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ABSTRACT

Data mixing augmentation has been widely applied to improve the generalization
ability of deep neural networks. Recently, offline data mixing augmentation, e.g.
handcrafted and saliency information-based mixup, has been gradually replaced
by automatic mixing approaches. Through minimizing two sub-tasks, namely,
mixed sample generation and mixup classification in an end-to-end way, AutoMix
significantly improves accuracy on image classification tasks. However, as the op-
timization objective is consistent for the two sub-tasks, this approach is prone to
generating consistent instead of diverse mixed samples, which results in overfit-
ting for target task training. In this paper, we propose AdAutomixup, an adversar-
ial automatic mixup augmentation approach that generates challenging samples
to train a robust classifier for image classification, by alternatively optimizing the
classifier and the mixup sample generator. AdAutomixup comprises two modules,
a mixed example generator, and a target classifier. The mixed sample generator
aims to produce hard mixed examples to challenge the target classifier, while the
target classifier’s aim is to learn robust features from hard mixed examples to im-
prove generalization. To prevent the collapse of the inherent meanings of images,
we further introduce an exponential moving average (EMA) teacher and cosine
similarity to train AdAutomixup in an end-to-end way. Extensive experiments
on seven image benchmarks consistently prove that our approach outperforms the
state of the art in various classification scenarios. The source code is available at
https://github.com/JinXins/Adversarial-AutoMixup.

1 INTRODUCTION

Due to their robust feature representation capacity, Deep neural network models, such as convo-
lutional neural networks (CNN) and transformers, have been successfully applied in various tasks,
e.g., image classification (Li et al., 2022c; Krizhevsky et al., 2012; Li et al., 2022a; 2024), object
detection (Bochkovskiy et al., 2020), and natural language processing (Vaswani et al., 2017). One of
the important reasons is that they generally exploit large training datasets to train massive network
parameters. When the data is insufficient, however, they become prone to over-fitting and make
overconfident predictions, which may degrade the generalization performance on test examples.

To alleviate these drawbacks, data augmentation (DA) is proposed to generate samples to improve
generalization on downstream target tasks. Mixup (Zhang et al., 2017), a recent DA scheme, has
received increasing attention as it can produce virtual mixup examples via a simple convex com-
bination of pairs of examples and their labels to effectively train a deep learning (DL) model. DA
approaches (Li et al., 2021; Shorten & Khoshgoftaar, 2019; Cubuk et al., 2018; 2020; Fang et al.,
2020; Ren et al., 2015; Li et al., 2020), proposed for image classification, can be broadly split into
three categories: 1) Handcrafted-based mixup augmentation approaches, where patches from one
image are randomly cut and pasted onto another. The ground truth label of the latter is mixed with
the label of the former proportionally to the area of the replaced patches. Representative approaches
include CutMix (Yun et al., 2019), Cutout (DeVries & Taylor, 2017), ManifoldMixup (Verma et al.,
2019), and ResizeMix (Qin et al., 2020). CutMix and ResizeMix, as shown in Fig. 1, generate mixup
samples by randomly replacing a patch in an image with patches from another; 2) Saliency-guided
mixup augmentation approaches that generate, based on image saliency maps, high-quality sam-
ples by preserving regions of maximum saliency. Representative approaches (Uddin et al., 2020;
Walawalkar et al., 2020; Kim et al., 2020; Park et al., 2021; Liu et al., 2022c) learn the optimal
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Figure 1: Mixed images of various approaches. (a) Accuracy of ResNet18 trained by different mixup
approaches with 200 epochs on CIFAR100. (b) Mixed images of various mixup-based approaches.

mixing policy by maximizing the saliency regions; 3) Automatic Mixup-based augmentation ap-
proaches, that learn a model, e.g. DL model, instead of a policy, to automatically generate mixed
images. (Liu et al., 2022d) for example, proposed an AutoMix model for DA, consisting of a tar-
get classifier and a generative network, to automatically generate mixed samples to train a robust
classifier by alternatively optimizing the target classifier and the generative network.

The handcrafted mixup augmentation approaches, however, randomly mix images without consid-
ering their contexts and labels. The target objects, therefore, may be missed in the mixed images,
resulting in a label mismatch problem. Saliency-guided-based mixup augmentation methods can al-
leviate the problem as the images are combined with supervising information, namely the maximum
saliency region. These mixup models, related to the first two categories above, share the same learn-
ing paradigm: an augmented training dataset generated by random or learnable mixing policy and a
DL model for image classification. As image generation is not directly related to the target task, i.e.,
classification, the generated images guided by human prior knowledge, i.e., saliency-based, may not
be effective for target network training. Moreover, it is impossible to generate all possible mixed
instances for target training. The randomly selected synthesized samples thus may not be represen-
tative of the classification task, ultimately degrading classifier generalization. Besides, such gener-
ated samples will be input to the target network repeatedly, resulting in inevitable overfitting over
long epoch training. To overcome these problems, automatic mixup-based augmentation approaches
generate augmented images by a sub-network with a good complexity-accuracy trade-off. This ap-
proach comprises two sub-tasks: a mixed sample generation module and a classification module,
conjointly optimized by minimizing the classification loss in an end-to-end way. As the optimiz-
ing goal is consistent for the two sub-tasks, however, the generation module may not be effectively
guided and may produce, consequently, simple mixed samples to achieve such a goal, which limits
sample diversification. The classifier trained on such simple examples is prone, therefore, to suffer
from overfitting, leading to poor generalization performance on the testing set. Another limitation is
that current automatic mixup approaches mix two images only for image generation, where the rich
and discriminating information is not efficiently exploited.

To solve these problems, we propose in this paper AdAutomixup, an adversarial automatic mixup
augmentation approach to automatically generate mixed samples with adversarial training in an
end-to-end way, as shown in Fig. 2. First, an attention-based generator is investigated to dynami-
cally learn discriminating pixels from a sample pair associated with the corresponding mixed labels.
Second, we combine the attention-based generator with the target classifier to build an adversarial
network, where the generator and the classifier are alternatively updated by adversarial training.
Unlike AutoMix (Liu et al., 2022d), a generator is learned to increase the training loss of the tar-
get network through generating adversarial samples, while the classifier learns more robust features
from hard examples to improve generalization. Furthermore, any set of images, instead of two im-
ages only, can be taken as an input to our generator for mixing image generation, which results in
more diversification of the mixed samples. Our main contributions are summarized as follows.

(a) We present an online data mixing approach based on an adversarial learning policy, trained
end-to-end to automatically produce mixed samples.

(b) We propose an adversarial framework to jointly optimize the target network training and the
mixup sample generator. The generator aims to produce hard samples to increase the target net-
work loss while the target network, trained on such hard samples, learns a robust representation
to improve classification. To avoid the collapse of the inherent meanings of images, we apply
an exponential moving average (EMA) and cosine similarity to reduce the search space.

(c) We explore an attention-based mix sample generator that can combine multiple samples instead
of only two samples to generate mixed samples. The generator is flexible as its architecture is
not changed with the increase of input images.
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2 RELATED WORK

Hand-crafted based mixup augumentaion Mixup (Zhang et al., 2017), the first hybrid data aug-
mentation method, generates mixed samples by subtracting any two samples and their one-hot la-
bels. ManifoldMixup (Verma et al., 2019) extended this mixup from input space to feature space.
To exploit spatial locality, CutMix (Yun et al., 2019) crops out a region and replace it with a patch
of another image. To improve MixUp and CutMix, FMix (Harris et al., 2020) uses random binary
masks obtained by applying a threshold to low-frequency images sampled from the frequency space.
RecursiveMix (Yang et al., 2022) iteratively resizes the input image patch from the previous itera-
tion and pastes it into the current patch. To solve the strong ”edge” problem caused by CutMix,
SmoothMix (Jeong et al., 2021) blends mixed images based on soft edges, with the training labels
computed accordingly.

Saliency guided based mixup augmentation SaliencyMix (Uddin et al., 2020), SnapMix (Huang
et al., 2020) and Attentive-CutMix (Walawalkar et al., 2020) generate mixed images based on the
salient region detected by the Class Activation Mapping(CAM) (Selvaraju et al., 2019) or saliency
detector. Similarly, PuzzleMix (Kim et al., 2020) and Co-Mixup (Kim et al., 2021) propose an op-
timization strategy to obtain the optimal mask by maximizing the sample saliency region. These
approaches, however, suffer from a lack of sample diversification as they always deterministically
select regions with maximum saliency. To solve the problem, Saliency Grafting (Park et al., 2021)
scales and thresholds the saliency map to grant all salient regions are considered to increase sam-
ple diversity. Inspired by the success of Vit (Dosovitskiy et al., 2021; Liu et al., 2021) in com-
puter vision, adaptive mixing policies based on attentive maps, e.g., TransMix (Chen et al., 2021),
TokenMix (Liu et al., 2022a), TokenMixup (Choi et al., 2022), MixPro (Zhao et al., 2023), and
SMMix (Chen et al., 2022), were proposed to generate mixed images.

Automatic Mixup based augmentation Mixup approaches in the first two categories allow a
trade-off between precise mixing policies and optimization complexity, as the image mixing task is
not directly related to the target classification task during the training process. To solve this prob-
lem, AutoMix (Liu et al., 2022d) divides the mixup classification into two sub-tasks, mixed sample
generation and mixup classification, and proposes an automatic mixup framework where the two
sub-tasks are optimized jointly, instead of independently. During training, the generator continu-
ously produces the mixed samples while the target classifier is preserved for classification. In recent
years, adversarial data augmentation (Zhao et al., 2020) and generative adversarial networks (Anto-
niou et al., 2017) were proposed to automatically generate images for data augmentation. To solve
the domain shift problem, Adversarial MixUp (Zhang et al., 2023; Xu et al., 2019) have been inves-
tigated to synthesize mix samples or features for domain adaptation. Although there are very few
works for automatic mixup, it will become a research trend in the future.

3 ADAUTOMIX

In this section, we present the implementation of AdAutoMix, which is composed of a target clas-
sifier and a generator, as shown in Fig. 2. First, we introduce the mixup classification problem and
define the loss functions. Then, we detail our attention-based generator that learns dynamically the
augmentation mask policy for image generation. Finally, we show how the target classifier and the
generator are jointly optimized in an end-to-end way.

3.1 DEEP LEARNING-BASED CLASSIFIERS

Assume that S = {xs|s = 1, 2, ..., S} is a training set, where S is the number of the images. We
select anyN samples from S to obtain a sample set X = {x1, x2, ..., xN}, with Y = {y1, y2, ..., yN}
its corresponding label set. Let ψW be any feature extraction model, e.g., ResNet (He et al., 2016),
where W is a trainable weight vector. The classifier maps example x ∈ X into label y ∈ Y. A
DL classifier ψW is implemented to predict the posterior class probability, and W are learned by
minimizing the classification loss, i.e. the cross entropy (CE) loss in Eq.(1):

Lce(ψW , y) = −ylog(ψW (x)). (1)
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Figure 2: Illustration of AdAutoMix framework. AdAutoMix consists of a generator module and
a target module, which are alternatively trained end-to-end. The generator module aims to produce
hard samples to challenge the target network while the target network, trained on such hard samples,
learns a robust feature representation for classification.

For N samples in sample set X, the average cross-entropy (ACE) loss is computed by Eq.(2):

Lace(ψW ,Y) =
N∑
n=1

(Lce(ψW (xn), yn) ∗ λn). (2)

where ∗ is the scalar multiplication. In the mixup classification task, we input any N images
associated with mixed ratios λ to a generator Gθ(·) that outputs a mixed sample xmix, as de-
fined in Eq.(8) from section 3.2. Similarly, the label for such a mixed image xmix is obtained by
ymix =

∑N
n=1 yn � λn. ψW is optimized by average mixup cross-entropy (AMCE) loss in Eq.(3):

Lamce(ψW ,Y) = Lce(ψW (xmix), ymix). (3)

Similarly, we also compute the mixup cross-entropy (MCE) by Eq.(4):

Lmce(ψW , ymix) = Lce(ψW (

N∑
n=1

(xn ∗ λn)), ymix). (4)

3.2 GENERATOR

As described in Section 2, most existing approaches mix two samples by manually designed policies
or automatic learning policies, which results in insufficient exploitation of the supervised informa-
tion that might be provided by the training samples for data augmentation. In our work, we present a
universal generation framework to extend the two-image mixing to multiple-image mixing. To learn
a robust mixing policy matrix, we leverage a self-attention mechanism to propose an attention-based
mixed sample generator, as shown in Fig. 3. As described in Section 3.1, X = {xn|n = 1, 2, ..., N}
is a sample set with N original training samples and Y = {Yn|n = 1, 2, ..., N} are the correspond-
ing labels. We define λ = {λ1, λ2, ..., λN } as the mixed ratio set for the images with their sum
constrained to be equal to 1. As shown in Fig. 3, each image in an image set is first mapped to
a feature map with encoder Eφ, which is updated by an exponential moving average of the target
classifier, i.e.φ̂ = ξφ̂ + (1 − ξ)W ′, where W ′ is the partial weight of the target classifier. In our
experiments, existing classifiers, ResNet18, ResNet34, and ResNeXt50, are used as target classi-
fiers, and W ′ is the weight vector of the first three layers in the target classifier. Then, the mixed
ratios are embedded into the resulting feature map to enable the generator to learn mask policies
for image mixing. For example, given nth image xn ∈ RW×H , where W and H represent image
size, we input it to an encoder and take outputs from its lth layer as feature map zln ∈ RC×w×h,
where C is the number of channels, and w and h represent map size . Then, we build a matrix with
size w × h with all values equal to 1, multiplied by the corresponding ratio λn to obtain embedding
matrix Mλn

. We embed λn with the lth feature map in a simple and efficient way by concatenating
zlλn

= concat(Mλn
, zln) ∈ R(C+1)×w×h. The embedding feature map zlλn

is mapped to three em-
bedding vectors by three CNNs with 1 × 1 kernel (as shown in Fig. 3), respectively. Therefore, we
obtain three vectors qn, kn, and vn for the nth image xn. Note that the channel number is reduced
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Figure 3: Mixed module: the cross attention block (CAB), used to learn the policy matrix for each
image, is combined with vi(1 = 1, 2, ..., N) values to compute the policy matrix for image mixing.

to its half for qn and kn to save computation time and is set to 1 for vn. In this way, the embedding
vectors of all images are computed and denoted by q1, q2,...,qN , k1, k2,...,kN , and v1, v2,...,vN . The
cross attention block (CAB) (as shown in Fig. 3) for the nth image is computed by Eq. (5):

Pn = Softmax

(∑N
i=1,i6=n q

T
n ki√

d

)
vn, (5)

where d is the normalization term. We concatenate N attention matrices by Eq. (6):

P = Softmax(Concat(P1, P2, ..., PN )). (6)

The matrix P ∈ RN×wh×wh is resized to P ′ ∈ RN×W×H by upsampling. We split N matrices,
P ′1, P

′
2, ..., P

′
N from P ′, treated as mask policy matrices to mix images in the sample set X by Eq.(7):

xmix =

N∑
n=1

xn � P ′n, (7)

where � denotes the Hadamard product. To facilitate representation, the mixed image generation
procedure is denoted as a generator Gθ by Eq.(8):

xmix = Gθ(X, λ), (8)

where θ represents all the learnable parameters of the generator.

3.3 ADVERSARIAL AUGMENTATION

This section provides the adversarial framework we propose to jointly optimize the target network
ψW and the generator Gθ through adversarial learning. Concretely, the generator Gθ attempts to
produce an augmented mixed image set to increase the loss of target network ψW while target
network ψW aims to minimize the classification loss. An equilibrium can be reached where the
learned representation reaches maximized performance.

3.3.1 ADVERSARIAL LOSS

As shown in Eq.(8), the generator takes X and the set of mixed ratio λ as input and outputs a synthe-
sized image xmix to challenge the target classifier. The latter receives either a real or a synthesized
image from the generator as its input and then predicts its probability of belonging to each class.
The adversarial loss is defined by the following minimax problem to train both players by Eq.(9):

W ∗, θ∗ =argmin
W

max
θ

[ E
X∈S

[Lamce(ψW ,Y)]], (9)

where S and X are the training set and image set, respectively. A robust classifier should correctly
classify not only the mixed images, but also the original ones, so we incorporate two regularization
terms Lmce(ψW (xmix, ymix)) and Lace(ψW ,Y) to enhance performance. Accordingly, the objec-
tive function is rewritten as shown by Eq.(10):

W ∗, θ∗ =argmin
W

max
θ

[ E
X∈S

[Lamce(ψW ,Y) + αLmce(ψW , ymix) + (1− α)Lace(ψW ,Y)]]. (10)

To optimize parameter θ, Gθ(·) produces images with given image sets to challenge the classifier. It
is possible, therefore, that the inherent meanings of images (i.e. their semantic meaning) collapse.
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To tackle this issue, we introduce cosine similarity and a teacher model as two regularization terms
to control the quality of mixed images. The loss is changed accordingly, as shown by Eq.(11):

W ∗, θ∗ =argmin
W

max
θ

[ E
X∈S

[Lamce(ψW ,Y) + αLmce(ψW , ymix) + (1− α)Lace(ψW ,Y)

− βLamce(ψŴ ,Y) + (1− β)Lcosine]],
(11)

where Lcosine =
∑N
n=1 cosine(ψŴ (xmix), ψŴ (xn)) ∗ λn, cosine(·) is cosine similarity function,

and ψ
Ŵ

is a teacher model whose weights are updated as an exponential moving average of the
target (EMA) models weights, i.e. Ŵ ← ξŴ + (1 − ξ)W . Notice that Lce(ψW , y) is the standard
cross-entropy loss. Lace(ψW ,Y) loss facilitates the backbone to provide a stable feature map at
early stage so that it speeds up convergence. Target loss Lamce(ψW ,Y) aims to learn task-relevant
information in the generated mixed samples. Lmce(ψW , ymix) facilitates the capture of task-relevant
information in the original mixed samples. Lcosine and Lamce(ψŴ ,Y) are used to control the quality
of generation mix images.

3.4 ADVERSARIAL OPTIMIZATION

Similarly to many existing adversarial training algorithms, it is hard to directly find a saddle point
(W*, θ*) solution to the minimax problem in Eq.(11). Alternatively, a pair of gradient descent and
ascent are employed to update the target network and the generator.

Consider target classifier ψW (·) with a loss function Lce(·), where the trained generator Gθ(·) maps
multiple original samples to a mixed sample. The learning process of the target network can be
defined as the minimization problem in Eq.(12):

W ∗ =argmin
W

[ E
X∈S

[Lamce(ψW ,Y) + αLmce(ψW , ymix) + (1− α)Lace(ψW ,Y)

− βLamce(ψŴ ,Y) + (1− β)Lcosine]].
(12)

The problem in Eq. (12) is usually solved by vanilla SGD with a learning rate of δ and a batch size
of B, and the training procedure for each batch can be computed by Eq.(13):

W (t+ 1) =W (t)− δ∇W
1

K

K∑
k=1

[Lamce(ψW ,Y) + αLmce(ψW , ymix) + (1− α)Lace(ψW ,Y)

− βLamce(ψŴ ,Y) + (1− β)Lcosine].

(13)

where K is the number of mixed images or image sets produced from patch set B. As the cosine
similarity and the teacher model are independent of W , Eq.(13) can be rewritten as Eq.(14):

W (t+ 1) =W (t)− δ∇W
1

K

K∑
k=1

[Lamce(ψW ,Y) + αLmce(ψW , ymix) + (1− α)Lace(ψW ,Y)]. (14)

Note that the training procedure can be regarded as an average over K instances of gradient com-
putation, which can reduce gradient variance and accelerate the convergence of the target network.
However, training may suffer easily from over-fitting due to the limited training data over a long
training epoch. To overcome this problem, different from AutoMix (Liu et al., 2022d), our mixup
augmentation generator generates a set of harder mixed samples to increase the loss of the target
classifier, which results in a minimax problem to self-train the network. Such a self-supervised ob-
jective may be sufficiently challenging to prevent the target classifier from overfitting the objective.
Therefore, the objective is defined as the following maximization problem in Eq.(15):

θ∗ =argmax
θ

[ E
X∈S

[Lamce(ψW ,Y)− βLamce(ψŴ ,Y) + (1− β)Lcosine]]. (15)

To solve the above problem, we employ a gradient ascent to update the parameter with a learning
rate of γ, which is defined in Eq.(16):

θ(t+ 1) = θ(t) + γ∇W
1

K

K∑
k=1

[Lamce(ψW ,Y)− βLamce(ψŴ ,Y) + (1− β)Lcosine]. (16)

Intuitively, the optimization of Eq.(16) is the combination of two sub-tasks, the maximization of
Lce(ψW (xmix, ymix)) and the minimization of βLamce(ψŴ ,Y)−(1−β)Lcosine. This tends to push
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the synthesized mixed samples far away from the real samples to increase diversity, while ensuring
the synthesized mixed samples are recognizable for a teacher model and kept, within a constraint
similarity to the feature representation of original images, so as to avoid collapsing the inherent
meanings of images. This scheme enables generating challenging samples by closely tracking the
updates of the classifier. We provide some mixed samples in Appendix B.2 and B.3.

4 EXPERIMENTS

To estimate our approach performance, we conducted extensive experiments on seven classifica-
tion benchmarks, namely CIFAR100 (Krizhevsky et al., 2009), Tiny-ImageNet (Chrabaszcz et al.,
2017), ImageNet-1K (Krizhevsky et al., 2012), CUB-200 (Wah et al., 2011), FGVC-Aircraft (Maji
et al., 2013) and Standford-Cars (Krause et al., 2013) (Appendix A.1). For fair assessment, we
compare our AdAutoMixup with some current Mixup methods, i.e. Mixup (Zhang et al., 2017),
CutMix (Yun et al., 2019), ManifoldMix (Verma et al., 2019), FMix (Harris et al., 2020), Re-
sizeMix (Qin et al., 2020), SaliencyMix (Uddin et al., 2020), PuzzleMix (Kim et al., 2020) and
AutoMix (Liu et al., 2022d). To verify our approach generalizability, five baseline networks,
namely ResNet18, ResNet34, ResNet50 (He et al., 2016), ResNeXt50 (Xie et al., 2017), Swin-
Transformer (Liu et al., 2021) and ConvNeXt(Liu et al., 2022b), are used to compute classification
accuracy. We have implemented our algorithm on the open-source library OpenMixup (Li et al.,
2022b). Some common parameters follow the experimental settings of AutoMix and we provide
our own hyperparameters in Appendix A.2. For all classification results, we report the mean perfor-
mance of 3 trials where the median of top-1 test accuracy in the last 10 training epochs is recorded
for each trial. To facilitate comparison, we mark the best and second best results in bold and cyan.

4.1 CLASSIFICATION RESULTS

4.1.1 DATASET CLASSIFICATION

We first train ResNet18 and ResNeXt50 on CIFAR100 for 800 epochs, using the following ex-
perimental setting: The basic learning rate is 0.1, dynamically adjusted by cosine scheduler,
SGD (Loshchilov & Hutter, 2016) optimizer with momentum of 0.9, weight decay of 0.0001, batch
size of 100. To train ViT-based models, e.g. Swin-Tiny Transformer and ConvNeXt-Tiny, we train
them with AdamW (Loshchilov & Hutter, 2019) optimizer with weight decay of 0.05, batch size
of 100, 200 epochs. On Tiny-ImageNet, except for a learning rate of 0.2 and training over 400
epochs, training settings are similar to the ones used in CIFAR100. On ImageNet-1K, we train
ResNet18, ResNet34 and ResNet50 for 100 epochs using PyTorch-style setting . The experiments
implementation details are provided in Appendix A.3

Table 1 and Fig. 1 show that our method outperforms the existing approaches on CIFAR100. After
training by our approach, ResNet18 and ResNeXt50 achieve an accuracy improvement of 0.28% and
0.58% w.r.t the second best results, respectively. Similarly, ViT-based approaches achieve the highest
classification accuracy of 84.33 % and 83.54% and outperform the previous best approaches with
an improvement of 1.66% and 0.24%. On the Tiny-ImageNet datasets, our AdAutoMix consistently
outperforms existing approaches in terms of improving the classification performance of ResNet18
and ResNeXt50, i.e. 1.86 % and 2.17% significant improvement w.r.t the second best approaches.
Also, Table 1 shows that AdAutoMix achieves an accuracy improvement (0.36% for ResNet18,
0.3% for ResNet34, and 0.13% ResNet50) on the ImageNet-1K large scale dataset.

Table 1: Top-1 accuracy (%)↑ of mixup methods on CIFAR-100, Tiny-ImageNet and ImageNet-1K.
CIFAR100 CIFAR100 Tiny-ImageNet ImageNet-1K

Method ResNet18 ResNeXt50 Swin-T ConvNeXt-T ResNet18 ResNeXt50 ResNet18 ResNet34 ResNet50
Vanilla 78.04 81.09 78.41 78.70 61.68 65.04 70.04 73.85 76.83
MixUp 79.12 82.10 76.78 81.13 63.86 66.36 69.98 73.97 77.12
CutMix 78.17 81.67 80.64 82.46 65.53 66.47 68.95 73.58 77.17
SaliencyMix 79.12 81.53 80.40 82.82 64.60 66.55 69.16 73.56 77.14
FMix 79.69 81.90 80.72 81.79 63.47 65.08 69.96 74.08 77.19
PuzzleMix 81.13 82.85 80.33 82.29 65.81 67.83 70.12 74.26 77.54
ResizeMix 80.01 81.82 80.16 82.53 63.74 65.87 69.50 73.88 77.42
AutoMix 82.04 83.64 82.67 83.30 67.33 70.72 70.50 74.52 77.91
AdAutoMix 82.32 84.22 84.33 83.54 69.19 72.89 70.86 74.82 78.04
Gain +0.28 +0.58 +1.66 +0.24 +1.86 +2.17 +0.36 +0.30 +0.13
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Table 2: Accuracy (%)↑ of mixup approaches on CUB-200, FGVC-Aircrafts and Standford-Cars.
CUB-200 FGVC-Aircrafts Standford-Cars

Method ResNet18 ResNet50 ResNet18 ResNeXt50 ResNet18 ResNeXt50
Vanilla 77.68 82.38 80.23 85.10 86.32 90.15
MixUp 78.39 82.98 79.52 85.18 86.27 90.81
CutMix 78.40 83.17 78.84 84.55 87.48 91.22
ManifoldMix 79.76 83.76 80.68 86.60 85.88 90.20
SaliencyMix 77.95 81.71 80.02 84.31 86.48 90.60
FMix 77.28 83.34 79.36 86.23 87.55 90.90
PuzzleMix 78.63 83.83 80.76 86.23 87.78 91.29
ResizeMix 78.50 83.41 78.10 84.08 88.17 91.36
AutoMix 79.87 83.88 81.37 86.72 88.89 91.38
AdAutoMix 80.88 84.57 81.73 87.16 89.19 91.59
Gain +1.01 +0.69 +0.36 +0.44 +0.30 +0.21

4.1.2 FINE-GRAINED CLASSIFICATION

On CUB-200, FGVC-Aircrafts, and Standford-Cars, we fine-tune pretrained ResNet18, ResNet50,
and ResNeXt50 using SGD optimizer with momentum of 0.9, weight decay of 0.0005, batch size
of 16, 200 epochs, learning rate of 0.001, dynamically adjusted by cosine scheduler. The results in
Table 2 show that AdAutoMix achieves the best performance and significantly improves the perfor-
mance of vanilla (3.20%/2.19% on CUB-200, 1.5%/2.06% on Aircraft and 2.87%/1.44% on Cras),
which implies that AdAutoMix is also robust to more challenging scenarios.

4.2 CALIBRATION

DNNs are prone to suffer from getting overconfident in classification tasks. Mixup methods can
effectively alleviate this problem. To this end, we compute the expected calibration error (ECE) of
various mixup approaches on the CIFAR100 dataset. It can be seen from the experimental results in
Fig. 4 that our method achieves the lowest ECE, i.e. 3.2%, w.r.t existing approaches. We provide
more experimental results in Table 6 in Appendix A.5
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Figure 4: Calibration plots of Mixup variant on CIFAR100 using ResNet18.

4.3 ROBUSTNESS

We carried out experiments on CIFAR100-C (Hendrycks & Dietterich, 2019) to verify robustness
against corruption. A corrupted dataset is manually generated to include 19 different corruption
types (noise, blur, fog, brightness, etc.). We compare our AdAutoMix with some popular mixup
algorithms: CutMix, FMix, PuzzleMix, and AutoMix. Table 4 shows that our approach achieves the
highest recognition accuracy for both clean and corrupted data, i.e. 1.53% and 0.40% classification
accuracy improvement w.r.t AutoMix. We further investigate robustness against the FGSM (Good-
fellow et al., 2015) white box attack of 8/255 `∞ epsilon ball following (Zhang et al., 2017) . Our
AdAutoMix significantly outperforms existing methods, as shown in Table 4.

4.4 OCCLUSION ROBUSTNESS
Swin-Tiny Transformer Random PatchDrop

Occlusion ratio (%)

T
o
p

-1
 A

cc
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cy
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)

Occlusion ratio (%)

ResNet-50 Random PatchDrop

Figure 5: Robustness against image occlusion
with different occlusion ratios.

To analyze the AdAutoMix robustness against
random occlusion (Naseer et al., 2021), we
build image sets by randomly masking images
from datasets CIFAR100 and CUB200 with
16×16 patches, using different mask ratios (0-
100%). We input the resulting occluded images
into two classifiers, Swin-Tiny Transformer and
ResNet-50, trained by various Mixup models to
compute test accuracy. From the results in Fig. 5 and in Table 7 in Appendix A.6, we observe that
AdAutoMix achieves the highest accuracy with different occlusion ratios.
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Table 3: Top-1 accuracy (%)↑ with ResNet50 on CUB200 and Standford-Cars.
Dataset Vanilla MixUp CutMix PuzzleMix AutoMix AdAutoMix
CUB 81.76 82.79 81.67 82.59 82.93 83.36(+0.43)
Cars 88.88 89.45 88.99 89.37 88.71 89.65(+0.20)

4.5 TRANSFER LEARNING

We further study the transferable abilities of the features learned by AdAutoMix for downstream
classification tasks. The experimental settings in subsection 4.1.2 are used for transfer learning
on CUB-200 and Standford-Cars, except for training now over 100 epochs. ResNet50 trained on
ImageNet-1K is finetuned on CUB200 and Standford-Cars for classification. Table 3 shows that
AdAutoMix achieves the best performance, which proves the efficacy of our approach for down-
stream tasks.

4.6 ABLATION EXPERIMENT Table 4: Top-1 accuracy and FGSM er-
ror of ResNet18 with other methods.

Clean Corruption FGSM
Method Acc(%)↑ Acc(%)↑ Error(%)↓
CutMix 79.45 46.66 88.24
FMix 78.91 50.58 88.35
PuzzleMix 79.96 51.04 80.52
AutoMix 80.02 50.75 82.67
AdAutoMix 81.55 51.44 75.66

Table 5: Ablation experiments on
CIFAR100 based on ResNet18 and
ResNeXt50.

CIFAR100
Method ResNet18 ResNeXt50
Base(N = 3) 79.38 82.84
+0.5Lmce + 0.5Lace 80.04 84.12
−0.3Lamce + 0.7Lcosine 81.55 84.40

In AdAutoMix, four hyperparameters, namely the num-
ber of input imagesN , the weights α, β, and mixed ratios
λ, which are important to achieve high performance, are
fixed in all experiments. To save time, we train the clas-
sifier on ResNet18 for 200 epochs by our AdAutoMixup.
The accuracy of ResNet18 with different α, β, N , and
λ are shown in Fig. 6 (a), (b), (c), and (d). Also, the
classification accuracy of AdAutoMixup with different
λ and N are depicted in Table. 9 and Table. 10 in Ap-
pendix A.8. AdAutoMix, with N=3, α =0.5, β=0.3, and
λ =1 as default, achieves the best performances on the
various datasets. In addition, two regularization terms,
Lmce(ψW , ymix) and Lace(ψW ,Y), attempt to improve
classifier robustness, and another two regularization terms, namely cosine similarity Lcosine and
EMA model Lamce(ψŴ ,Y), aim to avoid the collapsing of the inherent meaning of images in
AdAutoMix. We thus carry out experiments to evaluate the performance of each module concerning
classifier performance improvement. To facilitate the description, we remove the four modules from
AdAutoMix and denote the resulting approach as basic AdAutoMix. Then, we gradually incor-
porate the two modules Lmce(ψW ,Y) and Lace(ψW ,Y), and the two modules Lamce(ψŴ ,Y) and
Lcosine, and compute the classification accuracy. The experimental results in Table. 5 show that the
Lmce(ψW , ymix) and Lace(ψW ,Y) improve classifier accuracy by about 0.66%. However, after in-
corporating Lamce(ψŴ ,Y) and Lcosine to constraint the synthesized mixed images, we observe that
the classification accuracy is significantly increased, namely 1.51% accuracy improvement, which
implies that these two modules are capable of controlling the quality of generated images in the
adversarial training. Also, we show the accuracy of our approach with gradually increasing indi-
vidual regularization terms in Table. 8 in the Appendix. A.8. There is a similar trend that each
regularization term improves accuracy.

(a). α weight (b). β weight (c). N samples
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p
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cc
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%
)

(d). λ ratio

Hyperparameter sensitivity analysis

Figure 6: Ablation of hyperparameter α, β, input samples and λ of AdAutoMix on CIFAR100.

5 CONCLUSION

In this paper, we have proposed AdAutoMixup, a framework that jointly optimizes the target clas-
sifier and the mixing image generator in an adversarial way. Specifically, the generator produces
hard mixed samples to increase the classification loss while the classifier is trained on the hard sam-
ples to improve generalization. In addition, the generator can handle multiple sample mixing cases.
The experimental results on the six datasets demonstrate the efficacy of our approach.
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A APPENDIX

A.1 DATASET INFORMATION

We briefly introduce image datasets used in this paper. (1) CIFAR-100 (Krizhevsky et al., 2009)
contains 50,000 training images and 10,000 test images in 32 × 32 resolutions, with 100 class
settings. (2) Tiny-ImageNet (Chrabaszcz et al., 2017) contains 10,000 training images and 10,000
validation images of 200 classes in 64 × 64 resolutions. (3) ImageNet-1K (Krizhevsky et al., 2012)
contains 1,281,167 training images and 50,000 validation images of 1000 classes. (4) CUB-200-
2011 (Wah et al., 2011) contains 11,788 images from 200 wild bird species. FGVC-Aircrafts (Maji
et al., 2013) contains 10,000 images of 100 classes of aricrafts and Standford-Cars (Krause et al.,
2013) contains 8,144 training images and 8,041 test images of 196 classes.

A.2 EXPERIMENTS HYPERPARAMETERS DETAILS

In our work, the feature layer l is set to 3, and the momentum coefficient starts from ξ = 0.999 and
is increased to 1 in a cosine curve. Also, AdAutoMix uses the same set of hyperparameters in all
experiments as follows: α=0.5, β=0.3, λ=1.0, N=3 or N=2.

A.3 EXPERIMENTS IMPLEMENTATION DETAILS

On CIFAR100, RandomFlip and RandomCrop with 4-pixel padding are used as basic data aug-
mentations for images with size 32 × 32. For ResNet18 and ResNeXt50, we use the following
experimental setting: SGD optimizer with momentum of 0.9, weight decay of 0.0001, batch size of
100, and training with 800 epochs. The basic learning rate is 0.1, dynamically adjusted by the co-
sine scheduler; CIFAR version of ResNet variants are used, i.e., replacing the 7× 7 convolution and
MaxPooling by a 3×3 convolution. To train Vit-based approaches, e.g. Swin-Tiny Transformer, we
resize images to 224× 224 and train them with AdamW optimizer with weight decay of 0.05, batch
size of 100, and total training 200 epochs. The basic learning rate is 0.0005, dynamically adjusted
by the cosine scheduler. For ConvNeXt-Tiny training, the images keep the 32 × 32 resolution, and
we train it based on the setting of Vit-based approaches except for the basic learning rate of 0.002.
the α and β are set to 0.5 and 0.3 for CIFAR on ResNet18 and ResNeXt50.

On Tiny-ImageNet, RandomFlip and RandomResizedCrop for 64 × 64 are used as basic data aug-
menting. Except for a learning rate of 0.2 and training over 400 epochs, training settings are similar
to the ones used in CIFAR100.

On ImageNet-1K, we use a Pytorch-style training setup, which optimizes the model for 100 epochs
by SGD optimizer with a batch size of 256, a basic learning rate of 0.1, the SGD weight decay of
0.0001, and the SGD momentum of 0.9.

On CUB-200, FVGC-Aircrafts and Standford-Cars, we use the official PyTorch pre-trained models
on ImageNet-1k are adopted as initialization, using SGD optimizer with momentum of 0.9, weight
decay of 0.0005, batch size of 16, 200 epochs, learning rate of 0.001, dynamically adjusted by cosine
scheduler. the α and β are set to 0.5 and 0.1.

A.4 DETAILS OF THE EXPERIMENTS FOR THE OTHER MIXUP

You can access detailed experimental settings and results at https://github.com/Westlake-
AI/openmixup, which also provides the open-source code for most of the compared Mixup methods.

A.5 RESULTS OF CALIBRATION

Table 6: The expected calibration error (ECE) of ResNet18 and Swin-Tiny Transformer (Swin-Tiny)
with various Mixup methods trained on CIFAR100 dataset for 200 epochs.

Classifiers Mixup CutMix FMix GridMix PuzzleMix AutoMix AdAutoMix
ResNet18 15.3 4.4 8.9 6.5 3.7 3.4 3.2 (-0.2)
Swin-Tiny 13.4 10.1 9.2 9.3 16.7 10.5 9.2 (-0.0)
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Figure 7: Calibration plots of Mixup variants and AdAutoMix on CIFAR-100 using ResNet-18.
The red line indicates the expected prediction tendency.

A.6 THE ACCURACY OF VARIOUS MIXUP APPROACHES ON OCCLUSION IMAGE SET

Table 7: The accuracies of ResNet50 and Swin-Tiny Transformer trained by various Mixup ap-
proaches on CIFAR100 and CUB200 datasets with different occlusion ratios.

Swin-Tiny Transformer on CIFAR100
Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
MixUP 76.82 74.54 71.88 67.98 63.18 55.26 44.20 30.07 15.69 6.14
PuzzleMix 80.45 78.98 77.52 75.47 71.16 64.42 53.40 38.53 21.39 7.91
AutoMix 82.68 81.40 79.05 75.44 70.61 64.30 55.25 40.92 23.09 9.73
AdAutoMix 84.33 82.41 80.16 76.84 72.09 66.74 58.09 46.48 28.02 9.91

ResNet-50 on CUB200
Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Vanilla 82.15 74.75 61.89 46.24 30.81 16.67 8.94 4.63 2.23 1.07
CutMix 83.05 76.45 64.44 50.86 39.47 28.99 20.78 14.46 8.64 2.21
PuzzleMix 84.01 80.99 76.01 68.45 58.15 43.44 28.41 15.38 5.76 2.39
AutoMix 84.10 81.90 78.05 73.18 64.96 51.21 36.85 22.35 8.63 3.88
AdAutoMix 84.57 82.46 80.16 75.84 66.19 55.74 40.19 25.44 10.04 4.39

0% Occlusion 30% Occlusion 50% Occlusion 70% Occlusion 90% Occlusion

Figure 8: The images with different occlusion ratios.

A.7 THE CURVES OF EFFICIENCY AGAINST ACCURACY

The training time of various mixup data augmentation approaches against accuracy is shown in
Fig. 9. AdAutoMix take more computation time, but it consistently outperforms previous state-of-
the-art methods with different ResNet architectures on different datasets.
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Figure 9: The plot of efficiency vs. accuracy

A.8 ADAUTOMIX MODULES EXPERIMENT

Table 8 lists the accuracy of our AdAutoMix by gradually increasing regularization terms. The
experimental results imply that each regularization term is capable of improving the robustness of
AdAutoMix.
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Table 9 shows the accuracy of our AdAutoMix with different λ. The experimental results show that
AdAutoMix with λ= 1 as default achieves the best performances on CIFAR100 dataset.

Table 10 shows the accuracy of our AdAutoMix with different input image number N . From Table
10, we can see that AdAutoMix achieve the highest accuracy with N=3 on CIFAR100.

Table 8: Loss function experiments on CIFAR100 based on ResNet18.
Method Base Base+0.5Lace Base+0.5Lace + 0.5Lmce Base+0.5Lace + 0.5Lmce Base+0.5Lace + 0.5Lmce

−0.3Lamce −0.3Lamce + 0.7Lcosine

ResNet18 79.38 79.98 80.04 81.32 81.55

Table 9: Classification accuracy of ResNet 18 with different λ ratio.
CIFAR100

Method 0.2 1.0 2.0 5.0 10.0
ResNet18 82.27 82.32 81.73 80.02 81.05
ResNeXt50 84.22 84.40 83.99 84.31 83.63

Table 10: Classification accuracy of ResNet18 trained by AdAutoMix with different input image
number N , where N = 1 means that it is vanilla method.

CIFAR100
inputs Top1-Acc(%) Top5-Acc(%) Times s/iter
N = 1 78.04 94.60 0.1584
N = 2 82.16 95.88 0.1796
N = 3 82.32 95.92 0.2418
N = 4 81.78 95.68 0.2608
N = 5 80.79 95.80 0.2786

A.9 ACCURACY OF RESNET-18 TRAINED BY ADAUTOMIX WITH AND WITHOUT
ADVERSARIAL METHODS.

Figure10 shows the accuracy of ResNet-18 trained by our AdAutoMix with and without adversarial
training on CIFAR100. The experimental results demonstrate AdAutoMix with adversarial training
achieves higher classification accuracy on CIFAR100 dataset, which implies that the proposed ad-
versarial framework is capable of generating harder samples to improve the robustness of classifier.

ResNet-18 on CIFAR100

Figure 10: The Top-1 accuracy plot of AdAutoMix training with and without adversarial methods.

A.10 COMPARISON WITH OTHER ADVERSARIAL DATA AUGMENTATION

We further compare Mixup (Zhang et al., 2017) and our AdAutoMix with existing Adversarial
Data Augmentation methods, e.g. DADA (Li et al., 2020), ME-ADA (Zhao et al., 2020), and
SAMix (Zhang et al., 2023). Table 11 depicts the classification accuracy of various approaches.
The experimental results in Table 11 demonstrate that our AdAutoMix outperforms existing Adver-
sarial Data Augmentation methods and achieves the highest accuracy on the CIFAR100 dataset.
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Table 11: Experiments with AdAutoMix and other Adversarial Data Augmentation methods.
Baseline MixUp DADA ME-ADA SAMix AdAutoMix

ResNet-18 76.42 78.52 78.86 77.45 54.01 81.55

A.11 ALGORITHM OF ADAUTOMIX

Algorithm 1 AdAutoMix training process
Input: Encoder Eφ, Eφ̂, Classifier ψW , ψŴ , Samples S, lambda λ, Generator Gθ(·), coefficient ξ

and feature map zln
1: Eφ̂.parmas = Eφ.params

2: for X,Y in S loder do
3: zln = Eφ̂(X)
4: xmix = Gθ(z

l
n, λ)

5: Lamce = ψW (xmix, λ,Y)
6: Lâmce, Lcosine = ψ

Ŵ
(xmix, λ,Y)

7: for 1 < t1 < T1 do
8: Update W (t+ 1) according to Eq.14
9: end for

10: for 1 < t2 < T2 do
11: Update θ(t+ 1) according to Eq.16
12: end for
13: Update(Eφ̂.params,Eφ.params)

14: Eφ̂.params = ξ ∗ Eφ̂.params+ (1− ξ) ∗ Eφ.params
15: end for

B VISUALIZATION OF MIXED SAMPLES

B.1 CLASS ACTIVATION MAPPING (CAM) OF DIFFERENT MIXUP SAMPLES.

The Class activation mapping (CAM) of various Mixup models are shown in Fig. 11.
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Figure 11: The class activation map of various Mixup models (λ = 0.5).
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B.2 MIXED SAMPLES ON CUB-200

The mixed samples generated by our approach trained on CUB200 dataset are depicted in Fig. 12.

Figure 12: Visualization of mixed samples on CUB-200.

B.3 MIXED SAMPLES ON CIFAR100

The mixed samples generated by our approach trained on CIFAR100 dataset are shown in Fig. 13.

Figure 13: Visualization of mixed samples on CIFAR100.
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B.4 DIVERSITY OF SAMPLES GENERATED BY VARIOUS APPROACHES

To demonstrate that AdAutoMix is capable of generating diversity samples, we show the synthesis-
ing images of AdAutoMix and AutoMix on ImageNet-1K. From Fig. 14, we can see that AdAu-
toMix produces mixed samples with more differences. By contrast, AutoMix generates similar
images at different iteration epochs, which implies that the proposed AdAutoMix has the capacity
to produce diverse images by adversarial training.
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Figure 14: Mixed samples with different epochs.
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