G+ HY)

noV(U ,uU(l))=—n0<G ﬂG(t)+H(0)) (5.41)

i.e. four scalar equations (that depends on the surface coordinates) for 2x5 unknowns.

If 12 =1, then the boundary condition (surface of the ellipsoid) reduces to the vector equation :

V(U -U")+G -G +H” =0 (5.42)

5.2.2 Simple case : the disk

Expecting complex calculations, we will first study a simpler case: the disc replacing the ellipsoid. The
difficulty arises from the mixing of Cartesian and ellipsoidal coordinates (here polar, with the radial
coordinate 7 playing the role of &) in the expressions of the general solutions and, above all, of the

boundary conditions. We want to solve :

AU =170, (ro,U)+r70,,U =0

AU =0 (5.43)
VU|,+4=VU"| +47 (r=R)

with

A= ax, +bx,

. ) , (5.44)
A =a"x, +b"x,

A, A([)a,b, a(i),b([) are vectors of the plane. a,b,a(i),b([) are constant vectors.
Several approaches will be used.
a. Traditional approach

We begin with the classical method, which consists of a separation of variables method ( 7,8 ) and

the use of an appropriate orthogonal functions set :
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U=) (C,cosnd+D,sinnd)/r"

n=0

(5.45)
U® = Z (C,gi) cosnf+ D' sin n@) r"

n=0

The boundary condition, obtained by projecting onto the radial and orthoradial coordinates, leads to

non-zero terms of degree 2 :

2R7C, +2RCY = %(bgo by +a,)

~2R7C, +2RCY = g(bg” ~b,—a{" +a, )

(5.46)
2R7D, +2RD)" = g(b1 ~b"+a,-a}")
~2R7D, +2RDY = %(b1 -5 +a,-a}")
hence C, =D, =0 (5.47)
and
Y =(b" b, —a’ +a,)/ 4 a8

DY =(b -b" +a,~-a")/4

The form of the boundary condition imposes the following relations, derived from the absence of a
term of order 0 :
b b, +a” —a, =0

2oz (5.49)
b -b"+a\" —a, =0
These latter conditions are normally satisfied by the coefficients a and b calculated at lower orders. The

set of coefficients a,b cannot therefore be arbitrary.
Finally,

U=0
U® = %1’2 [(bg” —b, —a" +a, )cos 20 +(b, —b" +a, —a}" )sin 26} (5.50)

b e a) (5 —2) w2 )]
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b. Intuitive way

The general solution compatible with the linear form of A4, A” in X, X, is easily obtained by a method

of separation of variables, but by formulating it with Cartesian coordinates:

B 4
U1,2 = Cl,zr XXy

— _ “4( 2 2
U1,1—Uz,z—cj,j” (xl xz)

) 0] (5.51)
Uiy =Ciaxx,

i i i 2 2
Ul(,l) = Ué% = C](i (xl —X )
or

4 2 2
U=r (Cl,lex2 +C, (x1 - X, ))
(5.52)

0 — o) M (2 _ .2
U" =Chxx,+C; (xl —xz)

The integration constants will be determined using the boundary conditions projected onto the

Cartesian coordinates:

VU| +4=VU?| +4Y (5.53)
R R

denoting,

_Hp4 Q)
H Ji = 2R Cm - ZCJ‘,J‘

: (5.54)
H,=R"C,-C)
The boundary conditions become :
V(xl,xz) eoS
(Hj,j +a, —af”)xl +(HL2 +b, —bf”)xz +(—%)U,=R =0 (5.55)

(Hl’2 +a, —aé"))xl +(—Hj,j +b, —b;")))c2 +(_R_jUr_R =0

U,_, being a priori a bilinear form, these equations will be verified if :
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H,+b -b"=0
H,+a,—a) =0
H, +a —a"=-H, +b,—b} (5.56)
i i 8
a,—a" +b, b§>—FUﬁR=0

hence

() (i) —
b -b"+a’—a,=0

b§” —b, + af” —a, =0 (5.57)
Ur:R = 0
but, also
H, +a —a"=-H,  +b,—b =0 (5.58)
and then
U=0

(5.59)

Uu® :%(bl _bl(i) +a, _agl))x1x2 +%(Cl _al(l) b +b(1))( _xz)

The result is the same as that obtained using the classic method.

5.2.3 Intuitive way for ellipsoid

Let's return to the case of the ellipsoid with x =1; the boundary condition (5.42) translates into :

along the x(i.exl) coordinate :
< . . £ . .
(—EA3(’) — A, + A, — A+ szsz + [5 AP+ AL+ A - A + lznjx3 +

o [T A T o) AR M - g 22

1 2 2
i v+a, i v'+a) a,a,a, a,a,ahy a

(5.60)

The components along y(i.exz) and Z(i.€x3) are easily obtained.

with the Z factor common to all 3 components,

XX, XX, X, X, X, X,
oyt A5t sS4+ A, — (5.61)
a,a, a, a; a,a; v v

Z=4,
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By analogy with Egs. 5.55-5.58,

—%A?—VQQ+AMAJ—A$+Qm=O

§A9+Agfhggm—Ag+gn:0

f[(v+a )AVT A(l)+f[(v+a)A”TV Av(l)+£—

v+a v'+al

J=1

Z=0

Jj=

The same applies to the other two components.
Z=0leadsto 4 ,=4;=4,;=4,=4,=0
Finally, we have to solve the two systems :

@) 4 40)
unknowns : 4}, A5, 4,5

—%4”—45—A@+5m:0
EAD 4 AT —AD 41 n=0
2 2 273 1,3 2
EAD 4 AT = AD +mI=0
2 3 371 1,2 2
a A(i) Al A(i) _
_5 T Ay — 2,3+m2n—0
N0 (i) _
S A=A~ A4yl =0

& . .
(i) ()] —
EAl +A112—A2’3 +n2m—0

and

unknowns : Ay),A‘f’;)

(5.62)

(5.63)

(5.64)

(5.65)
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These two systems appear to be overdetermined in relation to the number of unknowns. In fact, this

is not the case, as there are relationships between coefficients such as those shown in 5.57: for

instance, take the two equations containing the unknown Al(’z) ; we can check that there is the following

relationship between coefficients:

—%Af) — AL +Lm :%Ag” + AT +myl (5.66)
leading to

i &
A = —EAg '~ AL +1,m (5.67)

The same applies to 5.65: the sum of the left-hand side of the three equations is zero, because the

vectors(l m n),(12 m, nz) are orthogonal and relation 5.28 is used; two equations for two unknowns

are therefore sufficient.

=1 leads to simplifications in Stevenson's expressions: it is easy to check that B, = Az,3 =0 (B, is

the Stevenson’s notation , idem for B,,B,), that B=A4 =0;B'=4,=0 (Band B'are the

Stevenson’s notations). In the same way, non-zero terms are
| : .
A = E(mzn +n,m+ A4, (1, - I )) = B, where B" is the Stevenson’s notation.

Here again, we find Stevenson's expression, expressed in a different way.

likewise,

: 1 1 mm nn
A = 2 _ 4 2+ —2_ =B, where B is the Stevenson’s notation,

6(v'-v)|v+al v+a, v+a

which is less straightforward to prove:

We multiply the i" equation of the system 5.65 by (V + al.z) , then we add the new equations of the

system 5.65 :

The coefficient of A‘E’;) vanishes due to the expression (using 5.28) :

i =0 (5.68)

;(v+a )(V'+al.2) ,z(v+a ) pa (v +a )
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The coefficient of A‘Ei) is :

L1003 [T o)

2T
(v+a. ) j1 i>)

1

(v+aj)z3:(v+aj) (5.69)

Jj=1 Jj=1

.:w

f[(vw?)}l _(z((vm;)(wg))]z_z

2 3
because, following 5.28: v+v'= —EZa

J=1

Finally,
a1
3(v—v')A£)+— 2+ mm22+ nn22 =0 (5.70)
2lv+a;, v+a, v+a;
and then,

40— 1 I, L mmy__nn
Yo6(v-v)| v+a' v+a, v+a;

5.2.4 Traditional approach for ellipsoid
We consider the general case : p#1.

The function set on which the solution of the PDE will be expanded is the ellipsoidal harmonics set

(Egs. 5.39 and 5.40).

Generally speaking, the solution of the PDE is :

5
U =K, E,+ ZKMEZ'” (5.71)
m=1
5
U =L, Yo+ L, Y, (5.72)
m=1

The integration constants K, L  will be determined using boundary conditions 5.14. We cannot

n,m? "n,m

ignore terms of degree 0 (Eé = 1) in equations 5.71 and 5.72, given the form of the right-hand side of
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equations 5.14. We will now try to determine these constants, starting with the contribution of terms

of degree 2, which is more difficult to deal with (by assuming KO’1 = LO’1 =0).

Equations 5.14 show the gradients of the ellipsoidal harmonics expressed in the Cartesian basis {el,} :

xl/(v+a12) xl/(v'+a12)

VE, =25 xz/(v+a§) VE; =2§'x2/(v'+a22)

X, /(v+a§) X, /(V'+ af) (5.73)
X, X3 0
VE, =(h1h2h3)h3 x, VE, =(h1h2/13)h2 0 VE; :(h'h2h3)h1 g
0 xl xZ
and
VY, =27 (£)VE: g Ve
2 5 2 5 2R§(§—V)2
5 5 V&
VY:==T, (£)VE:-ZE}———=—
275 v(ét) 275 2R§(§—V')2
5 5 V¢
VY3 :—I VE3 __E3 5.74
) 2 (£)VE; 2 2R§(§+af)(§+a22) o
5 5 Vé
VYi=Z1,(£)VEi-ZE}
) s ($)VE; 2 2R§(§+af)(§+a32)
5 5 5
VY =21 VE] -=E;
) 2’3(5) 2 2R§(§+a§)(§+a§)
We deduce,
5
n/\V(U—Ul([))‘ =0=2Pm(”/\VE2m) (5.75)
m=1
with
R :%Lz,lTv -K,, B :%Lm]:/'_KLZ (5.76)

5 5 >
P = 5L2,311‘2 -K,; F = EL2,411,3 -K,, F= EL2,512,3 —Kys
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2 2
and reminding that (3.6 and 3.9) Vé':|§=0 :F(xl lal,x,/a,x, /a32) :h_n,

0 :
hence,
nAvYy =§Tv(§)(”WE3LO)
AV =%Tv~(§)(“VE§L=o)
nAVY[ :%1132 (&)(nnvEy ) (5.77)
navYy =§Il,3 (£)(nvELL,)
AV =§12,3 (&)(nnvEy,,)

As for the scalar product n OV(U1 - ,uUf”), it contains (starting from 5.74) :

5 1
P VI =T ne VB SSE s
5 1
ne V|, =S (e VEL ~SE o
s 1
neVY;| ==1I,(£)neVE;| —5E; (5.78)
2e=o o712 ( ) ZLEO ZLEO h, (alazaS )3 (alaz )2
5 1
neVYy ==1I,(E)neVE} —S5SE}
Hemo 713 ( ) ZLEZO 2“5:0 hy (a1a2a3 )3 (a1a3 )2
5 _ 5 3 ; 1
neVy, =0 512,3 (f)n ¢ VEZL“:O —>E; ‘5:0 h, (a1aza3 )3 (a2a3 )2
hence,
SEl| SE3,_
s 1 Loy a,a,a ;/2 tho a.a af‘;‘)'z
"~ . 1U U4 1723
+L, ; = >+L,, = 7t Lo = 2
aaya, (aa,) aa,a; (a,a;) a,a,a; (a,a,)

with
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5 5
R = 5L2,1Tv - uk,, P = ELz,va' -ukK,,

(5.80)
P = %L2,3ll,2 —uK,, PF= %Lz,ztlm -pK,, PB'= %Lz,slz,z —HK,
Let us consider the cross product n /\V(U1 —Ul(i)) and let us compute its components :
hnaV(U-U) =|26 L1 P+()B |xx,
=1 aj(v+a32) af(v+a§)
h h 2 Xl
(b )= P, 35, + (sl )= Py 3%, + (s ) P2 (’C—é——z]
as a, 2 O3
; 1 1 ,
hyn AV (U, =U| >)L=2 —| 25 ) _az(v+a2) B+()B |xx,
3 1 1 3 (5.81)
h, x32 x12 hy
+(h1h2h3)—2P3 Xy X5 +(h1h2h3)h2P4 D) _(hlhzhz)_zps X1 X,
as 3 4 a
honAV(U-UP) =] 26 S R+()P |xx,
= af(v+a22) af(v+a12)
x12 xz2 h, h
+(h1h2h3)h3P3 _2_? _(h1h2h3)?P4 Xy X3 +(h1h2h3)?P5 X1 X3
1 2 2 1

Before continuing, we will return to the theory of ellipsoidal harmonics.

The location of the studied boundary condition corresponds to the surface of the ellipsoid, so it makes
more sense to work with the family of ellipsoidal surface harmonics, which are directly related to the

ellipsoidal (volume) harmonics used so far. The following lines are inspired by the book by Dassios.

Ellipsoidal (volume) harmonics are classically defined from Lamé functions La’ (x) (called E" (x) by
Dassios) where x is one of the three ellipsoidal coordinates (which form an orthogonal system)

p=+E+a’, u,v.Sowe have :
E"(p,u,v)=La(p)La) (u)La, (v) (5.82)
We previously saw that £ (p, y75 V) can be expressed in terms of Cartesian coordinates.

However, since the surface of the ellipsoid corresponds to &=0or p=a, , the ellipsoidal surface
harmonics are defined as :
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Sr'(u,v)=La) (u)La) (v) (5.83)
then,

S (u,v)=E) (x,y,2;6=0)/La (a,) (5.84)

S (,u,v) also form a set of orthogonal functions on which any function associating a real value with

a point on the surface of the ellipsoid can be theoretically expanded.

Dassios showed that the second order terms x,x; can be expressed using the ellipsoidal surface

harmonics (on the surface of the ellipsoid p =a,),

x2 — a_j 1 _ S; + S22
"3 (v+af)(v—V') (v'+af)(V—V') (5.85)
XX, | 4,4,
E Syt p=tEe
X, p hna,, ’ / h1h2}%

Introducing 5.85 into 5.81 leads to :

32



o _ 1 _ 1 ' L
ho”/\V(Ul Ui )‘1:1 lzé(ai(lwai) af(v+a§)]e+()g}ﬂhﬂl

oo ] hoppLs
() 3PSyt (W) 5P B S,

3 A, 2 3
1 1 1 1 1 1

hh\h P - SZ —(hhh )hP. - S,
+(Ahhy )b 53(v—v')(v'+a22 v'+a32] 2 = (ol )y 53(1/—1/')(1/+az2 v+a32j ?

S;

L] )Jm(')f’z]ﬁ,%

hyn /\V(Ul U )‘1=2 - {25(4132 (v+a12) al (V+Cl32 24, 5

h 1 1
+(hh ) <P f—S; —(h1h2h3):L1_2 BpLs;

3 1%1 1 373
1 1 1 1 1 1

h) P, - Sy =(hhhy ) b, P - S;
+(h1 2 3) 2 43(1/_‘/,) V'+a32 V'+a12) 2 (h' 2h3) 2 43(y—v')(v+a32 V+a12j ?

l. 1 I , 1
hol’l/\V((J1 _Ul())‘]=3 = 25[a12(v+azz)a§(v+af)}1)1 +( )PZ]ﬁESZS

h 1 hy 1
_(h1hzhs)a_§ﬂﬂ ha S§+(h1h2h3)a_12f§ﬂ ha, 5,

1 1 1 2 1 1 1
+(hlh2h3)h3Pz 3(1/—1/')[ - 2JS2 _(h1h2h3)h3p3 3(v—v')[v+a12_1/+a§

vival v+a
(5.86)

Let us now consider the scalar product n OV(U1 —pu ), starting from 5.79

2

h0”°v(U1_”U1(l)) 25;a (v+a )Pﬂ+25';ﬁpf

11 1o , 11
+ (hlhzh3 ) h3 (—2 + ?j XIX2P3'H + (hlhzi% )]’l2 (? + —Zj X1X3P4! + (}Llhzh3 ) h] [? + ?] X2X3P5'u
2 1 3 3

1 2
1 2 3 4
SE)| SE| SE)| SES|
-L = L, ——— L, ———
2.1 2 2,2 2 2.3 2 2,4 2
a,a,av a,a,a,v a,a,a;(a,a,) a,a,a; (a,a;)

SESL .

. ala2a3 (a2a3 )2

(5.87)

Using the equations 5.85 :
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i=1

3 3
hyn oV (U, = pU" ) =2 - {z(v+a)(v+a-2)szzz 12 SZI}DIF

1 : 1 ) N 1 |
20 3(vv'){;(v'+a2)z & ;(v+af)(v'+af)52]PZ#

+(@h2h3)@(%+i}ﬂl%sieﬂ () [iﬁ;—z]ﬂh#w +(@hz@)@(§

3a3 1 2a2

0 SEZ‘ 0 5E3‘ 0
—L,, 7Ly = 2_L23 = 7L,
a,a,a,v a,a,a,v aa,a; (a,a,)

SEj|

=0 - L
a,a,a;, (ala3 )2 ”

applying 5.84,

Er (x.y.z:6=0)= La? (a,) 87 (1.v)

with

Ld\(a)=—v La(a)=—v' Ld(a)=aa, Ld'(a)=aa, Ld(a)=aza,
Finally 5.88 becomes, using 5.68 and 5.69 :

hyn oV (U, = uU")

= {213;‘ +L,, L} S5 + {213;‘ +L,, L} S3
a,a,a,v a,a,a,v

| 1), 1 5
STV YN PRI LI -V S B
(h1 2 3)}’3(6112 azzjﬁ%% 3 23 20,4, (%%J 2

I 1 1 5
= P, ——2 s
) a afjﬁhzaz oo a1a2a3(ala3)} ?

+ (hlhzha hz (_

1

+ (hlhh)hi{l jﬂ_P# Lzs+a)}S§

2 ha, ’ ala2a3(

Let's now look at the right-hand side of equation 5.14. We may write :
G -u'G"+H"=[Blx x="(x,x,x) e=0,1

with

5E§\ )

1 1
+— |p—SiP*
zjﬂ hlal 2+5

3

a,a,a;, (a2a3 )2

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)
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L1 ml, — A1, —%gyEAy) nl, + A1, + %gyeAf)
B=|\ml+ 41 +%8/,16A3(i) m,m nm, — A1, —%6‘#8141([)
nyl — A, 1, —%gy‘—’A? nym+ AL + % us AV n,n

(5.93)

This matrix has a zero trace (due to the orthogonality of the unit vectors carrying wave vector and

fields). We can also check that the matrix is symmetrical. The matrix will be noted [B] if e=0and

[B"] ife=1.

Let us consider the cross product 7 A V(Gl -G + Hl(o)) and let us compute its components. So, for

the first component (/ =1):

hyn /\V(G1 -G +H )

53 ——Z
311 211

I=1 a211 311

1 B3,2 BZ,3 1 1 B3,2 BZ,3 2
2 7|2t 2 7 |52
3(v-v)\v+a, v+a 3(v—v)\v+a, v'+a

B31 1 3 BZI 1 4 B33 BZZ 1 5
+B— S; - ’ S+ = S
d al ha, ° d al ha, ° d a 2 Jha, °
1
+§(B3,2 Bz3)

The same applies to the two other components:

I AV(G -G+ H )

=2

B B, B B,
1 _ 3,12+ S+ 1 _ 3,12+ %
3(v—v') v+a' v+a; 3(v—v) v+al v'+a;

B B B
ﬁ — 85+ ﬂ[%—%}iwﬂ%—
h33 3 a; )ha, a, na
1
+§(Bl,3 _B3,1)

(5.94)

(5.95)
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1=3

1 B2,1 B],Z 1 1 B2,1 BI,Z 2
N 2 T[St 2 7 |5
3v—v' )\ v+a, v+a 3(v—v)\v'+al v'+a

i AV (G =G+ H”)

B B { B ) B ! (5.96)
o 2 Be) Lspe Lsiopfe L
a a, )ha, a; hya, a, ha,
1
+§(Bz,1 _BI,Z)

Let us now consider the scalar product neV (G1 —uG? + HI(O) ) . Using the same procedure, we find :

l- 1 (& B L (& B
ho'"V(G—ﬂGl“+Hf°’)=‘3(v_v')£z ’]S“s( [Z ]S

2 2
T V+a v-v ) T v'+a

5.97
B,{f,.] 1 13 5:97)

B
2|t Sy "+ 2B
> \4;
n#i,j

2
a |ha, 35

Given the properties of the matrices [B] et [B“], the constant terms in 5.94-5.97 vanish.
nA V(Gl -G +H1(0)) and n OV(Gl - uG?” +H1(0)) therefore contain only ellipsoidal surface
harmonics of degree 2. It must therefore be the same for n A V(U1 —Ul(i)) and n OV(U1 - ,LlUl(i)) ;
It is therefore not necessary to take into account ellipsoidal surface harmonics of degree 0.

We have therefore just expressed the various terms appearing in the boundary conditions as linear
combinations of ellipsoidal surface harmonics. Boundary conditions 5.14 are therefore expressed as
linear combinations of ellipsoidal surface harmonics equal to 0. As these form an orthonormal basis,
this implies that the coefficients (which contain the unknowns of the problem) of the harmonics are

identically zero.

From the scalar product (5.91 and 5.97) we can deduce :
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a,a,a,v
5 1 3. B
2P +L,, =- >
aaay'  3(v-v)\ Fv'+a
n=12,3
1 1 1 1 S5a’ aaa | By, BY|1 .
(ala2a3)(_2+_2+_2__2jpéﬁn_L2,6—n L= bR k0> n#d
a, a, a; a, (a,a,a,) hhh \ a;  a |h,
(5.98)
Let us now consider the cross product (Egs. 5.86, 5.94-5.96) :
Let us take the example of the unknown £, ; it is involved in 3 equations:
I=1 S;:
P —_ B2,l
=
(hlh2h3)h3
[=2 S25 :
P _ Bl,2
=
(h1h2h3)h3
[=3 S;: (5.99)
1 1 3 1 B,, B,
1)3 ] 2 - ] 2 - ] 2 - ] 2
v'val v'+a; (hhh) b\ v'+al  v'+a;
[=3 S; :

1 1 1 B, B,
B 2 2 |77 2 2
v+al v+a; (hhh) b\ v+al v+a;

As the matrix [B] is symmetrical, these 4 equations can fortunately be reduced to a single one:

B
P =- T (5.100)
(h1h2h3)h3

It is the same for P, and P, that obey the equations :

(5.101)
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P = Bz,3
 — (5.102)
(hlh2h3)hl

In the same way, F; and P, obey:

I=1 S;:
1 1 By, B,
25 - P+()P=—| 22222
[azz(v+a32) af(v+a§)] () (af af]
[=2 S
1 1 B, B, (5.103)
25 - P+()P=—| 223
{af(v+af) af(v+a§)} ()R (af afj
[=3 S

1 1 B,, B,
25 - P+()P = 221
{af(v+a22) ag(v+af)J )R (af a;j

These three equations are not independent, because the weighted sum (by afajz. ) of the three previous

equations (5.103) :

1 1 ,
268v (V+a32)—(v+a22) B +(")P, =B,,a; — B, ,a,
1 1 ) )
268v - ~ |B+(")P,=B,,a; — B, ,a, (5.104)
(v+a1 ) (V+a3) ’ ’
1 1 2 2
20v - R+(")P,=B,,a, - B4

(v—i—a;) (V+a12)

leads to 0=0.

From the first and second equations (5.104), we straightforwardly get for £ :

4vv'(h1h2h3)2 (v-v")P =

— 21/'[31’16112 (a22 —a; )(V'+ a; ) + Bzwzaz2 (a32 —af)(v'+ a§)+B3,3a32 (alz -a; )(V'+ a )}
(5.105)

or
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1 hZ 2

S

h
P=— |Ba'—1 —(v+a’)-B,,aa—2—(v'+a )+ B,.a:——(v'+a’
T )| (o, sl ) =B (hlhzhs)z( ) (hlhzhg)z( %)
(5.106)
Now, according to Dassios,
272712
(V+a;)(vv+a;):(_1)"“% (5.107)
and given the zero trace of [B], we deduce :
1 a’ a a:
P=- B ! B 2 B 3
: 6(v—v'){ 1’lv(v+af)+ 2’21/(v+azz)+ 3’31/(1/+a32)]
1 1 B, B,, By,
- (B +B B..)- LI S : 5.108
6(v—v')[v( SRR 3’3) (v+af) (v+a22) (v+a§)} ( )

Bl',i
;(M;J

The same applies to P, .

Il
(@)
—
<
I k.
<
~
1
(98]

Finally, the unknown coefficients L, , and K, are obtained from 5.98 (scalar product), 5.108 (cross

product), 5.76 and 5.80 (definitions of B, B*) and from the equality Bf,=B,,:

i,i

5 1 > B
23#+L251 :3(1/—1/'){2 }

a,a,a,v v+al
1 3, B
P — i,i
! 6(vv')!;(v+af)] (5.109)
5
A :ELz,lz/ _KZ,I

5
B = ELz,lzx - IUKz,l

whose solution is :
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5 u—1 1 3, B,
21 = :
2 Tv(,u—l)—l/(alazag/)6(V—V'){§‘v+af}

K, = 1/(a,a,av) }6(;_1/'{23: B, }

T, (u-1)-1/(aqyaya,v) Sv+a’

(5.110)

The result for L, , and K, , is obtained by carrying out the exchange v <> v'.

L,,and K, with m=3,4,5 (m =6 —n) are obtained in the same way (5.98, 5.100-102):

i>j n#ij

1 1 1 1 Sa; aaa, | B, Bf1
al a2 a3 an (a1a2a3 ) hlh2h3 aj ai hn
B. . +B. .
P, :_(“—”]) (5.111)
2(hhyhy)h,
5
F_, :E i,jLZ,é—n _K2,6—n
P* —5[ L K
6-n _E i jit26-n — HB 96,
then,
i>] n#i,j
aa,a
Lo = o
1772773 %n
BY. B (B..+B..) 1 1 1 1 1 1 1 1)5
LA M v —— u|/|(aaa)| s+t ——— | = (1-p)-———
ajz. a 2 {af a, a; a w1/ (@aa) @ a4 a; a )2 l"’( “) :
5 (Bj,l.+B,.,j)
Kyoow=71 Lot 77—~
2 2(h1h2h3)hn
(5.112)

These results (5.110 and 5.112) are exactly the same as Stevenson's. To make the comparison, it should

be noted that :

40



B (Stevenson) =

N |

L2,l

BY) (Stevenson) =K,
’ (5.113)

B, (Stevenson) = %(hlhzlg )han,H
B,Si) (Stevenson) = (h1h2h3 )hnKM_n

To conclude this section, let us compute J- ne HdsS :
OE

[neHdS=[neGdS+[nevu,ds
OFE

OFE OE

with

[neGds=[ne(4rP)ds

OE OE

xl.xj

This last integral is the sum of integrals of the type J. dS i+ j,thatall vanish.

oE "0

jn-voldszin,mjn-wg‘

OF m=1 oE

Using 5.39, 5.73 et 5.78, we show easily that the terms corresponding to m = 3,4, 5 vanish, because

xl.xj

they contain the integral J‘ dS i# j.Sowehave:

oE "0

[nevuds = zzle’m [novy;
m=1

OF OE

2 2
=5L2,15(Tv+ ! )i( 12 | x"zdS+5L2,25'(Tv.+ ! ) | | Y ds
i=1

a,a,a,v V+a, ) 5 ha; aa,av' )5 (V "+ al.z) 2 hyal
(5.114)
So using 3.1,
3 2
X; 1
> [-"5ds = J'—dS (5.115)
1 i Mo 2 ho

and by symmetry,
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2
-5 dS=ljidS (5.116)
hya; 30

1

OE

We deduce :

1 1 5] , 1 -1 _

| nevUdS =2
3\ a4V )iz

OF

Using the definitions of v,1' (5.28), we have :

[neHdS=[neGds+[nevu,ds=0.
OE

OFE OE

Here again, as with Oth order, the proposed solution verifies this equation, but does not need it to get

it.
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6. Second order term
6.1 Calculation of Fz,Fz(”

The notations will be as close as possible to Stevenson's notations.

Adopting the same approach as for order 1, we first look for a (particular) solution of :

VAE=H, VAFE?=uH?

, (6.1)
VeF,=VeF"=0
with

H =G +VU, H?”=G"+VU" (6.2)
F, therefore contains two contributions, such that :
F=F+F, (6.3)
with
VAF,;=G, (6.4)
VAF,,=VU, (6.5)
We have the same,
F" =Fy¢+F (6.6)
with

o« VAFEY=uG" (6.7)

o VAEY=pvU" (6.8)
6.1.1. Calculation of F,
Let us start with equation 6.4 :
VAFE,;=ANP (6.9)
Any component of this vector equation can be written as :
0.F, ¢, —0,F, ¢, =Ax1 (&)= Ax1 (&) (6.10)
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The idea is to express the right-hand side as a derivative with respect to x; or X . So, let's start

from :
0,(x1 (£))=xi1,(£) 0,6 +2x,0, ()5, (6.11)

Hence, using 3.3

Gi(Zx,fl ijk a§+2x1(§):—Riai§+2xi1i(§) (6.12)
k 4
thus,
4 2 4 Aj 2 4
0.Fy aFZGZ:a.(?;xkzk(§)J+E8j§—5(7;xﬂk(5)}—2& ,- (6.13)

We deduce that :

4, “du
Foo=_24 == 6.14
2,G,i ) l: : ~£R } (6.14)

The solution to equation 6.5 is more difficult to find. The expression of VU, (herein, the i-

component with j#i,l#1i,j#1[)

.U, = 2BST, (£)——=+2B'5'T,(£)———+B,1,,x,+ B, x, +
v+a V+a
(6.15)
(BXT '+B'X,T, +ZB['” X, jjag
or
o,U, =2B6T, +2B'S'T, +B,1,,x,+B1,
i1 V(é)v+a (é)V-Fa lxl Ijx]
(6.16)

1 1 2
— BXV—+B X —+ Blyl.yj —
( oy Py JRgh

(Let us remind that 0,& :h—zzy, with  y, =x, /(§+al.2) )

1

leads us to look for an expression for the k-component of £, ; as:
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F =Dy (§)+2ij (é)xixj (6.17)

i

So, for the component 1,

1 1 ' 1 2
0,F, F,u; 8quz {D3 D2 y3+Z(D3 ij )6)%%}?

i>j (6.18)
+(D?, - Dl )x, +(2D;, - D3, ) x, +( D3, —2D3, ) x,
or
a2F2,U,3 _63F2,U,2 = _[ag)ﬁ _ag)% + ;(azjyz _az%jy3)yiyj:| R§h2 (6.19)
+(D}, =Dl )x, +(2D;, - D3, ) x, +( D3, —2D3; ) x,
with
=-D}'R,  a,=-D! '(&+a’)(é+a))R, (6.20)

The aim is therefore to identify expressions 6.16 (with i=1) and 6.19 and deduce the D coefficients.

In fact, we have the impression that several sets of D coefficients would be appropriate.

Eqg. 6.19 can be rewritten :

2 3 5 2
0, Fy 3 —03F, y, =—R R Z (ai,lyz ERGARE )yi @)ﬁ

& i>1

+(DY, =Dl )x +(2D;, - D3, ) x, + (D3, —2D5; ) x,

(6.21a)

with

R=apy,—ayys+ 2 () v, —al ys) vy, (6.21b)

i>j>1

Expression 6.22 contains only y,and y,.However, taking equations 3.3 and 3.7, we can easily find

[h2(§+a3) 1+y/ (a ( —a )]

(6.22)
y§ =[-1(&+a)+1+ )] (} -a7)

45



We deduce that :

R =y,p,—y;p; +y2h2% _y3h2q3 +y2y12r2 —y3y12r3 (6.23)

with

P, = (ag (Sz _Sz)_a;,z +0633,3 _a22,3)/(s3 _Sz)

Ps :(ao (S3 _Sz)_azz,z +0532,3 +az3,3)/(s3 _Sz)
(0(2,25‘3 _(a;ﬁ —0(22’3 )Sz )/(Ss _Sz)

95 = ((0‘22,2 _0‘;,3)53 —ai3s2)/(s3 -5,)

n= (0(23,2 (Sl —8 )+(0£33,3 _a22,3)(52 =8 ))/(53 _Sz)
(

2 3 2
K= (az,z _a2,3)(S1 -5 )+0(3’3 (Sz =5 ))/(S3 _Sz)

(6.24)

by injecting 6.23 into 6.21,
aze,U,3 - a3Fz,U,2 =

2 2
~(2p: = yp5) = (4, —y3q3)——{y2ylr2 —ynnt (@ _at%1y3)yij|ﬁyl
£

2
2
R.h R. =
+(D%, =Dl )x, +(2D3, — D3, ) x, +( D3, —2D5; ) x,
(6.25)
thus
aze,U,z - a3Fz,u,2 =

Lo (e )= (v ) o (o2, a2, )+ @d? -2 02 =2,

_(yzpz_y3p3) Rgh

2
2
R.h

2 2
+(D13,2 _D12,3 )xl + 2D23,2 _D22,3 |0t D23,3 _2D32,3 T —— |5
S2R§ s3R§

(6.26)

By comparing term by term with 6.16 (i=1), we deduce :
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p,=p;=0

1
D}, -D}, =2B6T, +2B'S'T,
1,2 1,3 V(§)V+a1 (f)vti_alZ
2
B3[1,2 = 2D23,2 _D22,3 —q,
szR§
3 2 2
Bl =D,5=2D;, +q, (6.27)
S3R;
B = a33,1 - a22,1
B, = _(’3 +a12,1)
B, =n+a;,
1 1
The comparison (and identification) BX, ———+B'X ,———— to 0‘23,13’22 —ailyf poses a

(E-v) T (&-v)

problem and requires special treatment:

indeed, using 3.3 and 3.7,

BXV—2+B' V(§ ) Bélii X’Z' —1}(51 -+(")
-8 Z( o 2(@?0@)”2} oy e

= B3| it | i | B A ()
v+al v+a, v+al v+a; v+a (&-v)

3
noting O =H(V+a12.)
Jj=1
We see that the identification/comparison is thwarted by the presence of the term in h*in 6.28.

Si
v+al R.(E-v

This term appears in 0,U, (Eq. 6.16) as =—B0 )y1 +('), , i.e. associated with

Ly = xl
R."" R,
1 1
D} —D* =2BST —-2B6 +(' 6.29
b2 s V(ég)v—i-alz (V+a12)R§(§—V) () (6.29)

This expression corrects the corresponding expression in 6.27.
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As for the terms in y22,y32 , they lead to :

s _ps| % s 1 | 6.30
a,, (V+a§ V+6112](§_V) +() ( )
2 __ps|—5___ 5 ! ' 6.3
(229 (V—i—a; V+af](§—v) +() (6.31)

note : taking the derivative of equation 6.29 with respect to £, one gets :

1 R.' 1 1R
D},'-D},'=2B5 — |+()=2Bs L B W
285 O e )
(6.32)
1 11 1 1
=Bo —| —F+—+— [+
(f—v)(v+af)R§(sl s, sj ()
On the other hand, using the definitions 6.20 and the expressions 6.30 and 6.31, we have :
D132 - D123 '=- aiz + a12’3
’ ’ $;8,R.  5,8;R;
_ B6 __ 1 N S, 3 1 N s, +(')
(g‘—v)isf V+a, sz(v+a12) V+a; s3(v+a12)
- (6.33)
Bo6 1 S, S,
= + +

] +()

(E-V)sR. | v+a] sz(v+af) s3(v+a12

_ Bo {1+L+i}r(v)

(§—V)(v+a12)R§ s, S, S

From this we can deduce that 6.29 on the one hand and 6.30 and 6.31 on the other are equivalent
(apart from one constant, which turns out to be zero). We will keep only 6.30 and 6.31. So we have

nine equations:
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3 3 3 2 _
@ (53 _Sz)_az,z +tag,—a,,=0

2 2 2 3 _
a (53 _Sz)_az,z tog,+a,; =0

3 3 2
2 (a2,2S3 —(0(3,3 _az,s)sz)
S2R§ (s3 —S2)
2 3 2
2 ((0‘2,2 _az,3)53 _a3,3S2)

s3R§ (s3 —sz)

B311,2 = 2D§,2 _D22,3 -

32[1,3 = D§,3 _2D32,3 +

3 2
Bl_aS,l 2%

B, = _alz,l _((azz,z —0!23~3)(S1 =8 )+0532’3 (Sz =5 ))/(53 _Sz)

B =a;, +(a23,2 (sl -5, )+(a33”3 —0522’3)(52 -5, ))/(53 -5, )

aj,I:Bé( S S j(él +()

via, v+al )(E-v)

2 :—35 S3 _ Sl 1 '
i (v+a32 v+afJ(§_v) +0) (6.34)

The same calculations have been carried out for the components 2 and 3.
Component 2 :

3 3 3 .
Q, (53 =8 )_al,l +a5;—a ;=0

1 1 1 3
a, (s3 -5 )—051,1 to;+a;=0

3 3 1

2 (a1,153 —(053,3 K )Sl)

s1R§ (s3 —sl)
(3 )

2 A~ 03 )S3 T 8538,

S3R§ (s3 —sl)

B, =-2D} +D;,+

B1,,=-D;,+2D;, +

B, = _0‘;,2 —((0(;,3 _a11,3)(s1 _Sz)"'ail (Sz =5 ))/(53 _Sl)

B =a,, +(a§’3 (s1 —sz)+(0511,1 —0513,3)(52 —s, ))/(s3 =)

a;l:Bé( 2 ___ % j(fl +(")

v+a: v+al

1
L_ps| 55 '
2 (v+a§ v+a22j(§_v) +0) (6.35)

Component 3:
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1 1 1 2 _
120 (Sl _Sz)_az,z +ao,—a,=0

2 2 2 1
a (Sl _Sz)_az,z +toy +ay, =0

1 1 2
2 (aZ,ZSI _(0‘1,1 _al,Z)SZ)
S2R§ (52 —sl)
2
2 Qyn =0y, al 157

is§ (52 _51)

3112,3 = _2D;,2 + Dlz,z -

B,1,,=-D;,+2D}, +

B, 206223—0(113
—0533 ((0[2 alZ)( 53)+a12,1(53_52))/(52_51)

—a, - (a 2 +(af’1—aﬁz)(s3—sz))/(sz—sl)

L_ps| S 5 1 '
% v+al v+al (E-v) +()

) S5 s, 1 .
a;, =—B6 - +

> via, v+a J(E-v) () (6.36)
We therefore have 27 equations by treating the 3 components for 21 unknowns ao , . In fact,

some equations are linear combinations of other equations. For example, consider the 3 equations

containing only B, and see that only 2 are independent. If we consider the 7 equations containing
B,B]I,; and @y, we can reduce the system to 5 equations for 6 unknowns

all,azz,a33,a a13,0{12 The core of this system is made up of the 3 equations with 4 unknowns

(the two other are easily deduced):

2s o, o;; B
_ZD;,z +D12,2 = : 2oL +B1,,
R, (53 —sz) S, 8 8
2s o, @, B
2D,,-D;, = 2 ——224 2241 \4 B, (6.37)

R§ (s3 —Sz) S, Sy S,

3 2
Bl_al,S )

Let us take a look at this system.
An equation is needed to determine the 4 unknowns @, ,, ) 5, &, @5 -

Assuming,

e R K s W (6.38)
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, then:

D}, =0
D,,=-Bl,,/2
a13,3 =B = D13,3 =B,

al,=-3B/2 =D, =-3BI,,/2

(6.39)

It is the Stevenson’s solution.

Symmetrically, we could have assumed that

1 1
ay, o, B
22 22T (6.40)

Sy S35,
which leads us to another equally valid solution, not mentioned by Stevenson. This procedure,
carried out on the system of equations containing B, , can be repeated on the systems of equations

containing B, and B, . The final result is presented in the form of two tables, one corresponding

to Stevenson's solution, the other to the so-called symmetrical solution. Each row corresponds to

the result of the calculation detailed above.

Dll,l D;,z D31,3 D12,2 D13,3 Dé Dé,3
-B1,/2 | -Bl,,/2 | -3B1,,/2|0 BI, | BIL/2 | B (V +a’ )(a22 —a ) L,
D}, D], D}, D, |D), |D; D},
-3B,1,,/2| -B,1,, /2 B,I,,/2 | B, |0 B,1, /2| B (V +al )(a3 a’ ) I,
D}, D;, D3, D, |D;, | D D],
-B1,,/2 | -3B,1,,/2 | -B,1,,/2 |0 Bl,,| Bl /2| B (V +al ) (a1 a’ ) I,

Table 1 : Stevenson’s solution : coefficients in 6.17 : F, , , = Dy (§)+2Df_/ (f)xl.xj

i<j
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Dy, D,, D, D}, D}, D, Dl
BI,/2 |3BIl,,/2| BI,,/2 | -Bl, |0 ~-BI,/2| B (V +a’ ) (a22 —a ) I,,
D, D;, D3, D/, D3, D} D},
B,1,,/2 | B,,/2 |3B1,,/2|0 -B,1,,| -B,I;/2| B (V +al )(a; — ) I,
D;, D;, D;, D, |Dy |D D;,
3B,,,/2 | BJd,,/2 | Bl /2 | -BI,|0 -BJI, /2| B (V +al )(af —d ) I,

Table 2 : Symmetrical solution : coefficients in 6.17 : F, ,, =D (§)+2ij (f)xl.xj

i<j
Important note :

The expression of Fz,U,u that corresponds to the second part of (F2 ')x (Stevenson (Eg.2.21)), is

an asymmetrical expression : for example, there is a term missing in xz (x,x;) whilexy (x,x, ) is

present ! The opposite is true for the symmetrical solution, where there is a term in xz, but no

termin xy.

Conjecture: Would not a linear combination of the two solutions be the right one?

The proposed solution for F,=F, +F,, verifies VAF,=H,; however, the condition

Ve I, =0 was not included in the previous calculation.
Let us start by computing Ve £, . :

An elementary calculation leads to (from 6.14) :
VeF,,==> A1,(&)x, (6.41)
j

while, from 6.17 and with the coefficients given in the tables 1 and 2,
Ve Fz,u =0 (6.42)

for the Stevenson’s solution and the symmetrical solution.

52



As a result,
VeF, ==> A1,(&)x, (6.43)
J

does not satisfy the zero divergence condition. To overcome this difficulty, we search a scalar

function (called ¥, " by Stevenson), suchas F, ., = F, ,, +VV,", with F, ,,=F,,+F,,. We

haveVAF, ., =0 (andalways VAF, ,, =0),thanksto VAVYV,"=0.

In order for Ve F.

2,new

=0, V," must obey :

AV, "=2Aj1j(§)xj (6.44)

V," can be written as :

V"= 44, (6.45)
-

with

Ag, =1,(&)x, (6.46)

We look for a solution ¢,0 for 6.46 as:

¢ =2,1,(%) (6.47)
with
Z, =xj(x12+x22+x32) (6.48)

where f] is the unknown function.
Note that :
AZj = 10xj (6.49)

Using the equation 3.8,
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A¢,(-)=10xA,~f/(§)+4f"'(2(§)[2x,-+ Zj2}+22"K t 1t 1 Jff'(§)+2f,"(§)}

h E+a o\ é+val E+a; E+al

(6.50)

if f;=1,

then

A(z,1,)=10x,1, (&)-x,—— (6.51)

R (&+aj)k’
We want to convert the last term of the right-hand side into a Laplacian :
A(x,G,(£)) =ij (6.52)
R, (§+af)h2
where Gj is a function to be determined :
A(x,G,(£))=20, G, +x,AG, =
2x, 2x. 1 1 1 8
2G." L+ + + G.'(&)+2G." =X, ——
T (E+a)n R Ké‘+af E+dl §+a32] 1()+26, (5)} "R (E+a) )

(6.53)

hence

1 1 1 2 4
+ + + G' +2G." = (6.54)

[§+af Et+a; E+a; (§+af)J () ") R§(§+af)

The general solution for 6.54 is :

G, (&)=-21+(2a2-J,)1, (6.55)

where J is an integration constant. Bear in mind that F,, which contains VV," , is a particular
solution, by definition not unique. We will not attempt to determine this constant at this stage.
A(Z,1,+x,G, (SZ)) =10x,7,(£)

1 (6.56)
0 —

=4 = (21, +ijj(§))=%xj(xf+x§ +x§)1j+%xj(—21+(2aj -J,)1,)
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6.1.2 Calculation of F,"

Taking into account the linearity of VA F” = uH", the calculation will be carried out for
V/\Fz(” :Hl(i). The final result will be obtained by multiplying by x« the result obtained for

VAFE"=H".

The internal field £, obeys :

VAF'z(i) — Gl(i) +VU1(i) :_%A(i) AF+V(B(i)XV +B|(z’) Xv' +sz(i)x;ij

i<j

(6.57)
VeF" =0

The coefficients appearing in the right-hand side do not depend on ¢ ; the search for a solution is

therefore much easier. This takes the form of equation 6.17 :

F =Dy +> D} xx, (6.58)
i<j

In fact, Fz(” is defined to within one constant.

The injection of 6.58 into 6.57 leads to the system :

20

3 2 _ p)
D1,2 _D1,3 =B 2
a +v

+()

2D}, - D, =B + % A9

2D}, + D}, =B —%Az(")

2D}, +D}, =B —%A;”
20

| 3 p) .
D,,-D;,=B"— +()
a +v

H, € G
2Dy, D}, =B" +5A1”

h o, €
2D}, -D,, =By’ +EA§)
2D 4+ D? =RBW _EA(I')

2,2 1,2 1 2 1
20

D12,3 _D;,3 =B" —+0 (6.59 1-9)
a; +v
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2Dy, + D}, + D}, =0

2D22,2 +D11,2 +D23,3 =0 (6.60 1-3)
2D}, + D+ D;;=0

This system has 12 equations and 18 unknowns.

A particular solution is obtained with the additional trivial condition (which corresponds to 6

equations):
Dil,j =0 i#j (6.61)

For example, these conditions lead directly to :

BY ¢
Dy, =——+=4"
33 2 4 1
BY ¢
p - B ¢ 0 6.62
2,2 5 g (6.62)

The treatment of equations (6.59 1,5 and 9) is less straightforward: these three equations can be

expressed as :
D' -D' =7, =2B"(a’ +v)(a}+v)+() j>i (if i=3,thenj=1) (6.63)
We can propose a solution with 3 to be determined :

D' :(Jl,z _J3,1)ﬂ
D’ =(=J,,+J,5) B (6.64)
JiptJ5+J,5=0

hence

D*-D' :_3ﬂJ1,2 :J1,2

then f=-1/3
finally
D'=D},=(a +v)(a; —a;)(-2B" /3)+(") (6.65)

We easily deduce D*,D’.
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To summarize, the coefficients appearing in the expression of Fz(i) (to be multiplied by ) are reported

in table 3.
1 1 1 2 3 1
Dl,l D2,2 D3,3 DI,Z Dl,3 D2,3
0 (@) (M) 0 0 :
_i+fAl<i) i+fAff) B(’)(v+af)(a3 —azz)
2 4 2 4
2 2 2 1 3 2
Dl,l D2,2 D3,3 DI,Z D2,3 Dl,}
B & . 0 B & . |0 0 i
2 & 40 s S0 B()(v+a22)(a12—a32)
2 4 2 4
3 3 3 1 2 3
D1,1 Dz,z D3,3 D1,3 D2,3 D1,2
(@) (i) 0 0 0 .
_5 £A§f> B” £A3(i) BY (v+a32)(a22 —af)
2 4 2 4

Table 3 : Stevenson’s solution : coefficients into 6.58 : Fz(’k) = ZDi/fjxl.xj

i<j
6.2 Calculation of V,, V"

6.2.1 Harmonic functions for ellipsoid

We look for the harmonic solutions for the following PDE'’s :

AV, =0 AVz(” =0

with, on the ellipsoid surface (corresponding to & = O,v(n,g)) ,
n/\V(V2 —Vz(")) - /\(]:2 —F +E§°’)
neV(V,—ely")=-ne(F,—eF" + £)")

with

1

E§°) —(L, m, nl)(l)c+my+nz)2

(6.66)

(6.67)

Here again, let us use the intuitive approach: the vector of the right-hand side of the boundary

conditions (6.67) is quadratic, so we expect a solution of order 3 (Cxl.xjxl ), more precisely a linear

combination of terms like :
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1

N | —
N | —

! ! 1 !
W (EmE)=We ()t @ P (S +al P (n+ @) (C+a) ) (n+a) ) (¢ + a7 ) with

i,j, =123 (6.68)
The calculation of AW, (f,n,g“) =0 leads to

R(RW,, ")+ f(E)W,,,, =0 (6.69)
with f(f) = —(3§+ai2 +a§ +a,2) where [ #i,jand i # | (6.70)
of which a particular solution is,

1 1 1
Wfi]ll (§+a )2(§+a12')2(§+a[2)2' (671)

Thus, the general solution is :

£
£ {CIJ;RU (u+a’)(u+a )(u+a,2)+c}cxxl
£
C
1ol

This last expression is also valid for ¥, with the constants C{”,CS" .

(6.72)

u+al)(u+a2)(u+a3)+c}yz

u

The case i=j requires special treatment. The solution proposed for i#j, i.e.

1 1
(f n, é’) 5”1(5)(77+ai2)(§+a1.2)(77+a,2)2 (g“+a,2)2 , leads to AW, ,#0. We then
propose to generalize this last expression by replacing al.2 with —v (parameter to be determined and

not imposed):

w, (5377’ g) =W, (§)WT,V,I (6.73)

with

1

(&+a' ) (6.74)

N | —

Wi = (77 V)(é—v)(ﬂﬂlf)

On the other hand,
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RO, (R0OWy,,)

1 1

=%(§—v)(§+a,2)2 {6772 +(%ai +§a,f +2a; —an+3aiaj +a.al +aa; —%V(ai +af)}(77+a,2)2
(6.75)

withm#n m#l n#l

We therefore need to determine v (if this solution makes sense). So

1 1
AW, =0=(n=C)(n-v)(-v)(n+a] ) (¢ +a ) R0, (RO, )+ ZW,, =0 (6.76)
with
1 1 1 1 1 1
= (§=(¢-v(g+arf (n+arf g(n)+ 5 (E-n)(n-v)(¢+a ) (n+a ) £(¢)

(6.77)

with

9 9 1

g(x)=6x +(5a +2a +2a; —V)x+3am a’+aal +aa —Ev(a +a ) (6.78)

This polynomial of degree 2 can be written as :

g(x)=6(x—v)(x—v") (6.79)

v and v’ are solutions of :

2 2 2 2 2 1 2 2 2 2 2 2

X +§(2am +2a; +q )x+§(3aman +a a; +aa ):0 (6.80)

which can be rewritten as

3. 1+206,,

= 6.81
;‘ x+ak ( )

The two roots of the polynomial only depend on / (for a given /-value, m and n are known, which play

a symmetrical role in the previous expression). We will therefore call the two roots, according to

: _ " '
Dassios v, =—=A,,v,"=-A,".
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Then,
AW, =0= R, (R, ")-3(£-v,"\W., =0 (6.82)

1
A particular solution of 6.82 is : (& —V,)(§+ a )E

Finally,

1

(¢+ai)?

N | —

& |(e—v)m-n)(¢-n)(E+a ) (n+a)

(6.83)

We may express (f -V, )(77 v, )({ ) as a function of x;,x,,x; : expression 5.33 is yet valid, with

Vv, instead of v . So we have :

5
Vo, = CllR (=7, (u+a,2)+C2 X, x (6.84)

Taking into account the boundary conditions, identical to those in equations 5.35-5.38, leads to a

similar result:

Outside the ellipsoid, a linear combination of the functions /, , ;xyz

_ i du
with [1’2’3 B '! Ru (u + alz)(u + azz)(u + af) (o)
and T, X, x, (as wellas v, ")

_ T du
with 7, _'ERM (u—V,)2 (u+a12) , (6.86)

of which there are 7.

Inside the ellipsoid, a linear combination of the functions xyz and lex, (as well as v, '), also 7 in

number.

We find the set of ellipsoidal harmonics (to within one constant) of degree 3 (according to Dassios), of

which there are 14 in all:
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Internal harmonics :

hhh hhh
El3 :%XIXVI ;E§ :%%XW
1 1
E; _ hhyhy X, ; B} _ oy XX, .
2 2 (6.87)
hhh hhh
El="22xX, ;Ej =—22xX,,
3 3
2
E; = (hlhzh3) XXy Xy
External harmonics :
1 7 1 2 7 2
Y :_Esle (é:) ;15 = _Eﬂ:/l' (é)
2 2
s T3 L4 T s
X =5E3Tvz (é:) 3 15 :EE3Z’2' (é)
. . (6.88)
X =TT (€)1 =TT (4)
2 2
719
Y‘3 = EEsll,z,s (65)
6.2.2 Traditional approach for ellipsoid
The solution of the PDE’s will be written as :
) 3 7
I/Z(l) = ZKl,mElm + ZK3,mE3m (689)
m=1 m=1
3 7
Vy =) L, X" +> L, Y, (6.90)
m=1 m=1

The integration constants K

oLy, Will be determined using the boundary conditions 6.67. We
cannot exclude terms of degree 1 in equations 6.89 and 6.90, given the form of the right-hand side of
equations 6.67. We will now try to determine these constants, starting with the contribution of the

degree 3terms ( K, =L, ,, =0), which is more difficult to deal with.

1,m

Equations 6.67 show the gradients of the ellipsoidal harmonics expressed in the Cartesian basis {ei} :

3

VE! =a, e, +> M, e 1<m<T (6.91)

m
i=1
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with

"k A (6.92)
o, =0
and
2x . 300 ¥
M, =-a, i Z al <m<6
’ N, +a AN, +a (6.93)

_ 2
M,, = hl h2 hy x,x,x; / x,

e (1' = 1,2,3) are the unit vectors in the Cartesian coordinate system. f(m) and N, are defined in

the table 4:
m 1 2 3 4 5 6 7
f(m) |1 1 2 2 3 3 0
N, Vi v, v v, Vi v,

Table 4 : f(m) and N, values

Similarly :
7 7 V¢é
VY? :—TNm (é:)VE;n __E;n 1<m<6
2 2 Rg(e‘—Nm)z(fJf“ﬁ-(m)) (6.94)
7 7 4 |
VY =17 VE] -~E]
175 123 (&) VES ) 3R§(§+af)(§+a§)(§+a§)
We deduce that,
7 3
. /\V(Vz _Vz(i) )Lzo — me (am nne, +2Mi,m n /\eij (6.95)
m=1 =1

with
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=T

m 2 3,m

7
P, = EL3,711,2,3 _K3,7

I, -K

3,m

2 2
and reminding that (3.6 and 3.9) V§|§=O :F(xl lal,x,/a,x, /af) = h—n and thus
0 0

n/\VYm‘ —%TNm(f)(n/\VE"" ) 1<m<6
7
n/\VY;‘ —5]123(5)(11/\VE7‘ 0)
1 S X,
As n= —Z—é e, the I-component of the cross product will be :
hy 75 a;
l 12 3 x. 3 Mi,m'x'
n/\V(V2 —Vy ))L=01 =h—0;Pm [am ;a—ée, o(ej Aef(m))ﬂ; g Le o(ej /\el.)J (6.96)

The mixed products appearing in the equation 6.96 have values -1, 0 or 1. The three components of

the cross product are :

7 7
%hi{ (P, +0¢4P4)a32 (a,P, + P, )—22+[ZPWMM)X—;—(ZP",MM)’C—;}
3 2 3

0

1=2 1 i 3 1 a x3 : xl
—|(,F P, P, P)— PM, |=- PM, |— 6.97
ho _( +C¥ )6132 (a +a )a12 +(mz=; m l,m] af (; m 3,m alz ( )
_ 1] ! X ! X
—Z5——(a,B+a,P) g (aP+a4P4)—12+ Y PM,, |- D M, |2
ho L a, a m=1 | a m=1 ’ a,

As for the scalar product n OV(V gV(’)) it shows (starting from 6.94) :

neVyY’ Lzo :ETN’” (f)n oVE] ‘§=0 —TE; ‘5:0 h0a1a2a3N,i i(m)
6.98
7 7 7 7 ! | |
neVy, ‘5:0 - 511,2,3 (Sg)n *VE, ‘5:0 —7E ‘520 W
o \hd,d,
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n-v(Vz—gV;”)z

Pé‘ Pé‘ Pé’ Pé‘ P& P& .
1 (B +a, )al +(o P +a, )a2 +(asPy +a )a32 + 659
h_o 3/ 7 ¥ 6 7Em‘ Y 7E7 L .
P°M. | ——-M L —-L
_+;(; " l’m] a’ ; " a,a,a,N,a 2( " (a,a,a, )3

with
R}f = 7 L3 mT K3 m

2 ’ (6.100)

7

P7£ = EL3,7]1,2,3 - 5K3,7

We can see that scalar and cross products have terms of order 1 in X; and terms of order 3, the latter
7

having the generic form: Z, ; = ZPli.,m X; . Itis easy to show :

I

3
— 2 2 2 2 . .
Z,, =C2xx,x,+C, 2xx; +C 2x/x, + P, (mhyhy) X%, %X, 1 X, +ZCi,kxkxj [#il#j
(N —

k=1

XXy

(6.101)
i=j
Z, = CU 2)c1xl.2 + C2)1.2xle.2 + C3,l.2x3xi2 +P, (hlhzh X,X,%; + Z kxk

3 (6.102)
= Z(Ck,ﬂxkxf +C, X x, ) + P, (Il )2 XX, X,

k=1

a,. P. o, P.

Wlth C,',k — 2i-172i-1 2i" 20 (6103)

2 2
Ny, +a, Ny+a

Into the expression of the scalar product 7 OV(V2 —81/2([)), it appears :

i(z j p” z Zi ZL—JF—Jlexjxl + P (hhhy ) [Z ! jx1x2x3 (6.104)

i=1 zla i,j 1' i i

Dassios showed that the third-order terms could be expressed using ellipsoidal surface harmonics:
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1425 A 2k-1 2k
o 2l o g sSSP
iy (N2k—1+an)(N2k—1 NZk) (N2k+an)(N2k—l N2k)
N
XXy X3 2 3
(hyhy)

(6.105)

We will also need the relationship between first-order terms and ellipsoidal surface harmonics :

X, = , Jpi—al+a’ S! (6.106)

hhyh,

On the surface of the ellipsoid p =a,,

kaz _ (1+2§k,n)hk akaz Slk _ 5321{71 .\ S32k
’ Shyh ’ (N2k—1+aj)(N2k—l_N2k) (N2k+aj)(N2k—l_N2k)
aa,a,
XX, X, = ——23— (6.107)
142X (hlh2h3)2 3
xn — hnan Sln
hyhyh

Using 6.107 into 6.104, we may write :
3 7 X, 3 7
I M, ? =D A 8"+ By Sy (6.108)
m=1 i m=1 m=1

i=l1

with

S_M i L & 2
AS = Shich Z( —+— jc”” (1+26,,)q;

i ai am
h, .a.

Sk T\ @ ay,y ) TN+ @V i) Y )

. 1
B7S =P a1a2a3z_2

(6.109)
We easily show that (thanks to 6.116) :
ha 1
A =——1 (P +a, P’ (6.110)
1 h1h2haa12(ll 22)
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Injecting A,i into 6.99,

v(V,—ery?) 1 iBSSm i/: 1 T ?‘H L —7E§‘§Z° (6.111)
ne —-& =— - N '
? ? ho m=1 " m=1 . a1a2a3an1a;(m) ! (a1a2a3 )3

Knowing that £’ 1<m<6 Laj(a)=aa,a,

= La ()57 and La? ()= N,a,,

7 6
n-v(Vz—gV;“):hi ZBjS;WZLM;S;"—L”%S; (6.112)
0| m=1

m=1 a1a2a3Nmaf(m) (a1a2a3

We observe that the terms in ;" vanish.

Let us now consider the cross product (6.97), by starting with the equivalent expression of 6.104 for

the first component (/=1) of the cross product.

! X / X C C C C C
[Z PM,, ja_; - (z PM,, j_; = (% _ﬁj 2x,x,%; + z (% +20; [% - %j}‘:xz
m=1 2 m=1 k

3 2 3 2 2 a,

C C C 2 Xx,  x’x
_Z( azz;k +25&2( 22;2 - 253 j}‘:xs +(h1hzh3) 1)7( 221 - 321j
k 3

a, a, a, a,

(6.113)
for I=2, we simply carry out the index permutation (l, 2,3) - (2,3,1)
, and for =3, (1,2,3) - (3,1,2)

For example, if we consider /=3 and use the expressions 6.107, we obtain the equivalent of 6.108 :

7 x 7 X 3 7
(Z R"Mz’mja_;_(z PmMLmj—; =D AVS"+D By S (6.114)
m=1

1 m=1 2 m=1 m=1

with

4= M 5o p o sa )]
Shhhy a

A2S’3 _ 1 ha,
Shhyh, az2

A57=0

[5,P, +5a,P,] (6.115)

where we used the relation G.40 by Dassios :

66



3 1+26, 1+26.

> “ag = Ll =5 (6.116)

3
1v+ak k1v+ak

To better understand the expressions for B;z’3 , let us take the case m=1, i.e. the term corresponding to

S31:

B3 — _ ha, 2 Y C,, _ C,, (1 + 25k,1 ) a]f
I Z T20a| — 2 2
Shh,h, (N N 2 a,  a; N, +aq,

1

3aq 1 N a, 3 _ 2
" P (N1+a12)a12(N3+a12) (Nl—i-azz) af(Nﬁ-af) azz(N3+a12)
a, 343

= 2
" Shhh (N —N a5 1
by (N, = N,) V@)@ (N, +a)

(6.117)
which may be written as,
5.3 ha, 1 1
7= a.PY +a,PY, 6.118
1 ShIhZI’%(NI—NZ)[ 3t3 43 444 4:| ( )
with
1 ia 1428420, ) ) 6119

1(g) =1 (N +ak)(Nq+a,f) (N +a())(N +a o ))
We easily show that :
[(ap Y +a,nY))Si~ (2P Y} +a,PY2)S? |

[-(aRY +a.RY))S) +(aRY +a,P V), |

iBS,SSm_ 1 (N3_N4)
m 3 T

& Shyh,h ha
1 | gy et ) [ RS -zt
5 6
110225 0. P, Z, + a,P, Z,] S!

2

(6.120)
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Z, = - (6.121)

o (N, + a;(l)ﬂ) B (N, + a‘,zf(;)—l) .

by convention (modulo 3) a, =a,; a,=q,

using 6.107 and 6.115,

nAv(Vz—V;”)‘

1
- :—{—(all’lvtazP)zzz (a;B +a,P,) —12 (
2 1

= hy

i M -
oV
X
E

;/

f_—\\

i [~
>
=
3

N—
i

1

2[(&P+aP)

0

g

m=1

3
+(asP, +a4P4)a—12 AP S +ZB,§’3 S;”}

2
2
2 1 m=1 m=1

(6.123)

For the two other components :

naV (1, =1

¢=0],_

;
:L{ZB;J S;ﬂ}
=1 h,

m=1
@R e )s - (an  van )]
hya,

11 +M[‘(“3‘%Y;+“45Yf)s§+(0‘3P3’@6+“4Bt)36)536} (6.124)

hy Shh,h
o Shhyhy _(Nlhl_—a}vz)(l’ﬁhzm)z[PﬂlS;_PﬂzS;]

+10 222h3 [@,F Z, +a,P, Z,]S]

2°73
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nav (1,1

.
:L{zlﬁ-z S;"}
=2 h,

m=1

=0

@R R ) s (@R ran )]
5 6

e *(Nfﬁ_—a}vz)[‘(“ﬁ Wra B X)) +(aR Y +a B Y )S] ]| (6.125)
hy Shihyhy | hya,

(Nz_N4)

+102%% 0.p, 7, +a,P, 7,]5]

2773

(A, )2 [P7Z3S33 - P724S34J

More generally,

I<m<n (I,mn)—(1,2,3)>(2,3,1)—>(3,1,2)
7

ZL{ZBI_SJ S;}

/ ho i=1

WZ%#N)[(%_IPM_I Vo, P Vi ) SP ~(a,  Po Vi, P, Y) ST

nAa V(Vz -n" )Leo

m-1" 1Vom
ha n— n- " ! . '
_1 1 +m[_(a2m—1])2m—l Yoot 0Py, Vo) 1)532 1 +(a2’"‘1pz’”"l Lo+ B By )Sf ]
h, Shh,h ha -
0 2 —m(hlh2h3)2137[zzlls3zl 1_2215321]
+10 aa,a, [a2[71]32[71 Zzz—l + aZIPZI ZZ[] S37
11

(6.126)

Let us now consider the contribution of terms of degree 1 (Egs. 6.89-6.90, K, = L;, =0):

The ellipsoidal harmonics of degree 1 are :

Ell _ hli;lzl% X, (6.127)

1

which are related to the ellipsoidal surface harmonics of degree 1 by

E{”LZO =La"(a))S" =a,sS" (6.128)

We easily deduce :
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v, h h
——2—3S13 7 zSz
h, a, h, a,

Ly h h
| A g (6.129)
&0 hy| h a, hy a,

_ﬁﬂbﬂ +ﬁ£51

h a, 1 h, a, 1
or
nav (1, -1 LN AL I (6.130)
520[ hO hm an hn am
with
m 3
7 :3Ll,m‘[1 (al)—Kl)m :ELLW!]W! -K,, (6.131)

and

3
noV(Vz—c“Vz(i))L: _LzLH_ i lmj 3L, /(a1a2a3)}Slm (6.132)

The right-hand side of equation 6.67 reflecting the conditions at the surface of the ellipsoid contains

the vector F, — Eer(i) + E;O) with e=0 (cross product) or 1 (scalar product). It contains constant terms

and quadratic terms in x,x .

so, the constant vector, noted Ct, may be written as :

Ct=C+YV¢E (6.133)
with
lp; —1A1+1A1+A1(2 P J,)/10
2 13 5 1 2 1 171 al 1
C= %lel—éA2[+%A21+A2]2(2a§—Jz)/IO (6.134)
1 1 1

S Bl =g AT+ AL+ A (245 -5)/10
and
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1<,
5a1a2a3Y:52—2Amxm (6.135)
m=1 a

m

as nOV§|§=O =2/h, and n/\V§|§=0 =0,

X X
_§C3__32C2
a, 3
1|x X,
nAnCt=nnC=—|=C-—=C, (6.136)
hy | a; a
X X
—;Cz——iCl
a 2

and

3 3
noCt:n-C+2Y/hO=hiz(C—;"+ 1 J—;”Amem: 1 tham(c—;” 1 J—’”ij{”

o ma\ @, Saa,as a, hhyhihy 55 a, Saa,a, a,i
(6.137)
The quadratic terms are defined by
. 3
F=e B0+ EY| =Y Bl xx, + 20, (6.138)

i<j

with
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1 3 1 1
Bl{l = —513111,3 +EAIII +51112 —EAIII

1 1 1 1 BY & ).
Biz:‘531’2’”5‘414*54”*‘EAJ”(?‘ZA})}"”

(i) _
B31,3 :_23113,3+LA111+1111’12 —1A1]3+ —B;_EAI(I) &u
? o 2 2 2 4 (6.139)

B, =B, +%Azl2 +1Im

B, = §A313 +1nl

B§,3 = (B(v+a12)(a22 —a§)+('))[2,3 +§(B(i) (v+a12)(a22 —af)se +(')),u+llmn

3 1 1 1 BV & ).
Bu=mg Bl gl eyl =5 Al +(‘%‘ZA5)} :

1 3 1 1
B;, = _5321” JFEAZI2 +Emlm2 —514212

(1) |

B=-tpr vl an s tmn - Lar | B E 40 ey

2 10 2 2 2 4 (6 .140)
B, :éAII1 +m,ml

2/ .

B, =(B(v+a22)(a32_af)+('))11,3+§(B()(v+a22)(a32—af)é‘ +()),u+m1nl
B;,=Bil,, +%A3I3 +mmn

1 1 1 1 BY & ).
Ba=mg Bl gl rgnt Al {%‘z”} :

3 1 1 1 BY & ).
323,2 :—533[2’2+EA3[3+5111”12—EA3]2+(—%—ZA3()]8 MU
1 3 1,01
By == Byt oo Al +omn’ =~ AL 6.141)

Bﬁz =(B(v+a32)(a12 —azz)+('))ll’2 +§(B(i) (v+a32)(a12 —azz)ee +('))u+nllm
B, =BI, JF%AJ1 +nnl

Bi3 = éAzl2 +n,mn
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Z= ;(xf+x§+x§)(A1x—‘2+A2x—§+A3ﬁJ (6.142)

- 2
10a,a,a, a, a, a,

To calculate the scalar and vector products, again use the relations :
nOV§|§=O =2/h, et nAV§|§=O =0.
thus,

n/\(F2 —ger(” +E£°)):n/\(F2 —geF'z(i) +E§°)) (6.143)

Z=0

and

ne(F—e R +EY)=ne(F,-&'F) + E\") +2Z 1k, (6.144)

Z=

The 1-component of the cross product (terms of order 3) is therefore :

. B’ B B B, B}, B,
0
hyn /\(F2 —&FY + B )) =0x +—2 x, X7 ——2x, x) + 2 xlx, + 2 x,x0 | =2 -2 il

2 2 2 2 2 2 3
=t 2 a, a, a, 2 4
2 3 2 2 3 2
_Bl,l 20 4 Bz,3 _Bz,z 2 _B3,3 2, B1,3 _Bl,z
AN T T T [ T A T T T T [
3 2 a, 3 2 3

(6.145)

Using the expressions 6.107, the expression 6.145 (taking into account terms of order 1 (6.136)) can be

written as :

. 3 7
hon A(F, =& FO+ BV ) =Y Al S+ Y B Sy (6.146)

- m=l1 m=1
with
ha
AT,I — 1“1 B3 _B2
1 5h1h2h3( 1,2 1,3)

AT = ha, (w32 _ 223) (6.147)

> Shhh,

AT = (B2
5hh,h,
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1

Bl — _ 1 ha, Biz _ 312,3
Shiyhy (N,—N,)| N,+a; N, +a;

B — 1 ha, BEZ B 312,3
* Shhh (N,-N,)| N,+a N,+a}
o 1 ha, 3
3 = 3
5h1h2h3 (N3 _N4)
ri 1 ha, 4

Y Shhhy (N,-N,)
1 a
ST,l — h’j 3 VVZS
Shh,h, (N5 —N())
1 _ 1 ha, 6

© " Shiuh (Ny-N,)

3 2
BT — a,a,a, {Bm BIZ}

- 2
a,

T (Whh)

where w/ and W,/ are defined by :

1, . 4 .
J o i 2 i 2 i 2 i
w/ =—(B/,a’ + B ,a; + B} ,a; +5C,)+ 2B},

a;
3
=i22a,f(1+25k,j)3,;k +5%‘ 1<i,j<3
aj k=l a;

1 s (1426, ,,)Bi. B/

Z:‘ (N, +ak) (N, +a?)

17

ro_ ha 1 |
1 _5h1h21h3( 13_W3)
T2 hzaz 1 3
B —
4, 5hlh2h3( 2,3 12)

(6.148)

(6.149)

(6.150)

(6.151)
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T2 _ 1 ha, W)
1 3
Shiyh, (N, - N,)

T2 _ 1 ha, w2
2 = 3
Shyhyh (Nl _Nz)
BT —_ 1 ha, B;,3 _ Bﬁz
. Shhh, (N,~N,)| N,+a; N, +a;

BT — 1 h,a, 35,3 _ 313,2
Y Shhh (N,-N,)| N,+a; N,+a

ra_ 1 hsa, W

s 1
Shyhyh (Ns _No)

T2 1 hya, 6

" Shih (N,—N,) "

1 3
pr2 - 4% |:Bl,2 _ Bz,3i|

7 2 2 2
(h1hzh3) dy a (6.152)
a
A7 =4 (o) g )
Shh,h,
ha ) )
AP =—22—(B},—w (6.153)
5h1h2h5( i)
ha
AT3 = _B3% (g2 _p!
3 5hlhzl’g ( 1,3 2,3)
BT,3 — _ 1 }Llal Wl
1 5h1h2h3 (Nl_NZ) ’
73 1 ha, w?
Shh,h, (N1 —Nz)
T3 1 hzaz W
3 - 1
Shh,h, (N3 —N4)
T3 _ 1 hzaz 4
4 1
5h1h2h3 (N3 _N4)
rs_ 1 ha, B, B,
’ Shhh, (Ny—Ny)| Ny+a;  N,+a;
B _ 1 ha, 31%3 B B;’3
®  Shhh (N;—Ng)| Ny+a} Ny+a;
B3 — _hhd {322,3 B 311,3}
! ( hlh2h3)2 o @ (6.154)



There are, of course, regularities in the above expressions, which allow us to write :

i=l+1 j=1+2
AT = ha, (Bj _pB )

1 _Shlhzfg 1, l,j
ri __ha, ( . ,-) (6.155)
i J i,j

Shh,h,

AT’I:—h‘iaj (—w.j-i-B.j,)
b Shiph T

i=l+1 j=1+2

[ 1 hiai 2i-1
o Shlhth N2i—1 _NZi ’
T 1 h,-ai 2

n Shihyh, N, =N, ’

T 1 ha,

_ 2j-1
2j-1 = i
. Shlhzhs N2j—l_N2j
ro_ 1 h,a, 2
2 = i
! Shhyh NZj—l _sz
T, 1 hla, Bifz B;',z
Bzz—l == 5 B
Shh,h, (NZI—I _sz) Ny +a; N, ta;
B — 1 ha, Bz{l _ B;,z
u =
Shh,h, (NZI—I_NZI) N21+a12 N21+a]2'
BT = %l {i@_B_@} 6.156)
7 = 2| 2 2 .
(hhh) | @ a

Similarly, for the scalar product (e=1), the contribution of ellipsoidal surface harmonics of degree 3 is

as follows:

ne(F, - F+E" )=

e [ @920, ) (e=n)  BL0) BN 4
1 i Ny =N, _a]z_ = (N2H+az) N, ,+a, N,  +a aaaad
5h1h2h3h0 j=1 N hjaj Li a,f (1+2§k,j)Bkj,k (1)+ ij,p (1) N B]‘_I’q (1) B Aj S32/
Ny =Ny, _ajz. P (N2j+a,f) N2j+af, N2j+a; alazaBaf
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(6.157)
with p£ jqg#jp#q

to which is added the contribution of ellipsoidal surface harmonics of degree 1, derived from the linear

termsin Xx; (eq. 6.137) and the ternary terms xkx,f (Eq. 6.107):

. 1 3
ne(F,-&F"+E)= AR LA (w2 (e=D+ 2,4, +B.,(1)+ B, (1))
1792753750 m=1

(6.158)

with

3
Z =;2(Jm —%Z(1+2§k’m)a,fJ

alazaBam k=1

and pm q#m p#q.

We have therefore just expressed the various terms appearing in the boundary conditions as linear
combinations of ellipsoidal surface harmonics. Boundary conditions 6.67 are therefore linear
combinations of ellipsoidal surface harmonics equal to 0. As these form an orthonormal basis of
functions, this implies that the coefficients (which contain the unknowns of the problem) of the

harmonics are identically zero.
so, for harmonics of degree 1:

Scalar product (Egs. 6.132 and 6.158):

1 3 1 m
a_H 2 Ll —8K1’mj_3L1”" /e )} = Sty (wh(e=1)+ 2,4, +B;,+B,,)
m=1,2,3

(6.159)

Cross product (Egs. 6.129, 6.147, 6.151 and 6.153)
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v, h h
g +ﬁ_2512
h, a, h a,

n/\v(Vz_Vz(i))‘ ) :L ﬁ&sﬁ _ﬁﬁsll =
0 hy | hyoa hy a,

_ﬁﬂglz _,_ﬁﬂgll
h a, h, a,
ha, (Bﬁ2 —BfS)Sll +h,a, (w32 —322’3)5’12 + ha, (—w; +B§’3)S13

= _L ha, (311,3 - W;)Sll +hya, (B;g - Bﬁz )S12 +hya, (W13 - B13,3 )S13

—nn(E,-F)+EY -
(2 P Lw Shohyh,h,

ha, (W; - Bll,z )Sll +hya, (Blz,z —w; )S12 +hyay (312,3 - B;,3 )Sl3

(6.160)
thus
_ h 2(.3 3 _
/4 _5h1h2h3a3(wl Bl,3) (e—O)
= s azz(Blzz le)
1 Shihyh,
h
f= (i)
Shyh,
L (6.161)
_ 2 2 (g 1
V2 Shhh, 1( 2 12)
hy 2(. 2 2
= a,(w; —B
73 Shiuh, 2( 3 23)
hy 2( pl 1
= a \B;—w
73 Shiuh, 1( 13 3)
0=8,-B},
0=B,,-B}, (6.162)
0:B12,3_B;,3
with
3
7//71 = ELl,mlm _Kl,m

Equations 6.162 do not contain any unknowns; we can show that equations 6.162 are verified. Let us

. . 1 2
consider, for instance, B,, —B;; =0 :

Reminding that e = 0 and assuming u =1, we have,
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B(i)zAV(i): 1 { I, L mmy _nn }

6(V'—v) vt+al v+a, v+a
B _ 1 I, L mmy
6(v'—v)|v+al v'+a; v'+a;

from 6.139 and 6.140 :

B,,- B, =§B(i) ((v-i-af)(aj —af)—(v+a22)(af —af))+(')+llmn—mlnl

:2B(i)(V+a12)(v+a§)+(')+(llm—mll)n

2 2
:—ﬁ llz(v+a§)+mm2(v+a12)+nn2 (V+(?z(;;a2)—(') +(llm—mll)n
_ ! I, + mm, + nn, (v+a12)<v2+a22)_(v'+a12)(v'+a22) 1 +(Lm—ml)n
3= (v+a3) (V'+a32) v—v'

= —%nn2 [—3]+(llm—mll)n =0

The definition of v,v'was used (eq. 5.28), as well as the properties of unit vectors, in particular :

Lo
mA|\m; =|m,

n |n |n,

It was numerically checked that B;’3 - Bﬁ3 =0if u#1.

We can also see that the unknowns ¥, appear twice in the system 6.161. Here again, we can show the

redundancy of the two equations involving 7,, which we will illustrate for 7, by checking (eq.6.161):
Y:af(wf—Bi3)+a§ (sz—wf):O (6.163)

Indeed, using 6.139-141 and 6.149, as well as the orthogonality relations between unit vectors :
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1 1
Y =-2(B,,a; - Bl,&; ) -a; (3111,3 +3 AL +nlnlj +a (g Al +mlmlj
=-B (613211,3 +3a;1, —azzlm)—n(nll—lln)a32 +m(ml—lm)a; + 4, (aflz —a3213)

~uB (a3 +a3) —%”Af") (45-a3) (6.164)

2
=-B, —(af +a32)12 s |+ nmyal +mn,a + A, (azzl2 —a32]3)
a,a,a, ,
i sl (i
B (a +a)- % A0 ()
=1 leads to simplifications in Stevenson's expressions: we have seen that B, =0 and
B = l(mzn +n,m+ 4, (1, - I ))
2
We then have :
1 i
Y=§(a32—a§)(nm2—mnz—A1(12+13)—8A1()) (6.165)

Knowing that,

2

a,a,a;,

A =—(e-1)f (&), 4=

Si(),

nm, —mn, =1, fl(g):l/( +(g—1)llJ

ala2a3
(6.165) becomes :

Y:%(af—azz)fl(g)ll(g—l)(ll+12+I3— 2 j (6.166)

a,a,a,

Knowing that 1, + 1, + I, = , we deduce that Y =0.

a,a,a;,

It was numerically checked that Y =0 if g#1.

Finally, for m=1 we have the system of 2 equations with 2 unknowns L, , K| :
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1
Shh,h,

ha! (W11 (e = 1)+;(1A1 + Blz,2 +BI%3)

3
(ELML-—aKuj—3LU/(%a;g)=—
(6.167)

1
M Shh

3
EL1,111 -K a, (Blz,z _le)

whose solution has been successfully compared with the expression in D, (Stevenson), given that
3

D, =—hhL,, . More generally, we have to solve 3 independent systems of 2 equations with 2

unknowns (L, ,K

1m>* > 1,m 7

m=1273).
At first glance, the solution of 6.167 depends on J| (see 6.55). We will show that not :

Let us rewrite 6.167 by explicitly showing J, :

3
(ELMII - gKuj— 3L, Iaa,ay)=a, + BJ,

(6.168)
3
ELI,III _Kl,l =a,+f,J,
a,,0,, B, 3, donot dependon J,.
This gives,
1 B-B I (8_D€f+ ; y
- p,& a,a,a
Ll,lz_[ : : 1 Ji+0=- 7 1123J1"’Q: : J+0,
3 71(1_8)_ 15h,h, 71(1_8)_ 15h,h, (6.169)
2 a,a,a, 2 a,a,a,
Kl,l =0J,+ 0,

where Q,,0, are terms withoutJ, .

It is the sum V, +V, "and not V,and ¥, "separately that has a physical meaning (intervening in E,).

1
Note then that the contribution of the term inJ,to V," is —EAIJII1 (gg))c1 and that of J,to V) is

3 1

ELI’III (gt)Ell = EA1J111 (f)x1 ; these two contributions cancel each other out.

The same applies to Vz(i).

Let us do the same with harmonics of degree 3 :
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Cross product (eq. 6.126 and 6.146) :

B¥ =-B" 1<i<7 1</<3 (6.170)
So if we plot all the equations showing the pair of unknowns (P3,P4) :

a,PY; +a,RY, =W,
a,PY + o, PY, =W,
a,RY, +a,PY, =W, (6.171)
0(3P3Y32 + 0(4P4Y42 = sz
o, PZ, +a,PZ, =X,

with

(B B
X/. — /;/ r ./2 LJ (6.172)
©2( a4, a

j+l
which can be generalized to the unknowns pair (P, |, P, ):

with n=1,2,3; j#n (=9,,=0)

B, Y e, B Y =W

2n—17 2n-1"2n-1 2n" 2n" 2n
2j 2j w72
aZn—1P2n—1Yv2n—l + a2n1)2nY2n - VVn (6173)
a2n—1P2n—IZZn—1 +a2nP2nZZn = Xn

The previous equations give us P, 1 <7< 6. However, the system of 5 equations 6.171 (or 6.173) has

only 2 unknowns! In the following we will show that this system can be reduced to a system of 2

equations with 2 unknowns:

First let us rewrite Y; and Wl.p (6.119 and 6.150),

yoo iaz(lﬂ&k’m+25k’f(q))— 5
’ Ay(q) k=1 (Np +az§)(Nq +a,f) (Np +a‘§>(q))(Nq +aj.(p))
. k+1 zhz 5 5
- — 5 : 23:( 1) an, (1+2 k,f(P)+f k’f(q))(Nq.+a,f) (6.174)
a, (hhhy) S (1+25k,‘,»(q))(N,,+ak)

7(p)+1
10 (=" m) (v, +a,)
2 q' S(p
(h1h2h3) (1 + 251‘(p),.f‘(q) )(NP * aj‘(q))
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g and ¢g' are such as f(q):f(q').

1 s af (1425, ) B, BV,

oL (ad) (Woed)
3 k+1 272 i 2 5 i+l f(p) 1 2 2
= h'B (N, - -1) B ———h (N, +a;
(hhh 2; ahiBLu (N, + i) (hlhzhg)Z( ) Bty (1+24,,,) F(Nyra)
(6.175)
where we used the relation (from Dassios) :
) ) e 1425, (hh)
(N, +a ) (N, +a ) =(-1) JATS) o k=1,2,3 (6.176)
5 h,
The first equation of the system 6.173 becomes :
1B, 1Yzznj 11 + aznpznyzij_l = VVnzj_l
U
1 & ()" ain (1+26,,+26, ) o 2(=1)" R
— (N, . ———(N,;
a2n12n1[a]2; (1+25 )( 2n1+ak) ( z/+ak) (NZ,,_1+a )( +a)
1 &) e (1426, 425, ) o 2(=1)" R
P | — . “=(N, . -——— (N,
+a,, zn[af; (1+25k’j)(N2n+a§) ( 2A/+ak) (Nz,,+a )( +a )
1 3 + n n+
:?2(—1)1‘la,fhszk,k(sz+a,f) (-1)"" B/ 1} (N,, +a})
J k=1
(6.177)
or
(U yo+ Vo) Ny +U, 4V, =0 (6.178)
with
1 3 (1+25k,n+25k,i) a, 1P2 | a2P2 K+l 0424412
- y n n n”-2n _Bn _1 uh
af;{ (1+25,) ((N2n1+ak)+(N2n+a,f) b (21
(6.179)

' a,, P, a,, P, n+l
V = B -2 2n-1"2n-1 2 2n" 2n -1 2uh2
e ( " (NZn—l +Cl]2) (NZn +a]2)J( ) n '

as areminder &, . =0.
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The second equation of the system 6.173 becomes :

2j 2j _ 2j
aZn 11)211 lYZn 1+a2n})2nY2n _Wn

k+l 2712 n+l
1 & () gk (1+25,,+26, ) o 2(=)" R .
B, af; (1+25 )( L 1+az) (sz—1+ak) (N2n1+ajz.)(N2jl+an)

1 & () k+1a]§h;(1+25k3,,+25k)j) 2 2(_1)%1}1: 2
B, 0_3; (1+25k’j)(N2n+a/f) (N2j1+ak)_(]\72n—+a]2.)( 2j71+a,,)

:ii k+1 2h Bkk( 2j1+ak) ( 1)n+1Br{]hj( 211+a3)

P
(6.180)

or
(U”,A/‘so +V;1,A/,0)N2j—1 +Un,j1 +I/nj1 0 (6.181)
6.178 and 6.181 lead to :
U,iotV, . o=0

S (6.182)
Un,j,l n,j,l = 0

for the two j values different from n (for example, si n=2, j may have the values 1 or 3). We can check

(1+25,,+26, ) i
that, given nand k, . —==1+20, , does not depend on j. As a result, ajUn iw= U,,
(1+25, ) ’ o ’
does not depend on j. We also have V| Ju =V 08,

So for a given n and calling the 2 permitted values of j: n”and n”’,

Un,O _

2 +Vnn'0 0
a, o
U,

’;’1 +ajl/nn 0 _O
a’ >

" (6.183)
Un,O _

7tV =0
a,, o
U,

;’1 +ajl/nn 0 _O
a >
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which reduces to :

U+aV =0

n'" n,n'0
an Vn n',0 = an I/n ,n",0 (6184)
Un,l = ajUn,O

which leads to the system of 4 equations with 2 unknowns P, |, P, (including the last equation of the

system 6.173) :

T.(j.V) ey, P, +T,(j.2)a,,B,=0,(j) j=12734 (6.185)

with

Z.(L )=§((]1th25’;}))(—1)"” ah? - (N2n2+af.)(_1)n+l @k
T”(z’l):(thiaj,)_(iv;ia )
7:’(2’2):(%;72;612,)‘(%; +)
i<“lfi";3> =)
i(1+25,m) 2 ()

k=1 (N2n + ak )
3

(1) ZB )" aZn? — B! (-1)" a2h?
=1

0,(2)= (B:nan -B.a%)/2

0,(3)=Y B (1) ath (4 —a)
k=1

(6.186)

and for the last equation of the system 6.173, taking into account 6.121 and 6.172 :
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Tn(4’1): (NZn 1 +aj")a5 _(NZn | ta )
1 1
h (4’2) - (NZn +a,f..)af, - (NZn + af.)aj (6:187)

(B B
0.3 -2 |

a . a

n n"

We can immediately see that the equations for j=2 and j=4 are identical (j=2 is obtained from j=4 by

multiplying the latter by —aj,aj,,). The same applies to j=2 and j=3 (j=3 is obtained from j=2 by

multiplying the latter by h}fh}f ). This last equivalence is based on the relationship checked numerically:

B, .a.- B, .a.=(B,.a.-B..a.)/2 (6.188)

Equation 6.188 is none other than 6.163 for which we have given a partial proof.

The system 6.185 therefore reduces to j=1 and j=2, whose solution is :

L 1 00)T(22)-1,(12)0,02)
" e 1 (LT, (22) 7, (12)7, (21
P_1 0,011, )
"o, 7,007, (22) 7, (12)1, (2]

as a reminder,

n

)

(6.189)

)

3,2n—1TN2n,] - K3,2n—1 =P,

1

5 3,2nTN2,, _K3,2n =P,

we have

P, is treated separately: for the first component of the cross product n A V(V2 - Vz(” )‘

1

(Egs. 6.124 and 6.146) :

1 1 ha, 1 TiQl _ plilg?
=—— h,h S; — S =-B"S,.-B,"S
v hy Sk (N, - Nz)(h“ U J=-BI'5,- 5",

_ 1 ha, 313,2 _ 312,3 g _ 1 ha, B13,z B2 52
Shhh (N,—N,)| N,+a; N,+a; | Shhh (N,—N,)| N, +a; N+a3

nav (1, -1

=0

(6.190)
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By comparing/identifying the terms in S;,S; :

- - -1
P —_ 1 Bl3,2 _ 312,3 1 _ 1
T (i) Nta Noval ]| (N+a) (N +al)
— - -1
po_ 1 B, __B 1
" (W) [ No+d Ny+al ||(Ny+al) (N, +al)

Taking into account 6.162, these two last equations may be reduced to :

P=- Biz (6.191)

Processing the two other components leads to the same expression.

Let us remind that,

7
5143,711,2,3 - K3,7 = P7

Scalar product (Egs. 6.109, 6.112, 6.157) :

By comparing/identifying the terms S;" :

B +L 1<n<3
21 T30, aaaN, a n
1 ha Lzs: a; (1+25,,)B;, (e=1) L B, BL(0) A,
Shihyh, N,, ,—N,, aj k=1 (NZn 1+a1§) N, +le, N, +a, ala2a3a}f
7
B +L,, ———
2+ s aa,a;N,,a,
_ ha, |1 ia;(1+25,{,”)3,:’,{(1)+ B? (1) N B, (1) 4
Shhh, N, ,—N,, a,f o (N2n +a,f) N,, +a; N,, +a§ a1a2a3af
BS_L 7 _ B;,B (1) 312,3 (1) BIS,Z (1) a,a,4,
7 3,7 2 2 + 2 + 2 h2h2h2
(a1a2a3) @ a4 s 11
(6.192)

One significant simplification concerns B,i (Egs 6.109 and 6.103) ; indeed, using 6.81 and 6.116:
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Bgn—l = h”a” 1 x
5hlhzhs N2n—1 _N2n

Z(“Z—’j][%ﬁi1((1+;§’”‘)+a2n1’21£(1+2§””) A0 J 1 J(G.ws)

! " 2n71+ai2)2 (N2n+ai2) (N2n—l+ai2) (NZn—l_N2n)
__ha, 1 a) (1+25,,) )
B 5hh,h, [ N, =N, ]Zz: [2 ’ a_,f) [ (NZW1 + af )2 ] an-ilinc
likewise,
g ___ha, 1 (24 a2 (1+26,) b 6190
2n 5h1h2h3 N2,H - N2n i a}f (NZn " a,-2 )2 2nt2n

Equations 6.192-4 lead to

T L —&T K =T
L,2n-1""3,2n-1 & K,2n-1""3,2n-1 KL,2n-1 (6195)
Ty o,Lss, — €T 5K, =T 5,
with
7 al 1+20,, 35mhh, N, ,—N,,
TL,zn—l :EaZn—l NZHIZ(2+—’2J ( 2) 7|t . zz;l = :
; a, (N2n—l +a; ) aaazah, N,
2 1+26 . _
ZWLZn :Za2nTN z 2+a_l2 ( . - )2 - 35h1h2il3 N2”71 NZ”
, 2 " i an (NZn +Cll2) a1a2a3anhn N2n
2 1+26,.
TK,Zn—l = a2n 12[2+a_l2j ( 2) 2
i an (Nzn 1+al )
a’ 1+26,.
TKZn:aZnZ[Z-i__ZZj ( 2)2
i an (NZn +Cli )
1 &a;(1+25,,)B, (e=1) B” (1) B (1) A
TKL,zn—l :_zz 2 + , > T ’ 2 2
a, i3 (NZH_l +ak) N, +a, N,  +a, aaaa,
1 &a (1+26,,)B;, (1) B, (1) B, (1) A
Tr on —;Z (N 2 + xt 2 2 (6.196)
n k=1 2n + ak ) N2n + ap N2n + aq ala2a3an
likewise,
TL,7L3,7 _gTK,7K3,7 = TKL,7 (6.197)
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1
T, = Z? (6.198)
L (BLO) B BL()) 1
R R I T

From equations 6.186, 6.189, 6.191 (coming from the cross product) and 6.195-6.198 (coming from the

scalar product), we easily deduce analytic formula for the pairs

(L3,2n—1 ) K3,2n—l )’(L3,2n >K3,2n ) ) (L3,7 ) K3,7 ) :

L3m :(TKLm_gTKIan)/(Em_ZgTN Tij
B B B ) 2 m )
z]—'N,,lj—'I(L,lrl - I)mTL,m
K, =2 m=2n-1,2n

3,m 7
(TVL,m _28TNmTK,mj

7
L3,7 = (TKL,7 _gTK,7P7)/(TL,7 _5811,2,3TK,7J

(6.199)

zI T PT

B 123tk A7t

K3,7 = 7
(TLJ - E ‘9[1,2,3TK,7 )

To conclude this paragraph, let us compute j ne E,dS :
OE

[neEdS=[neF, dS+ [neF,,dS+ [neVV,"dS+ [neVU,ds
OE OE OE

OE OE

. - . XX i X X; .
.[nOFZ Gas, J. neF, ,dS are linear combinations of integrals as J.—dS, J.—‘dS, which are
OFE ’ OE ’ OE ho OE hO

equal to zero.

on the other hand,
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DA zhi%Aij (7 +23+3)1,(0)+(=21°(0) +(2a; = J,) 1,'(0)))
J

+ lloAjh:ciz((x12+x22+x32+2x12.)1j(0)—21(0)+(2a12.—Jj)[j(O))
J

We deduce that J- neVV,"dS =0 for the same reasons.

JnOVI/zdS=Jn0V[Z3:LLmY'” ZL Y’”j
o m=1

OE

We therefore need to evaluate the integrals jn eVY"dS n=1,3. Using the definitions 6.87 and
OE

XXX,

ds,

6.88, we can see that all these integrals are also linear combinations of integrals as I
OF 0

J. —dS . We deduce that jnOVVdS 0.
xh

So, j ne E,dS =0.Here again, as for orders 0 and 1, the proposed solution verifies this equation, but
oF

does not need it to obtain it.
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