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Secrets of Event-based Optical Flow, Depth and
Ego-motion Estimation by Contrast Maximization

Shintaro Shiba , Yannick Klose, Yoshimitsu Aoki , and Guillermo Gallego

Abstract—Event cameras respond to scene dynamics and provide signals naturally suitable for motion estimation with advantages,
such as high dynamic range. The emerging field of event-based vision motivates a revisit of fundamental computer vision tasks related
to motion, such as optical flow and depth estimation. However, state-of-the-art event-based optical flow methods tend to originate in
frame-based deep-learning methods, which require several adaptations (data conversion, loss function, etc.) as they have very
different properties. We develop a principled method to extend the Contrast Maximization framework to estimate dense optical flow,
depth, and ego-motion from events alone. The proposed method sensibly models the space-time properties of event data and tackles
the event alignment problem. It designs the objective function to prevent overfitting, deals better with occlusions, and improves
convergence using a multi-scale approach. With these key elements, our method ranks first among unsupervised methods on the
MVSEC benchmark and is competitive on the DSEC benchmark. Moreover, it allows us to simultaneously estimate dense depth and
ego-motion, exposes the limitations of current flow benchmarks, and produces remarkable results when it is transferred to
unsupervised learning settings. Along with various downstream applications shown, we hope the proposed method becomes a
cornerstone on event-based motion-related tasks. Code is available at https://github.com/tub-rip/event based optical flow

Index Terms—Event camera, Asynchronous sensors, Optical flow, 3D reconstruction, Camera motion estimation, High dynamic range.

✦

1 INTRODUCTION

E VENT cameras are novel bio-inspired vision sensors
that naturally respond to motion of edges in image

space with high dynamic range (HDR) and minimal blur
at high temporal resolution, on the order of µs [1]. These
advantages provide a rich signal for accurate motion es-
timation in difficult real-world scenarios for frame-based
cameras. However, such a signal is asynchronous and sparse
by nature, hence not compatible with traditional computer
vision algorithms. This poses the challenge of rethinking
visual processing [2], [3]: motion patterns (i.e., optical flow)
are no longer obtained by analyzing the intensities of images
captured at regular intervals, but by analyzing the stream of
per-pixel brightness changes produced by the event camera.

Multiple methods have been proposed for event-based
optical flow estimation. They can be broadly categorized in
two: (i) model-based methods, which investigate the princi-
ples and characteristics of event data that enable optical flow
estimation, and (ii) learning-based methods, which exploit
correlations in the data and/or apply the above-mentioned
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Figure 1: DSEC test sequences (interlaken 00b, thun 01a)
[5]. Our optical flow estimation method produces sharp im-
ages of warped events (IWE) despite the scene complexity,
the large pixel displacement and the high dynamic range.

principles to compute optical flow. One of the challenges of
event-based optical flow is the lack of ground truth flow in
real-world datasets (at µs resolution and HDR) [2], which
makes it difficult to evaluate and compare the methods
properly, and to train supervised-learning ones. Ground
truth (GT) in de facto standard datasets [4], [5] is obtained
by the motion field [6] given additional depth sensors and
camera motion. However, such data is limited by the field-
of-view (FOV) and resolution (spatial and temporal) of the
depth sensor, which do not match those of event cameras.
Hence, it is paramount to develop interpretable optical flow
methods that exploit the characteristics of event data, and
that do not need costly and error-prone ground truth.

Among prior work, Contrast Maximization (CM) [7], [8]
is a powerful framework that allows us to tackle multiple
motion estimation problems (rotational motion [9]–[12], ho-
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Figure 2: Overview. The proposed method solely relies on event data. It not only estimates optical flow, but can also estimate
scene depth and ego-motion simultaneously from a monocular or stereo event camera setup. Furthermore, the estimated
flow enables various downstream applications such as motion segmentation, intensity reconstruction and event denoising.

mographic motion [7], [13], [14], feature flow estimation
[15]–[18], motion segmentation [19]–[22], and also recon-
struction [7], [23], [24]). It maximizes an objective function
(e.g., contrast) that measures the alignment of events caused
by the same scene edge. The intuitive interpretation is
to estimate the motion by recovering the sharp (motion-
compensated) image of edge patterns that caused the events.
Preliminary work on applying CM to estimate optical flow
has reported event collapse [25], [26], producing flows at
undesired optima that warp events to few pixels or lines
[27]. This issue has been tackled by changing the objective
function, from contrast to the energy of an average times-
tamp image [27], [28], but this loss is not straightforward to
interpret [8], [29], and is not without its problems [30].

The state-of-the-art performance of CM in low degrees-
of-freedom (DOF) motion estimations and its issues in more
complex motions (dense flow) suggests that prior work may
have rushed to use CM in unsupervised learning of dense
flow. There is a gap in understanding how CM can be sensi-
bly extended to estimate dense optical flow accurately. This
paper fills this gap and shows a few “secrets” that are also
applicable to overcome the issues of previous approaches.

We propose to extend CM for dense optical flow esti-
mation via a tile-based approach covering the image plane
(Fig. 1). We present several distinctive contributions:

1) A multi-reference focus loss function to improve ac-
curacy and discourage overfitting (Sec. 3.2).

2) A principled time-aware flow to better handle occlu-
sions, leveraging the solution of transport problems
via differential equations (Sec. 3.3).

3) A multi-scale approach to improve convergence to
the solution and avoid getting trapped in local op-
tima (Sec. 3.4).

Optical flow is a fundamental visual quantity related
to many others, such as camera motion and scene depth.
Hence, in this paper we exploit these connections, in monoc-
ular and stereo configurations, and show how a dense flow
can serve to tackle various related problems in event-based
vision, such as depth estimation, motion segmentation, etc.
(Fig. 2). This paper is based on our previous work [31],
which we substantially extend in the following points:

1) We introduce a new objective function that im-
proves both flow and depth estimation (Sec. 3.2.1).

2) We tackle stationary scenes, estimating monocular
depth and ego-motion jointly (Secs. 3.6.1 and 4.4).

3) We also address the stereo setup (Secs. 3.6.2 and 4.5).
4) We discuss current optical flow benchmarks, evalu-

ations and “GT” flow (Sec. 4.2.5).
5) We provide experiments on downstream applica-

tions of optical flow: motion segmentation, intensity
reconstruction, and denoising (Sec. 4.3).

6) We show experiments on 1Mpixel event cameras,
the most recent event camera datasets: TUM-VIE
[32] and M3ED [33], both in flow (Sec. 4.2.4) and
depth estimation (Sec. 4.4.3).

7) We extend the discussion on computational perfor-
mance and limitations (Secs. 6 and 7).

The results of our experimental evaluation are surpris-
ing: the above design choices are key to our simple, model-
based tile-based method achieving the best accuracy among
all state-of-the-art methods, including supervised-learning
ones, on the de facto benchmark of MVSEC indoor se-
quences [34]. Since our method is interpretable and pro-
duces better event alignment than the ground truth flow,
both qualitatively and quantitatively, the experiments also
expose the limitations of the current “ground truth”. The
experiments demonstrate that the above key choices are
transferable to unsupervised learning methods, thus guid-
ing future design and understanding of more proficient
Artificial Neural Networks (ANNs) for event-based optical
flow estimation. Finally, the method allows us to solve many
motion-related applications, thus becoming a cornerstone in
event-based vision.

Because of the above, we believe that the proposed de-
sign choices deserve to be called “secrets” [35]. To the best of
our knowledge, they are novel in the context of event-based
optical flow, depth and ego-motion estimation, e.g., no prior
work considers constant flow along its characteristic lines,
designs the multi-reference focus loss to tackle overfitting,
or has defined multi-scale (i.e., multi-resolution) contrast
maximization on the raw events.

2 RELATED WORK

2.1 Event-based Optical Flow Estimation
Given the identified advantages of event cameras to esti-
mate optical flow, extensive research on this topic has been
carried out. Prior work has proposed adaptations of frame-
based approaches (block matching [36], Lucas-Kanade [37]),
filter-banks [38], [39], spatio-temporal plane-fitting [40], [41],
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time surface matching [42], variational optimization on vox-
elized events [43], and feature-based contrast maximization
[7], [15]. For a detailed survey, we refer to [2].

Current state-of-the-art approaches are ANNs [27], [30],
[34], [44]–[46], largely inspired by frame-based optical flow
architectures [47], [48]. Non-spiking–based approaches need
to additionally adapt the input signal, converting the events
into a tensor representation (event frames, voxel grids,
etc.). These learning-based methods can be classified into
supervised, semi-supervised, or unsupervised (see Tab. 1).
In terms of architectures, the three most common ones are
U-Net [34], [49], FireNet [28], and RAFT [44], [50].

Supervised methods train ANNs in simulation and/or
real-data [44], [49]–[54]. This requires accurate GT flow that
matches the space-time resolution of event cameras. While
this is not a problem in simulation, it incurs a performance
gap when trained models are used to predict flow on real
data, due to often a large domain gap between training and
test data [52], [55]. Besides, real-world datasets have issues
in providing accurate GT flow.

Semi-supervised methods use the grayscale images from
a colocated camera (e.g., DAVIS [56]) as a supervisory signal:
images are warped using the flow predicted by the ANN
and their photometric consistency is used as loss function
[34], [45], [46]. While such supervisory signal is easier to
obtain than real-world GT flow, it may suffer from the lim-
itations of frame-based cameras (e.g., motion blur and low
dynamic range), consequently affecting the trained ANNs.
EV-FlowNet [34] pioneered these approaches.

Unsupervised methods rely solely on event data. Their
loss function consists of an event alignment error using the
flow predicted by the ANN [27], [28], [30], [57]–[59]. Zhu et
al. [27] extended EV-FlowNet [34] to the unsupervised set-
ting using a motion-compensation loss inspired by the aver-
age timestamp images in [19]. This U-Net–like approach has
been improved with recurrent blocks in [28], [30]. Paredes-
Vallés et al. [28] also proposed FireFlowNet, a lightweight
recurrent ANN with no downsampling. More recently, [30]
has proposed several variants of EV-FlowNet and Fire-
FlowNet models, and, enabled by the recurrent blocks, has
replaced the usual voxel-grid input event representation
by sequentially processing short-time event frames. Finally,
concurrent work [59] builds upon [30] (sequential process-
ing of event frames), proposing iterative event warping at
multiple reference times in a multi-timescale fashion, which
allows curved motion trajectories.

2.2 Event-based Depth and Ego-Motion Estimation

Having estimated optical flow, one could try to fit a depth
map and camera ego-motion a posteriori consistent with the
flow [60]. Instead, it is better to incorporate the assumption
of a still scene and a moving camera on the parameterization
of the flow using the motion field equation [6]. While this
connection exists, the topic of joint ego-motion and dense
depth estimation via the motion field is not as explored
as optical flow estimation. The problem is difficult, and
often one settles for estimating depth alone, with or without
knowledge of the camera motion [23], [61], [62].

Closest to our work are [27], [57] because they estimate
a depth-parameterized motion field that best fits the event

data. They do so by training ANNs in an unsupervised way.
The loss functions are based on the energy of an average
timestamp image [27] or on the photometric consistency of
edge-maps warped by the predicted flow [57].

Similar to the above-mentioned unsupervised-learning
works, our method produces dense optical flow and/or
depth and does not need ground truth or additional su-
pervisory signals. In contrast to prior work, we adopt a
more classical modeling perspective to gain insights into the
problem and discover principled solutions that can subse-
quently be applied to the learning-based setting. Stemming
from an accurate and spatially-dependent contrast loss (the
gradient magnitude [8]), we model the problem using a
tile of patches (in flow or depth parameters) and propose
solutions to several problems: overfitting, occlusions, and
convergence. To the best of our knowledge, (i) no prior
work has proposed to estimate dense optical flow and/or
dense depth from a CM model-based perspective, and (ii)
no prior unsupervised learning approach based on mo-
tion compensation has succeeded in estimating optical flow
without the average timestamp image loss. The latter may
be due to event collapse [25], but given recent advances
on overcoming this issue [31], we show it is possible to
succeed.

3 METHOD

In this section, first we briefly revisit the Contrast Maxi-
mization framework (Sec. 3.1). Then, the proposed methods
are explained in detail: Section 3.2 proposes the new data
fidelity term of the objective function, which discourages
event collapse. Section 3.3 proposes a principled model for
optical flow that considers the space-time nature of events.
We also explain the multi-scale parameterization of the flow
(Sec. 3.4), the composite objective function (Sec. 3.5), and
the application to the problem of depth and ego-motion
estimation in monocular and stereo configurations (Sec. 3.6).

3.1 Event Cameras and Contrast Maximization
Event cameras have independent pixels that operate con-
tinuously and generate “events” ek

.
= (xk, tk, pk) whenever

the logarithmic brightness at the pixel increases or decreases
by a predefined amount, called contrast sensitivity. Each
event ek contains the pixel-time coordinates (xk, tk) of the
brightness change and its polarity pk ∈ {+1,−1}. Events
occur asynchronously and sparsely on the pixel lattice, with
a variable rate that depends on the scene dynamics.

The CM framework [7] assumes events E .
= {ek}Ne

k=1 are
caused by moving edges (i.e., brightness constancy), and
transforms them geometrically according to a motion model
W, producing a set of warped events E ′

tref

.
= {e′k}

Ne

k=1 at a
reference time tref:

ek
.
= (xk, tk, pk) 7→ e′k

.
= (x′

k, tref, pk). (1)

The warp x′
k = W(xk, tk;θ) transports each event from

tk to tref along the motion curve that passes through it.
The vector θ parameterizes the motion curves. Transformed
events are aggregated on an image of warped events (IWE):

I(x; E ′
tref
,θ)

.
=

Ne∑
k=1

δ(x− x′
k), (2)
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Figure 3: Multi-reference focus loss. Assume an edge moves
from left to right. Flow estimation with single reference time
(t1) can warp all events into a single pixel, which results
in a maximum contrast (at t1). However, the same flow
would produce low contrast (i.e., a blurry image) if events
were warped to time tNe . Instead, we favor flow fields that
produce high contrast (i.e., sharp images) at any reference
time (here, tref = t1 and tref = tNe ). See also results in Fig. 20.

where each pixel x sums the number of warped events x′
k

that fall within it. The Dirac delta is approximated by a
Gaussian, δ(x− µ) ≈ N (x;µ, ϵ2Id) with ϵ = 1 pixel. Next,
an objective function f(θ) is computed, such as the contrast
of the IWE (2), given by the variance

Var
(
I(x;θ)

) .
=

1

|Ω|

∫
Ω

(
I(x;θ)− µI

)2
dx, (3)

with mean µI
.
= 1

|Ω|
∫
Ω I(x;θ)dx. The objective function

measures the goodness of fit between the events and the
candidate motion curves (warp). Finally, an optimization
algorithm iterates the above steps until convergence. The
goal is to find the motion parameters that maximize the
alignment of events caused by the same scene edge. Event
alignment is measured by the strength of the edges of the
IWE, which is directly related to image contrast [8].

For dense optical flow motion, the warp used is [27], [28]:

x′
k = xk + (tk − tref)v(xk), (4)

where θ = {v(x)}x∈Ω is a flow field on the image plane Ω
at a set time, e.g., tref.

3.2 Multi-reference Focus Objective Function

Zhu et al. [27] report that the contrast objective (variance)
overfits to the events. This is in part because the warp (4)
can describe very complex flow fields, which can push the
events to accumulate in few pixels (i.e., event collapse [25],
[26]). To mitigate event collapse, we reduce the complexity
of the flow field by dividing the image plane into a tile
of non-overlapping patches, defining a flow vector at the
center of each patch, and interpolating the flow on all other
pixels (see Sec. 3.4). Interpolation confers smoothness of the
flow field, hence lowering complexity.

However, reducing the complexity of the estimation
parameters is not enough. Additionally, we discover that
warps that produce sharp IWEs at any reference time tref
have a regularizing effect on the flow field, discouraging
event collapse. This is illustrated in Fig. 3. In practice we
compute the multi-reference focus loss using three reference
times: t1 (min), tmid

.
= (t1 + tNe)/2 (midpoint) and tNe

(max). For each set of events, the flow field is defined only at
one reference time and then used to warp to {t1, tmid, tNe}.

Letting G be the objective function at a single reference
time (e.g., (3)), the proposed multi-reference focus objective
function is the average of the G functions:

f(θ)
.
=

(
G(θ; t1)+2G(θ; tmid)+G(θ; tNe)

)
/ 4G(0;−), (5)

normalized by the value of the G function with zero flow
(identity warp): G(0;−). We could choose different con-
vex combinations of normalized G functions and different
reference times, but the proposed combination (5) works
well in practice. The normalization in (5) provides the same
interpretation as the Flow Warp Loss (FWL) [52]: f < 1
implies the flow is worse than the zero flow baseline,
whereas f > 1 means that the flow produces sharper IWEs
than the baseline. Such an interpretation is beneficial for
model-based and unsupervised-learning methods.

Remark: Warping to two reference times (min and max)
was proposed in [27], but with important differences: (i) it
was done for the average timestamp loss, hence it did not
consider the effect on contrast or focus functions [8], and (ii)
it had a completely different motivation: to lessen a back-
propagation scaling problem, so that the gradients of the
loss would not favor events far from tref.

3.2.1 Objective Functions based on the IWE Gradient
Among the contrast functions proposed in [7], [8], we use
two functions based on the gradient of the IWE:

G(θ; tref)
.
=

1

|Ω|

∫
Ω
∥∇I(x; tref)∥q dx, (6)

with q = 1 (the L1-norm) and q = 2 (the squared L2-
norm). Both functions have the following desired properties:
(i) they are sensitive to the arrangement (i.e., permutation)
of the IWE pixel values, whereas the variance of the IWE
(3) is not, (ii) they have top accuracy performance and
converge more easily than other objectives we tested, and
(iii) they differ from the FWL [52], which is defined us-
ing the variance (3) and will be used for evaluation. The
two proposed functions have different sensitivities for the
number of accumulated events on the IWE, which affects
estimation accuracy, especially when the scene has large
variations in the number of events per pixel (e.g., scenes
with various depth). We find that using L1 improves the
results of L2 [31] in most cases, as we show in Sec. 4.

3.3 Time-aware Flow
State-of-the-art event-based optical flow approaches are
based on frame-based ones, and so they use the warp (4),
which defines the flow v(x) as a function of x (i.e., a pixel
displacement between two given frames). However, this
does not take into account the space-time nature of events,
which is the basis of CM, because not all events at a pixel x0

are triggered at the same timestamp tk. They do not need to
be warped with the same velocity v(x0). Figure 4 illustrates
this with an occlusion example taken from the slider depth
sequence [63]. Instead of v(x), the event-based flow should
be a function of space-time, v(x, t), i.e, time-aware, and each
event ek should be warped according to the flow value at
(xk, tk). Let us propose a more principled warp than (4).

To define a space-time flow v(x, t) that is compatible
with the propagation of events along motion curves, we are



5

$ % ! , !

Tower

Board

!

'! = !& ! = !$!

! $ %

!&

TowerBoard !$!

Figure 4: Time-aware Flow. Traditional flow (4), inherited
from the frame-based one, assumes per-pixel constant flow
v(x) = const, which cannot handle occlusions properly.
The proposed space-time flow assumes constancy along
streamlines, v(x(t), t) = const, which allows us to handle
occlusions more accurately. (See results in Figs. 21 and 24).

inspired by the method of characteristics [64]. Mimicking
the mainstream assumption about brightness being constant
along the true motion curves in image space, we assume
the flow is constant along its streamlines: v(x(t), t) = const
(Fig. 4). Differentiating in time and applying the chain rule
gives a system of partial differential equations (PDEs):

∂v

∂x

dx

dt
+

∂v

∂t
= 0, (7)

where, as usual, v = dx/dt is the flow. The boundary
condition is given by the flow at say t = 0: v(x, 0) = v0(x).
This system of PDEs states how to propagate (i.e., transport)
a given flow v0(x), from the boundary t = 0 to the rest of
space-time. The PDEs have advection terms and others that
resemble those of the inviscid Burgers’ equation [64] since
the flow is transporting itself. We parameterize the flow
at t = tmid (boundary condition), and propagate it to the
volume that encloses the current set of events E . We develop
two explicit methods to solve the PDEs, one with upwind
differences and one with a conservative scheme adapted to
Burgers’ terms [65]. Each event ek is then warped according
to a flow v̂ given by the solution of the PDEs at (xk, tk):

x′
k = xk + (tk − tref) v̂(xk, tk). (8)

3.4 Multi-scale Flow parameterization
Inspired by classical estimation methods, we combine our
tile-based approach with a multi-scale strategy. The goal is
to improve the convergence of the optimizer in terms of
speed and robustness (i.e., avoiding local optima).

Some learning-based works [27], [28], [34] also have a
multi-scale component, inherited from the use of a U-Net
architecture. However, they work on discretized event rep-
resentations (voxel grid, etc.) to be compatible with DNNs.
In contrast, our tile-based approach works directly on raw
events, without discarding or quantizing the temporal infor-
mation in the event stream.

Our multi-scale CM approach is illustrated in Fig. 5. For
an event set Ei, we apply the tile-based CM in a coarse-
to-fine manner (e.g., Nℓ = 5 scales). There are 2l−1 × 2l−1

tiles at the l-th scale. We use bilinear interpolation to upscale
between any two scales. If there is a subsequent set Ei+1, the
flow estimated from Ei is used to initialize the flow for Ei+1.
This is done by downsampling the finest flow to coarser
scales. The coarsest scale initializes the flow for Ei+1. For
finer scales, initialization is computed as the average of the
upsampled flow from the coarser scale of Ei+1 and the same-
scale flow from Ei.

Contrast Max

Upsample Downsample

Average

1×1

2×2

2!ℓ$#×2!ℓ$#

Next eventsℰ% ℰ%&#Current events !

Optimization Initialization

,ℓ = 5

16 × 16 tiles

Figure 5: Multi-scale Approach using tiles (rectangles) and
raw events. (See results in Fig. 22).

3.5 Composite Objective Function

To encourage additional smoothness of the flow, even in
regions with few events, we include a flow regularizer R(θ).
The flow is obtained as the solution to the problem:

θ∗ = argmin
θ

(
1

f(θ)
+ λR(θ)

)
, (9)

where, λ > 0 is the regularizer weight, and we use the total
variation (TV) [66] as regularizer. We use 1/f instead of −f
because it is convenient for ANN training (Sec. 4.2.3).

3.6 Depth and Ego-Motion Estimation

3.6.1 Monocular

For a still scene but with a moving camera, the motion
induced on the image plane has fewer DOFs than the most
general case considered so far. In this scenario, it is beneficial
to parameterize the optical flow in terms of the scene depth
Z(x) and the camera motion (linear velocity V and angular
velocity ω) via the well-known motion field equation [6]:

v(x) =
1

Z(x)
A(x)V +B(x)ω, (10)

where the 2 × 3 matrices A(x) and B(x) solely depend on
the pixel coordinate. Substituting (10) in (4) or (8) and using
it to warp events yields that the contrast is now maximized
with respect to the depth and camera motion parameters
while the flow v acts as an intermediate variable.

Similarly to Sec. 3.4, we parameterize the depth Z(x)
using a tile of patches, which results in 6 + Npatch DOFs
(instead of 2Npatch DOFs). By doing this, we not only reduce
the complexity of the estimation but also demonstrate the
extensibility of the proposed method to the simultaneous
estimation of ego-motion and dense depth. Note that pa-
rameters Z(x) and V appear in a product in (10), hence
there is a scale ambiguity (typical of monocular setups).
Furthermore, we apply an exponential parameterization
ρ 7→ Z

.
= eaρ+b to avoid negative depth predictions. To

mitigate isolated patches with very large depth values we
apply median filters [35] and a Charbonnier loss [67] for
regularization.

Note that the motion field parameterization (10) is not
supposed to handle independently moving objects (IMOs),
although it is effective in many event-based optical flow
benchmarks (e.g., Secs. 4.2.1 and 4.2.2). We discuss the
validity and the limitations of optical flow benchmarking
in Sec. 4.2.5, as well as the comprehensive results in Sec. 4.4.
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3.6.2 Stereo
The proposed method can be extended to stereo config-
urations. Parameterizing scene depth and ego-motion on
the left camera and using the extrinsic parameters of the
stereo setup, we can compute the depth and the motion on
the right camera (e.g., by warping the left depth map onto
the right camera using the nearest neighbor interpolation).
Having depth and ego-motion on each camera, we define
the objective function as the sum:

θ∗ = argmin
θ

(
1

fl(θ)
+ λRl(θ) +

1

fr(θ)
+ λRr(θ)

)
, (11)

where the parameters θ are only those of the left camera.
In prior works of stereo depth estimation [68], one of the

main challenges is how to find correspondences between
event streams from multiple cameras. This is a non-trivial
problem and is prone to event noise. The proposed method
bypasses the event-to-event correspondence problem by
parameterizing the depth densely on the whole image plane
of one camera and transferring it to the other camera.

Summarizing Remark: All the proposals in Sec. 3 are for-
mulated in the form of an optimization problem, and they
are theoretically extensible to learning-based approaches
(DNNs), since they are fully differentiable. We will show an
example of the learning-based flow estimation in Sec. 4.2.3.
Hence, our work provides model-based approaches that can
act as baselines for the development of learning-based meth-
ods in the context of event-based optical flow, monocular
depth, ego-motion, and stereo depth estimation problems.

4 EXPERIMENTS

We assess the performance of our method on seven datasets,
which are presented in Sec. 4.1. We provide a compre-
hensive evaluation of optical flow estimation in Sec. 4.2.
Additionally, we demonstrate the learning-based extension
(DNN) (Sec. 4.2.3), discuss current optical flow benchmarks
(Sec. 4.2.5), and show downstream applications (Sec. 4.3).
The results of depth and ego-motion estimation are pre-
sented in Sec. 4.4 (monocular) and Sec. 4.5 (stereo).

4.1 Datasets, Metrics and Hyper-parameters
The proposed method works robustly on data comprising
different camera motions, scenes, and spatial resolutions.
We conduct experiments on the following seven datasets.

Datasets. First, we evaluate our method on sequences
from the MVSEC dataset [4], [34], which is the de facto
standard dataset used by prior works to benchmark opti-
cal flow. The dataset contains sequences recorded indoors
with a drone, and outdoors with a car. It provides events,
grayscale frames, IMU data, camera poses, and scene depth
from a LiDAR [4]. The dataset was extended in [34] to
provide ground truth (GT) optical flow, computed as the
motion field [6] given the camera velocity and the depth
of the scene. Notice that the indoor sequences do not have
IMOs, and the outdoor sequences do not include scenes
with IMOs in the benchmark evaluation. The event camera
has 346× 260 pixel resolution [56]. In total, we evaluate on
63.5 million events spanning 265 seconds. We quantitatively
and qualitatively show results on flow, depth, and ego-
motion estimation.

We also evaluate on a recent dataset that provides
ground truth flow: DSEC [44]. It consists of sequences
recorded with Prophesee Gen3 event cameras (stereo), of
higher resolution (640 × 480 pixels), mounted on a car.
Optical flow is also computed as the motion field, with the
scene depth given by a LiDAR. The flow benchmark con-
tains scenes with IMOs, but performance is assessed only
in non-IMO pixels (where the GT from the motion field is
valid). In total, we evaluate on 3 billion events spanning the
208 s of the test sequences. We quantitatively/qualitatively
show results of flow and stereo depth estimation.

Additionally, we carry out experiments on two HD res-
olution event camera datasets, TUM-VIE [32] and M3ED
[33], recorded with stereo Prophesee Gen4 event cameras
(1280 × 720 pixels, i.e., 1 Mpixel). The TUM-VIE dataset
consists of indoor and outdoor sequences recorded with
the sensor rig mounted on a helmet. In the M3ED dataset
the sensor rig is mounted on a car (outdoor), a quadruped
robot (outdoor), and a drone (indoor and outdoor). We show
qualitative results for the flow and depth estimation since
the GT data for M3ED is not available at submission time.

The ECD dataset [63] is a lower resolution, standard
dataset to assess camera ego-motion [9], [16], [25], [69]–[72].
Each sequence provides events, frames, calibration informa-
tion, and IMU data from a DAVIS240C camera (240 × 180
pixels [73]), as well as ground truth camera poses from
a motion capture system (at 200Hz). We use slider depth
and simulation 3planes sequences for depth and ego-motion
estimation. In the first sequence the event camera moves
along a motorized linear slider, recording objects at different
depths. The second sequence is synthetic with a circular
camera trajectory; since it provides ground truth depth,
we report quantitative metrics for depth and ego-motion
estimation accuracy. In total, we evaluate on 1.1 million
events (3 s) of the slider sequence and on 6.8 million events
(2 s) of the simulation sequence.

Finally, we also test sequences from two motion segmen-
tation datasets [20], [21]. The sequences in EMSMC [20] are
recorded using a hand-held DAVIS240C camera (240 × 180
pixels). The sequences in EMSGC [21] are recorded with
a hand-held DAVIS346 camera (346 × 260 pixels). Both
datasets consist of small camera motions and several IMOs
in the scene. We demonstrate qualitative results of flow
estimation and its application to motion segmentation.

Evaluation Metrics. The metrics used to assess optical
flow accuracy are the average endpoint error (AEE), the an-
gular error (AE), and the percentage of pixels with AEE > 3
pixels (denoted by “% Out”), all measured over pixels with
valid GT and at least one event in the evaluation interval.
We also use the FWL metric (the IWE variance relative to
that of the identity warp) to assess event alignment [52].

For depth accuracy evaluation, we use standard metrics
following previous work on monocular depth estimation
[57], [74]. The depth error metrics are SiLog, Absolute Rel-
ative Difference (denoted by “AbsRelDiff”), and the loga-
rithmic RMSE (“logRMSE”). While SiLog is scale-invariant,
we substitute the prediction using the mean of the GT for
AbsRelDiff and logRMSE. We furthermore report depth ac-
curacy metrics that compute the percentage of pixels whose
relative depth with respect to GT is smaller than a threshold.
We use three common thresholds: δ < {1.25, 1.252, 1.253},
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denoted by “A1”, “A2” and “A3”, respectively.
Hyper-parameters. For flow estimation our method uses

Nℓ = 5 resolution scales, λ = 0.0025 in (9), and the Newton-
CG optimization algorithm with a maximum of 30 iterations
per scale. The flow at tmid is transported to each side via the
upwind or Burgers’ PDE solver (using 5 bins for MVSEC,
40 for DSEC), and used for event warping (8) (see [31]). In
the optimization, we use 30k events for MVSEC indoor se-
quences, 40k events for outdoors, 50k events for ECD, 1.5M
events for DSEC, 1.8M events for TUM-VIE and M3ED, and
5k events for the motion segmentation examples.

The number of events was selected guided by the bench-
marks and/or experimentally, based on the variables that af-
fect the event generation (camera’s spatial resolution, scene
texture, motion, etc.) and the CM method (edges should
displace enough, e.g., three pixels, see [18]). The estimated
flow is scaled and aligned with the benchmark timestamps,
if necessary (e.g., MVSEC). There is a trade-off: too few
events, then CM does not work (scarce data and there is
not enough displacement to have a good objective function
landscape); too many events, and the method may not
produce a good fit if the constant optical flow assumption
does not hold during the time span of the events.

Since the motion-field parameterization reduces the
complexity of the problem, we successfully use finer scales
Nℓ = 6 for MVSEC/DSEC and Nℓ = 7 for the 1 Mpixel
datasets. By increasing the patch level in static scenes, we
expect finer and better flow estimates. While we initialize
depth between event packets with the same strategy as that
of optical flow, we do not propagate the linear velocity to
the subsequent packet in order to avoid errors when abrupt
motion changes happen (e.g., during velocity sign changes).

4.2 Optical Flow Estimation

4.2.1 Results on the MVSEC benchmark
We first report the results on the MVSEC benchmark (Ta-
ble 1). The different methods (rows) are compared on one
outdoor and three indoor sequences (columns). This is
because many learning-based methods train on the other
outdoor sequence, which is therefore not used for testing.
Following Zhu et al., outdoor day1 is tested only on speci-
fied 800 frames [34]. The top part of Tab. 1 reports the flow
corresponding to a time interval of dt = 1 grayscale frame
(at ≈ 45Hz, i.e., 22.2ms), and the bottom part corresponds
to dt = 4 frames (89ms).

The table is comprehensive, showing where the pro-
posed methods stand compared to prior work. Our methods
provide the best results among all methods in all indoor
sequences and are the best among the unsupervised and
model-based methods in the outdoor sequence. The errors
for dt = 4 are about four times larger than those for dt = 1,
which is sensible given the ratio of time interval durations.

Among different variations of the proposed methods, we
observe that (i) the motion field parameterization achieves
better accuracy than the direct parameterization of the flow
in indoor sequences, (ii) there are no significant differences
between the three versions of the flow warp models, and
(iii) the L1 loss improves accuracy over L2. Elaborating on
these three points, (i) the effectiveness of the motion field
estimation indoors is due to a good match between the

model assumptions and the data (there are no IMOs in the
scene), and outdoors depth estimation is generally difficult
for driving sequences. (ii) The negligible difference between
the flow warp models can be attributed to the fact that the
MVSEC dataset does not comprise large pixel displacements
or occlusions, which is further discussed in Sec. 5.2. (iii) The
L1 norm grows more slowly than the L2 norm along the
increased number of accumulated events in the IWE. This
property makes the L1 objective function more sensitive to
the areas with few events (e.g., pixels of far away objects),
resulting in better estimation accuracy.

Qualitative results are shown in Fig. 6, where we com-
pare our method against the state-of-the-art learning-based
methods. Our method provides sharper IWEs than the
baselines, without overfitting, and the estimated flow re-
sembles the GT. We display flow masked by the events,
for consistency with the benchmark. Recall that our method
interpolates the flow at pixels with zero events. The USL
result [30] is obtained using its official implementation,
comprising a recurrent model that sequentially processes
sub-partitions of event data. Notice that we use the event
mask of the full timestamps (dt = 4), which agrees with the
quantitative evaluation for a consistent discussion.

Ground truth is not available on the entire image plane
(see Fig. 6), such as in pixels not covered by the LiDAR’s
range, FOV, or spatial sampling. Additionally, there may be
interpolation issues in the GT, since the LiDAR works at 20
Hz and the GT flow is given at frame rate (45 Hz). In the
outdoor sequences, the GT from the LiDAR and the camera
motion cannot provide correct flow for IMOs. These issues
of the GT are noticeable in the IWEs: they are not as sharp
as expected. In contrast, the IWEs produced by our method
are sharp.

4.2.2 Results on the DSEC benchmark

Table 2 gives quantitative results on the DSEC Optical Flow
benchmark. No GT flow is available for these test sequences.
The proposed methods are compared with an unsupervised-
learning method [59] (Sec. 2) and a supervised-learning
method E-RAFT [44]. E-RAFT is an ANN that extracts
features in event correlation volumes via an iterative update
scheme instead of using a U-Net architecture. This version of
RAFT [48] was introduced along with the DSEC flow bench-
mark and showed it can estimate pixel correspondences for
large displacements. As expected, E-RAFT is better than
ours in terms of flow accuracy because (i) it has additional
training information (GT labels), and (ii) it is trained using
the same type of GT signal used in the evaluation. Never-
theless, our method provides sensible results and is better
in terms of FWL, which exposes similar GT quality issues
as those of MVSEC: many pixels have no GT (LiDAR’s FOV
and IMOs). This is also confirmed in the qualitative results
(Fig. 7). Our method provides sharp IWEs, even for IMOs
(car) and the road close to the camera. We further discuss
the issue of IMOs in the flow benchmarks in Sec. 4.2.5.

Remarkably, the proposed methods achieve competitive
results in terms of flow accuracy with the unsupervised-
learning method [59]. Among different variations, the “Flow
(L1)” achieves the most competitive results for all sequences
except for zurich city 12a, a night sequence. The night
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Table 1: Results on MVSEC dataset [34]. Methods are sorted according to how much data they need: supervised learning
(SL) requires ground truth flow; semi-supervised learning (SSL) uses grayscale images for supervision; unsupervised
learning (USL) uses only events; and model-based (MB) needs no training data. Bold is the best among all methods;
underlined is second best. The results of Nagata et al. [42] are scaled to dt = 1.

indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓
In

te
rv

al
du

ra
ti

on
d
t
=

1

SL

EV-FlowNet-EST [51] 0.97 0.91 1.38 8.20 1.43 6.47 – –
EV-FlowNet+ [52] 0.56 1.00 0.66 1.00 0.59 1.00 0.68 0.99
E-RAFT [44] – – – – – – 0.24 1.70
E-RAFT [50] 1.10 5.72 1.94 30.79 1.66 25.20 0.24 0.00
DCEIFlow [75] 0.75 1.55 0.90 2.10 0.80 1.77 0.22 0.00
TMA [50] 1.06 3.63 1.81 27.29 1.58 23.26 0.25 0.07
EVA-Flow [76] – – – – – – 0.25 0.00
Spiking-UNet [49] 0.58 – 0.72 – 0.67 – 1.97 –
ADM-Flow [54] 0.52 0.14 0.68 1.18 0.52 0.04 0.41 0.00

SSL
EV-FlowNet (original) [34] 1.03 2.20 1.72 15.10 1.53 11.90 0.49 0.20
Spike-FlowNet [46] 0.84 – 1.28 – 1.11 – 0.49 –
Ziluo et al. [45] 0.57 0.10 0.79 1.60 0.72 1.30 0.42 0.00

USL

EV-FlowNet [27] 0.58 0.00 1.02 4.00 0.87 3.00 0.32 0.00
EV-FlowNet (retrained) [28] 0.79 1.20 1.40 10.90 1.18 7.40 0.92 5.40
FireFlowNet [28] 0.97 2.60 1.67 15.30 1.43 11.00 1.06 6.60
ConvGRU-EV-FlowNet [30] 0.60 0.51 1.17 8.06 0.93 5.64 0.47 0.25
ET-FlowNet [58] 0.57 0.53 1.20 8.48 0.95 5.73 0.39 0.12
EV-MGRFlowNet [77] 0.41 0.17 0.70 2.35 0.59 1.29 0.28 0.02
ConvGRU-EV-FlowNet [59] 0.44 0.00 0.88 4.51 0.70 2.41 0.27 0.05

MB

Akolkar et al. [41] 1.52 – 1.59 – 1.89 – 2.75 –
Shiba et al. [78] 1.05 2.90 1.68 13.44 1.43 8.97 0.94 3.08
Nagata et al. [42] 0.62 – 0.93 – 0.84 – 0.77 –
Brebion et al. [79] 0.52 0.10 0.98 5.50 0.71 2.10 0.53 0.20
Cuadrado et al. [49] 0.58 – 0.72 – 0.67 – 0.85 –
Ours (w/o time aware) 0.42 0.09 0.60 0.59 0.50 0.29 0.30 0.11
Ours (Upwind) 0.42 0.10 0.60 0.59 0.50 0.28 0.30 0.10
Ours (Burgers’) 0.42 0.10 0.60 0.59 0.50 0.28 0.30 0.10
Ours (L1) 0.37 0.04 0.53 0.08 0.44 0.02 0.30 0.11
Ours (Motion field, L2) 0.30 0.00 0.50 0.00 0.36 0.00 0.32 0.19
Ours (Motion field, L1) 0.30 0.00 0.47 0.01 0.34 0.00 0.28 0.21

In
te

rv
al

du
ra

ti
on

d
t
=

4

SL

E-RAFT [50] 2.81 40.25 5.09 64.19 4.46 57.11 0.72 1.12
DCEIFlow [75] 2.08 21.47 3.48 42.05 2.51 29.73 0.89 3.19
TMA [50] 2.43 29.91 4.32 52.74 3.60 42.02 0.70 1.08
EVA-Flow [76] – – – – – – 0.82 2.41
ADM-Flow [54] 1.42 7.78 1.88 16.70 1.61 11.40 1.51 10.20

SSL
EV-FlowNet (original) [34] 2.25 24.70 4.05 45.30 3.45 39.70 1.23 7.30
Spike-FlowNet [46] 2.24 – 3.83 – 3.18 – 1.09 –
Ziluo et al. [45] 1.77 14.70 2.52 26.10 2.23 22.10 0.99 3.90

USL

EV-FlowNet [27] 2.18 24.20 3.85 46.80 3.18 47.80 1.30 9.70
ConvGRU-EV-FlowNet [30] 2.16 21.51 3.90 40.72 3.00 29.60 1.69 12.50
ET-FlowNet [58] 2.08 20.02 3.99 41.33 3.13 31.70 1.47 9.17
EV-MGRFlowNet [77] 1.50 8.67 2.39 23.70 2.06 18.00 1.10 6.22

MB

Shiba et al. [78] 4.06 53.88 6.39 71.82 5.36 65.57 3.60 49.04
Ours (w/o time aware) 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
Ours (Upwind) 1.69 12.83 2.49 26.37 2.06 19.02 1.25 9.23
Ours (Burgers’) 1.69 12.95 2.49 26.35 2.06 19.03 1.25 9.21
Ours (L1) 1.48 8.27 2.10 20.42 1.73 12.81 1.23 9.22
Ours (Motion field, L2) 1.22 5.00 2.03 19.17 1.42 8.15 1.35 10.53
Ours (Motion field, L1) 1.18 4.77 1.87 15.51 1.38 7.26 1.05 5.68

scenes have many light-induced events that are not due to
motion, and naturally the proposed methods tend to fail.

Notice that both DNN methods [44], [59] train and
evaluate on the DSEC dataset, which is dominantly forward
driving motion. As a result, these learning-based methods
may overfit to the driving data (i.e., tend to predict forward
motion) and fail to produce good results in other motions
and datasets [55] (e.g., see E-RAFT rows on the MVSEC in-
door seqs. in Tab. 1). On the contrary, the proposed methods
rely on the principle of event alignment and generalize to
various datasets, producing consistently good results.

Similarly to the MVSEC results, the L1 loss achieves

better accuracy than the L2 loss. Contrary to MVSEC, the re-
sults of the depth parameterization are generally worse than
those of the flow parameterization. This can be attributed to
the IMOs: although not included in the evaluation pixels,
the scenes include IMOs which directly affect the estimated
flow. As expected, the motion field estimation fails since it
cannot fit the events caused by IMOs.

We observe that the evaluation intervals (100ms) are
large for optical flow standards. In the benchmark, 80% of
the GT flow has up to 22px displacement, which means that
20% of the GT flow is larger than 22px (on VGA resolution).
The apparent motion during such intervals is sufficiently
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indoor flying2

Optical flow
color coding

outdoor day1

(a) Events (b) GT (c) Ours (MB) (d) USL[30] (e) SSL[34]

Figure 6: MVSEC results (dt = 4) of our method and two state-of-the-art baselines: ConvGRU-EV-FlowNet (USL) [30] and
EV-FlowNet (SSL) [34]. For each sequence, the upper row shows the flow masked by the input events, and the lower row
shows the IWE using the flow. Our method produces the sharpest motion-compensated IWEs. Note that learning-based
methods crop the events to the central 256 × 256 pixels, whereas our method does not. Black points in ground truth (GT)
flow maps indicate the absence of LiDAR data. Additional plots are given in [31, Fig. 5].

Table 2: Results on the DSEC optical flow benchmark [44].

All interlaken 00 b interlaken 01 a thun 01 a

AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑

E-RAFT (SL) [44] 0.79 10.56 2.68 1.29 1.39 6.22 6.19 1.32 0.90 6.88 3.91 1.42 0.65 9.75 1.87 1.20

Paredes et al. (USL) [59] 2.33 10.56 17.77 – 3.34 6.22 25.72 – 2.49 6.88 19.15 – 1.73 9.75 10.39 –
Ours (USL, L1) 3.69 12.62 34.62 – 4.37 6.82 36.81 – 3.45 8.54 35.08 – 2.02 7.51 17.53 –
Ours (Motion field, L2) 5.01 14.38 42.60 1.43 6.02 11.75 49.59 1.64 8.52 13.20 58.97 1.41 2.81 12.77 29.89 1.37
Ours (Motion field, L1) 4.26 12.05 37.05 1.42 3.93 5.89 35.14 1.66 7.89 11.08 63.98 1.34 1.85 8.20 14.78 1.37
Ours (Flow, L2) 3.47 13.98 30.86 1.37 5.74 9.19 38.93 1.50 3.74 9.77 31.37 1.51 2.12 11.06 17.68 1.24
Ours (Flow, L1) 3.51 12.31 24.18 1.47 5.43 7.76 34.47 1.63 2.99 7.59 23.85 1.63 1.84 9.46 13.77 1.35

thun 01 b zurich city 12 a zurich city 14 c zurich city 15 a

AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑ AEE ↓ AE ↓ %Out ↓ FWL ↑

E-RAFT (SL) [44] 0.58 8.41 1.52 1.18 0.61 23.16 1.06 1.12 0.71 10.23 1.91 1.47 0.59 8.88 1.30 1.34

Paredes et al. (USL) [59] 1.66 8.41 9.34 – 2.72 23.16 26.65 – 2.64 10.23 23.01 – 1.69 8.88 9.98 –
Ours (USL, L1) 3.08 8.16 31.84 – 5.34 32.89 46.89 – 3.00 8.70 32.43 – 2.94 8.72 26.93 –
Ours (Motion field, L2) 2.90 8.20 28.79 1.37 3.91 29.73 41.63 1.13 3.01 9.95 32.64 1.57 3.16 9.75 32.63 1.52
Ours (Motion field, L1) 2.21 6.30 19.39 1.38 5.28 46.19 53.25 1.11 2.76 9.19 28.54 1.56 2.40 7.38 18.64 1.53
Ours (Flow, L2) 2.48 12.05 23.56 1.24 3.86 28.61 43.96 1.14 2.72 12.62 30.53 1.50 2.35 11.82 20.99 1.41
Ours (Flow, L1) 1.98 9.63 16.74 1.38 6.36 28.82 35.18 1.20 2.35 10.53 23.72 1.56 1.98 9.54 15.50 1.55

large that it breaks the classical assumption of scene points
flowing in linear trajectories (more details in Sec. 4.2.5).

4.2.3 Application to Deep Neural Networks (DNN)
The proposed secrets are not only applicable to model-
based methods, but also to unsupervised-learning methods.
To this end, we train EV-FlowNet [34] in an unsupervised
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(a) Events (b) Ours (MB) (c) SL [44]

Figure 7: DSEC results on the interlaken 00b sequence (no
GT available). Since GT is missing at IMOs and points out-
side the LiDAR’s FOV, the supervised method [44] may pro-
vide inaccurate predictions around IMOs and road points
close to the camera, whereas our method produces sharp
edges. For visualization, we use 1M events.

Table 3: Results of unsupervised learning methods on
MVSEC’s outdoor day1 sequence.

dt = 1 dt = 4

AEE ↓ %Out ↓ FWL ↑ AEE ↓ %Out ↓ FWL ↑

EV-FlowNet [27] 0.32 0.00 – 1.30 9.70 –
EV-FlowNet (retrained) [28] 0.92 5.40 – – – –
ConvGRU-EV-FlowNet [30] 0.47 0.25 0.94 1.69 12.50 0.94
Our EV-FlowNet (9) 0.36 0.09 0.96 1.49 11.72 1.11

manner on the MVSEC dataset, using (9) as data-fidelity
term and a Charbonnier loss [67] as the regularizer. We
convert 40k events into the voxel-grid representation [27]
with 5 time bins. The network is trained for 50 epochs
with a learning rate of 0.001 and its decay of 0.8 with
Adam optimizer [80]. To ensure generalization, we train our
network on indoor sequences and test on the outdoor day1
sequence. Since the time-aware flow does not have a signifi-
cant influence on the MVSEC benchmark (Tab. 1), we do not
port it to the learning-based setting.

Table 3 shows the quantitative comparison with unsu-
pervised learning methods. Our model achieves the second
best accuracy, following [27], and the best sharpness (FWL)
among the existing methods. Notice that [27] was trained
on the outdoor day2 sequence, which is a similar driving se-
quence to the test one, while the other methods were trained
on drone data [81]. Hence [27] might be overfitting to the
driving data, while ours is not, by the choice of training
data. The qualitative results of our unsupervised learning
setting are shown in Fig. 8. We compare our method with
the state-of-the-art unsupervised learning [30]. Our results
resemble the GT flow.

Additionally, we train the architecture in [59] on DSEC
data using the L1 loss and the Charbonnier loss (with the
regularizer weight of 0.15). The accuracy results, reported
in Tab. 2 as “Ours (USL, L1)”, are on par with the model-
based one. The two experiments in this section (Sec. 4.2.3)
confirm the transferability of the techniques in Sec. 3 to
learning-based approaches, reaffirming the importance of
our contributions.

(a) Events (b) GT (c) Our
EV-FlowNet (d) USL [30]

Figure 8: Results of our DNN on the MVSEC outdoor sequence.
Our DNN (EV-FlowNet architecture) trained with (9) out-
performs the unsupervised learning method [30].

(a) Events (b) IWE (c) Estimated flow

Figure 9: Results on 1Mpixel event camera data. Sequences are
bike-easy, skate-easy (TUM-VIE [32]), and falcon (M3ED [33]).

4.2.4 Results on 1 Mpixel Datasets: TUM-VIE and M3ED

The proposed method generalizes to recent high spatial
resolution event cameras. We show qualitative results on
the TUM-VIE dataset [32] and the M3ED dataset [33] in
Fig. 9. The flow looks realistic and produces sharp IWEs
for various motions (forward motion, rotation, translation)
and scenes (indoor and outdoor). Also, the flow estimation
is stable regardless of the absolute scene intensity, while
frames suffer from a limited dynamic range. Hence, we
leverage the HDR advantages of event cameras.

4.2.5 Discussion on optical flow benchmarks and “GT” flow

Throughout the quantitative evaluation of the event-based
optical flow (Secs. 4.2.1 and 4.2.2), we observe some limita-
tions for the current benchmarks: (i) size of the evaluation
interval and (ii) independently moving objects (IMOs).

Evaluation intervals and the linearity of optical flow.
The time-aware flow is designed to consider the space-time
nature of events. Recently, there have also been other pro-
posals aiming to leverage such nature for per-pixel motion
estimation. The main difference between our flow (Sec. 3.3)
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and concurrent proposals [53], [59], [82] is the motion hy-
pothesis and its underlying assumptions: (7) assumes that
the flow is constant along its streamlines within short time
intervals, which produces linear motion trajectories (Fig. 4).
The number DOFs of the motion is 2Np, and the efficacy of
the parameterization for occlusions is shown in Sec. 5.2.

On the other hand, [53], [59] propose non-linear trajecto-
ries (e.g., Bézier curves) for the “optical flow”. We suspect
that the choice of assuming non-linear trajectories stems
from the necessity of reporting good figures on the DSEC
benchmark (Tab. 2), which has relatively long evaluation
intervals. While it is called an “optical flow” benchmark, the
ground truth on time intervals of 100 ms at moderate vehicle
speeds can result in curved trajectories. The increased com-
plexity of the non-linear trajectory estimation problem has
several challenges to be addressed: (i) accuracy is difficult to
evaluate with existing benchmarks, which are based on the
standard definition of flow, (ii) there is a trade-off between
the increased complexity of possible motions and the ten-
dency to overfit, (iii) it is important to assess the efficacy of
the curved trajectory in terms of downstream applications.
We show various applications of the linear trajectory in
Secs. 4.3 to 4.5; for curved trajectories, beyond focusing on
beating the current benchmark, it would be interesting to
show new applications. Finally, it is worth reconsidering the
terminology of the estimation task, such as “instantaneous”
(short-baseline) optical flow, vs. “non-instantaneous” (i.e.,
large-baseline) curved trajectory estimation.

IMOs. The de facto standard flow benchmarks MVSEC
and DSEC ignore pixels corresponding to IMOs (because it
is difficult to obtain GT labels for IMOs in the real-world).
However, optical flow can describe such motions. Indeed, as
Tab. 1 shows, the motion-field–parameterized flow achieves
better accuracy in still scenes. Training ANNs using only
flow from rigid scenes may affect their learning capabilities.
To avoid potential pitfalls of optical flow algorithms, it is
therefore important that the data used for (training and)
evaluation contains IMOs and a variety of ego-motions.

4.3 Applications of Optical Flow

This section demonstrates three exemplary applications of
the estimated optical flow: motion segmentation, intensity
reconstruction, and denoising.

4.3.1 Motion Segmentation

Motion segmentation is the task of splitting a scene into
objects moving with different velocities. Thus, it is natural
to address it by clustering optical flow [20]. To this end, we
show results on three sequences from [20], [21] in Fig. 10
using k-means with 2 to 3 clusters. In the corridor scene
(first row of Fig. 10) there are 3 clusters: two people are
walking in opposite directions while the camera is moving
(background). In the second example, the scene includes
cars with horizontal motion while the camera tilts. The
third example (car) has a car moving at a different speed
in the same direction as the background, which is the most
challenging case among these examples. In all examples, our
method successfully provides sensible segmentation masks
(last column of Fig. 10) corresponding to the scene objects.

(a) Events (b) IWE (c) Flow (d) Clusters

Figure 10: Motion Segmentation. First row: corridor sequence
from [21]. Second and third rows are sequences from [20].

(a) corridor [21] (b) car [20]

Figure 11: Visualization of the flow clustering on the first
and third examples in Fig. 10. The stars denote the cluster
centroids. Cluster 0 (blue) corresponds to the background,
while clusters 1 and 2 are independently moving objects.

Figure 11 provides detailed analyses of the clustering
operation for the corridor and car examples. Since the pro-
posed method uses a tile-based parameterization of the flow,
the interpolation between tiles produces flow vectors that
fill in the regions between the distinctive cluster centroids.
One could use other clustering algorithms, such as DBSCAN
[83], to treat such interpolation effects as outliers.

4.3.2 Image Reconstruction
Events encode the apparent motion of scene edges (e.g., op-
tical flow) as well as their brightness. These two quantities
are entangled, and it is possible to use computed optical
flow to recover brightness, i.e., reconstruct intensity images
[24]. We demonstrate it on a 1 Mpixel dataset in Fig. 12.
The estimated flow provides sharp IWEs, which successfully
aids reconstruct intensities such as the checkerboard on the
wall, the light and its reflection on the corridor, and the
complex structure of the stairs. The results are remarkable
despite the noise in the corridor scene (see Sec. 4.3.3). Due
to the regularizer in [24], the very fine structure (e.g., the
poster contents) might not be crisp.

4.3.3 Denoising Event Data
By extending the idea of [84], which classifies events for
temporal upsampling into signal or noise based on a pre-
dicted 2-DOF motion, we use the estimated optical flow
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(a) IWE (b) Flow (c) Reconstruction

Figure 12: Image reconstruction after optical flow estimation.
Data from the 1Mpixel TUM-VIE dataset [32].

(a) Original Events (b) Denoised Events

Figure 13: Denoising. The data is the skate-easy sequence
from the TUM-VIE dataset. The top row is the image repre-
sentation of the events, while the bottom row shows them
in space-time coordinates (for better visualization, only the
bottom-right quarter of the image plane is displayed).

to identify noise events as those where the IWE is smaller
than some value (e.g., 3 events). Figure 13 shows qualitative
results. The corridor scene has a large amount of noise due
to lighting (i.e., flickering events). The denoised event data
looks clearer, while it retains the edge structure of the scene.

4.4 Monocular Depth and Ego-motion Estimation

4.4.1 Results on MVSEC

Evaluation on Depth. Table 4 summarizes the quantitative
results of depth estimation on the MVSEC dataset [34]. Fol-
lowing the convention [57], we report the metrics for indoor
as the average of the three indoor sequences. Although
prior works use different strategies, such as additional
sensor information, different train-test split, and different
evaluations, we provide exhaustive comparisons across the
existing methods to date: a model-based method where
the pose information is given (EMVS) [23], a supervised-
learning method [61] trained on real data (outdoor day2,

Table 4: Depth evaluation on MVSEC (mean of three indoor
sequences). The values for EMVS [23] are reported in [62].

SiLog ↓ AbsRelDiff ↓ logRMSE ↓ A1 ↑ A2 ↑ A3 ↑

in
do

or

EMVS [23] (MB, w/ pose) 0.04 0.13 0.21 0.85 0.95 0.98
ECN [57] (USL) 0.11 0.28 0.29 0.98 0.99 1.00
Ours, L2 (MB) 0.07 0.17 0.27 0.73 0.89 0.95
Ours, L1 (MB) 0.07 0.17 0.26 0.73 0.90 0.96

ou
td

oo
r

SL (R) [61] 0.25 0.45 0.51 0.47 0.71 0.82
SL (S) [61] 0.17 0.35 0.42 0.57 0.77 0.88
EV-FlowNet [27] (USL) 0.16 0.36 0.41 0.46 0.73 0.88
ECN [57] (USL) 0.14 0.33 0.33 0.97 0.98 0.99
Ours, L2 (MB) 0.25 0.39 0.51 0.42 0.70 0.83
Ours, L1 (MB) 0.22 0.36 0.48 0.47 0.72 0.85

(a) Events (b) Depth (c) GT Depth

(d) IWE (e) Flow (f) GT Flow

(a) Events (b) Depth (c) GT Depth

(d) IWE (e) Flow (f) GT Flow

Figure 14: Depth estimation results on indoor flying3 and
outdoor day1 sequences of the MVSEC dataset [34]. The 2nd
and 3rd columns show the estimation and GT, respectively.

denoted “SL (R)”) or in simulation (“SL (S)”), and two
unsupervised-learning methods [27], [57].

The proposed methods achieve overall better accuracy
on the indoor sequences and competitive results on the
outdoor sequence compared with ECN [57], the closest
work to ours. However, ECN uses the 80/20 train-test split
within each sequence (i.e., the training data consists of the
same sequences as the test data), hence it might suffer from
data leakage. For the outdoor sequence, our methods pro-
vide better results than the real-world supervised-learning
method (“SL (R)”), and competitive results with the other
learning-based approaches. We find that outdoor sequences
are in general more challenging for the proposed approach.
This can be attributed to the facts that (i) the MVSEC
outdoor data has considerably sparse events, which affects
the convergence of the method, and (ii) events in a scene
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Figure 15: Ego-motion estimation results on the indoor flying1
sequence from the MVSEC dataset [34].
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Figure 16: Depth and Ego-motion estimation for the slider depth
sequence (real data) from the ECD dataset [63]. RMS errors:
0.11 m/s (in V) and 0.94 °/s (in ω).

comprise various displacements with uneven distribution
on the image plane. Indeed, the L1 gradient magnitude loss
achieves better results than the L2 loss.

Qualitative results are shown in Fig. 14. For complete-
ness, we show the flow (i.e., motion field) computed from
the estimated depth and ego-motion. The estimated depth
resembles the GT for both sequences, resulting in sharp
IWEs. Moreover, similarly to the flow estimation (Sec. 4.2.1),
the proposed depth covers the pixels where the GT does
not exist, such as the middle board in the indoor scene and
poles in the outdoor scene. Also, the estimated depth looks
reasonable where LiDAR may fail to produce reliable depth
maps due to the differences in the sampling frequency (e.g.,
the left-most board in the indoor results). Overall, the results
illustrate that the proposed method is effective in estimating
depth for these standard, real-world sequences.

Ego-Motion Estimation. Figure 15 shows ego-motion
estimation results on the indoor flying1 sequence. The es-
timated linear velocity is scaled using the GT (IMU). The
linear velocities resemble the GT, indicating that our method
successfully estimates the camera motion of the freely-
moving (6-DOF) drone. The pitch/yaw angular velocities
are challenging to estimate since the motion field due to the
pitch/yaw rotations is similar to that of a translation.

(a) Events (b) Depth (c) GT Depth

(d) IWE (e) Flow (f) GT Flow
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Figure 17: Depth and Ego-motion estimation for the simula-
tion 3planes sequence from the ECD dataset [63]. GT flow
is generated using GT poses and GT depth. RMS errors:
0.30 m/s (in V) and 0.20 °/s (in ω).

Table 5: Pose evaluation on MVSEC [34]. RMS errors in
linear velocity V (m/s) and angular velocity ω (°/s).

indoor flying1 indoor flying2 indoor flying3 outdoor day1

V ↓ ω ↓ V ↓ ω ↓ V ↓ ω ↓ V ↓ ω ↓

ECN [57] – – – – – – 0.70 –
Ours 0.24 7.72 0.27 11.50 0.31 9.53 5.90 6.85

Quantitative results are reported in Tab. 5. Linear ve-
locity errors are sensible: 20–30 cm/s for indoor (drone)
sequences and 5.9 m/s for the outdoor (car) sequence.
Forward-moving motion is more challenging for depth es-
timation, as the scene contains less parallax than lateral
translational motions, which is also confirmed by our re-
sults. Angular velocity errors are small in all sequences,
as they do not contain rotational-dominant motions. Few
prior works report numerical values for comparison. As dis-
cussed in (Sec. 4.4.1 and Tab. 4), ECN [57] might have overfit
to this outdoor sequence that reports a very small error
(0.7m/s). On the other hand, our results provide constantly
reasonable/similar metrics for all sequences. We hope Tab. 5
will encourage more works to benchmark monocular ego-
motion estimation on these datasets.

4.4.2 Results on ECD

Depth and ego-motion estimation results on the slider depth
sequence from the ECD dataset [63] are shown on Fig. 16.
Our method produces a sharp IWE as well as reasonable
depth map, flow and poses, handling complex objects with
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(a) IWE (b) Depth (c) Flow

Figure 18: Depth estimation on 1Mpixel event datasets [32], [33].

occlusion and at different distances. The camera pose RMS
errors are: 0.11 m/s (in V) and 0.94 °/s (in ω). We observe
that the predicted linear velocity stays relatively constant,
as expected. Also, the angular velocity error stays small, as
the dominant motion of the sequence is translational. This
is favorable for future extension of the proposed method to
global adjustment (e.g., SLAM).

Figure 17 shows the results on a synthetic sequence
from [63]. Since it has ground truth poses and depth, we
also report these evaluation metrics, as SiLog[x100]: 1.16,
AbsRelDiff: 0.09, logRMSE: 0.11, A1: 0.98, A2: 1.0 and A3:
1.0 for depth, and RMS: 0.30 m/s (in V) and 0.20 °/s (in ω)
for velocities. The estimated depth, flow, and ego-motion
resemble those of GT, producing a sharp IWE.

4.4.3 Results on 1 Mpixel Datasets: TUM-VIE and M3ED
Figure 18 shows the qualitative depth estimation results on
the TUM-VIE and M3ED datasets [32], [33]. The estimated
depth is realistic, even for the challenging corridor sequence,
which contains a large amount of noise and large variations
of contour displacement in the scene due to the forward
motion. The resulting flows are reasonable and the IWEs are
sharp. Since the datasets do not have GT depth, we cannot
conduct the quantitative evaluation.

4.5 Stereo Depth Estimation

As explained in Sec. 3.6.2, our method can also tackle the
event-based stereo scenario. Figure 19 shows stereo depth
estimation results on the DSEC and MVSEC datasets. By
parameterizing the depth and ego-motion on one camera
only, the proposed model-based method successfully con-
verges and provides sharp IWEs for both event cameras.
We observe that, while IMOs are not explicitly modeled,
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(a) Events (b) IWE (c) Depth (d) Flow

Figure 19: Stereo depth estimation results on MVSEC (indoor2)
and DSEC (zurich 05b) datasets.

(a) Events (b) Flow (c) Warp t1 (d) tmid (e) tNe

Figure 20: Effect of the multi-reference focus loss. Top row:
single reference (t1). Bottom row: proposed multi-reference.

depth estimation becomes more robust against them in the
stereo setting. We leave a detailed analysis, evaluation, and
benchmarks for future work.

5 ABLATION AND SENSITIVITY ANALYSIS

5.1 Effect of the Multi-reference Focus Loss
The effect of the proposed multi-reference focus loss is
shown in Fig. 20. The single-reference focus loss function
can easily overfit to the only reference time, pushing all
events into a small region of the image at t1 while pro-
ducing blurry IWEs at other times (tmid and tNe

). Instead,
our proposed multi-reference focus loss discourages such
overfitting, as the loss favors flow fields which produce
sharp IWEs at any reference time. The difference is also
noticeable in the flow: the flow from the single-reference
loss is irregular, with a lot of spatial variability in terms of
directions (many colors, often in opposite directions of the
color wheel). In contrast, the flow from the multi-reference
loss is considerably more regular.

5.2 Effect of the Time-Aware Flow
To assess the effect of the proposed time-aware warp (8),
we conducted experiments on MVSEC, DSEC and ECD [63]
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Table 6: FWL (IWE sharpness) results on MVSEC, DSEC,
and ECD. Higher is better.

MVSEC (dt = 4) ECD DSEC

indoor1 indoor2 indoor3 outdoor1 slider depth thun 00a zurich 07a

Ground truth 1.09 1.20 1.12 1.07 – 1.01 1.04
Ours: w/o time aware 1.17 1.30 1.23 1.11 1.88 1.39 1.57
Ours: Upwind 1.17 1.30 1.23 1.11 1.92 1.40 1.60
Ours: Burgers’ 1.17 1.30 1.23 1.11 1.93 1.42 1.63
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(a) Events (b) w/o time
awareness (c) Upwind (d) Burgers’ (e) GT

Figure 21: Effect of the time-aware flow. Comparison between
three flow models: Burgers’, upwind, and no time-aware (4).
At occlusions (dartboard in slider depth [63] and garage
door in DSEC [5]), upwind and Burgers’ produce sharper
IWEs. Due to the smoothness of the flow conferred by the
tile-based approach, some small regions are still blurry.

datasets. Accuracy results are already reported in Tabs. 1
and 2. We now report values of the FWL metric in Tab. 6.
For MVSEC, dt = 1 is a very short time interval, with small
motion and therefore few events, hence the sharpness of the
IWE with or without motion compensation are about the
same (FWL ≈ 1). Instead, dt = 4 provides more events, and
larger FWL values (1.1–1.3), which means that the contrast
of the motion-compensated IWE is larger than that of the
zero flow baseline. All three methods provide sharper IWEs
than ground truth. The advantages of the time-aware warp
(8) over (4) to produce better IWEs (higher FWL) are most
noticeable on sequences like slider depth [63] and DSEC
(see Fig. 21) because of the occlusions and larger motions.
Notice that FWL differences below 0.1 are significant as
seen in [52, Fig. 1] (cf. last two columns) and [52, Fig. 3],
demonstrating the efficacy of time-awareness.

5.3 Effect of the Multi-scale Approach
The effect of the proposed multi-scale approach (Fig. 5) is
shown in Fig. 22. This experiment compares the results of
using multi-scale approaches (in a coarse-to-fine fashion)
vs. using a single (finest) scale. With a single scale, the
optimizer gets stuck in a local extremal, yielding an irregular
flow field (see the optical flow rows), which may produce
a blurry IWE (e.g., outdoor day1 scene). With three scales
(finest tile and two downsampled ones), the flow becomes
less irregular than with one single scale, but there may
be regions with few events where the flow is difficult to
estimate. With five scales the flow becomes smoother, more
coherent over the whole image domain, while still being
able to produce sharp IWEs.

5.4 The choice of loss function
Table 7 shows the results on the MVSEC benchmark for dif-
ferent loss functions. We compare the gradient-based func-

indoor1

outdoor1

(a) Events (b) Single
(fine) scale

(c) Three
scales

(d) Nℓ = 5
scales

Figure 22: Effect of the multi-scale approach. For each sequence,
the top row shows the estimated flow and the bottom row
shows the IWEs.

Table 7: Sensitivity analysis on the choice of loss function.

MVSEC indoor1 indoor2 indoor3 outdoor1

(dt = 4) AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓

Gradient L2 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
Gradient L1 1.48 8.27 2.10 20.42 1.73 12.81 1.23 9.22
Image variance [9] 1.70 11.25 2.18 21.91 1.93 15.84 1.82 15.89
Avg. timestamp [27] >99 >99 >99 >99 >99 >99 >99 >99
Norm. avg. timestamp [30] >99 >99 >99 >99 >99 >99 >99 >99

tions (L1 and L2), image variance [7], average timestamp
[27], and normalized average timestamp [30]. The contrast
functions (L1, L2, and variance) yield consistently better
accuracy than the two average timestamp losses. Although
the variance gives competitive results, we use the functions
based on the IWE gradient for the reasons described in
Sec. 3.2.1. Both average timestamp losses are trapped in the
global optima which pushes most events out of the image
plane (see Fig. 23), hence, they provide very large errors
(marked as “> 99” in Tab. 7). Despite this, they have been
successfully used in several learning-based methods.

Remark: Maximization of (5) does not suffer from the
problem mentioned in [30] that affects the average times-
tamp loss function, namely that the optimal flow warps all
events outside the image so as to minimize the loss (unde-
sired global optima shown in Fig. 23c-d). If most events were
warped outside of the image, then (5) would be smaller than
the identity warp, which contradicts maximization.

5.5 The regularizer weight

Table 8 shows the sensitivity analysis on the regularizer
weight λ in (9). λ = 0.0025 provides the best accuracy in
the outdoor sequence, while λ = 0.025 provides slightly
better accuracy in the indoor sequences. Comparing their
accuracy, we use the former because it has a higher gain.
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(a) (b) (c) (d)

Figure 23: IWEs for different loss functions: (a) Gradient
Magnitude (L2); (b) Variance; (c) Avg. timestamp [27]; (d)
Normalized avg. timestamp [30].

Table 8: Sensitivity analysis on the regularizer weight.

MVSEC indoor1 indoor2 indoor3 outdoor1

(dt = 4) AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓ AEE ↓ %Out ↓

λ = 0.0025 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
λ = 0.025 1.52 9.07 2.39 26.26 1.94 18.44 1.86 17.11
λ = 0.25 1.89 16.54 3.19 36.95 2.91 30.85 2.57 27.86

6 COMPUTATIONAL PERFORMANCE

Each scale of our method has the same computational com-
plexity as CM [7], O(Ne + Np) because the multi-reference
warps yield a constant scaling factor. Our unoptimized
implementation using PyTorch (v1.9) running on a GPU
(NVIDIA Quadro RTX 8000) without time awareness takes
about 9.9 s per batch to converge on the MVSEC exper-
iments (3× more in case of Burgers’ scheme) (Sec. 4.2.1).
However, if we apply the proposed method to a DNN (EV-
FlowNet), training takes about 10 h, preprocessing (crop
center image and voxelization) takes 74 ms, and inference
takes about 3 ms (Sec. 4.2.3). This inference time is on par
with other DNN-based methods.

7 LIMITATIONS

Like previous unsupervised works [27], [30], our method
is based on the brightness constancy assumption. Hence, it
struggles to estimate flow from events that are not due to
motion, such as those caused by flickering lights. SL and
SSL methods may forego this assumption, but they require
high quality supervisory signal, which is challenging due to
the HDR and high speed of event cameras.

Like other optical flow methods, our approach may
suffer from the aperture problem. The flow could still cause
event collapse if tiles become too small (higher DOFs), or
if the regularization is too small compared with the texture
density that drives the data-fidelity term. This effect can be
observed in Fig. 1, where the flow becomes irregular for
the tree leaves (in the example on row 2). Optical flow is
also difficult to estimate in regions with few events, such
as homogeneous brightness regions and regions with small
apparent motion. Regularization fills in the homogeneous
regions, whereas recurrent connections could help with
small apparent motion.

The monocular depth and ego-motion estimation ap-
proach considers each event packet (i.e., time interval)
independently, hence it only recovers camera velocities.
Absolute poses could be estimated if the camera velocities
were simultaneously recovered over multiple event packets
while sharing a common depth map. The stereo approach
enables the recovery of the absolute scale.

While the computational effort of the proposed approach
is high in our current (unoptimized) implementation, it al-
lowed us to focus on modeling the problem and uncovering
the “secrets” of event-based optical flow, i.e., identifying the
successful ingredients for accurate motion estimation. Then,
we showed how such knowledge could be transferred to
learning-based settings, with the same computational cost
and speed as prior work (ms inference time on GPUs).

8 CONCLUSION

We have extended the CM framework to estimate dense
optical flow, depth and ego-motion from events alone. The
proposed principled method overcomes problems of overfit-
ting, occlusions, and convergence by sensibly modeling the
space-time nature of event data. The comprehensive experi-
ments show that our method achieves the best flow accuracy
among all methods in the MVSEC indoor benchmark, and
among the unsupervised and model-based methods in the
outdoor sequence. It also provides competitive results in the
DSEC optical flow benchmark and generalizes to various
datasets, including the latest 1 Mpixel ones, delivering the
sharpest IWEs. The method exposes the limitations of the
current flow benchmarks and produces remarkable results
when it is transferred to unsupervised learning settings. We
show downstream applications of the estimated flow, such
as motion segmentation, intensity reconstruction and event
denoising. Finally, the method achieves competitive results
in depth and ego-motion estimation in both monocular and
stereo settings. As demonstrated, the proposed framework
is able to handle a broad set of motion-related tasks across
multiple datasets and event camera resolutions, hence we
believe it is a cornerstone in event-based vision. We hope
our work inspires future model-based and learning-based
approaches in these motion-related problems.

APPENDIX

TIME-AWARENESS: PDE SOLUTIONS

The proposed time-aware flow is given as the solution to (7).
Letting the flow be v = (vx, vy)

⊤, the system of PDEs can
be written as:

vx
∂vx
∂x

+ vy
∂vx
∂y

+
∂vx
∂t

= 0,

vx
∂vy
∂x

+ vy
∂vy
∂y

+
∂vy
∂t

= 0.

(12)

Upwind and Burgers’ schemes can be used to discretize and
numerically solve the system of PDEs [64], [65].

Discretization. Let vn(x, y) be the flow vector at dis-
cretized space- (e.g., pixel) and time-indices (x, y, n), with
discretization steps ∆x,∆y, and ∆t, respectively, and let
the forward (+) and backward (−) differences of a scalar
field w (e.g., vnx or vny ) be defined as

D+
x w ≡ ∂w

∂x

+

=
1

∆x

(
w(x+∆x, y)− w(x, y)

)
,

D+
y w ≡ ∂w

∂y

+

=
1

∆y

(
w(x, y +∆y)− w(x, y)

)
,

(13)



17

(a) Original flow (b) Upwind (c) Burgers’

Figure 24: Comparison of the two flow propagation schemes.
Original flow (a) has large shock and fan waves (the color
changes between orange and blue) to highlight the differ-
ence. The propagated flows with both schemes are shown
in (b) (c). Same color notation as Figs. 1 and 6.

and

D−
x w ≡ ∂w

∂x

−
=

1

∆x

(
w(x, y)− w(x−∆x, y)

)
,

D−
y w ≡ ∂w

∂y

−
=

1

∆y

(
w(x, y)− w(x, y −∆y)

)
.

(14)

We discretize in time using forward differences, ∂w
∂t ≈

(w(t + ∆t) − w(t))/∆t, to yield explicit update schemes:
w(t+∆t) ≈ w(t) + ∆t∂w∂t .

Upwind scheme. The first-order upwind scheme is an
explicit scheme that updates the flow as follows, based on
the sign of the variables: it uses D+

x v
n
x and D+

x v
n
y for vnx >

0 (D−
x v

n
x and D−

x v
n
y otherwise), and D+

y v
n
x and D+

y v
n
y for

vny > 0 (D−
y v

n
x and D−

y v
n
y otherwise). The scheme is stable

if the flow satisfies ∆tmax{|vx|/∆x+ |vy|/∆y} < 1 (CFL
stability condition [85]). For example, in case that vnx > 0
and vny > 0 at the current discretization time n:

vn+1
x = vnx −∆t

(
vnxD

+
x v

n
x + vnyD

+
y v

n
x

)
,

vn+1
y = vny −∆t

(
vnyD

+
y v

n
y + vnxD

+
x v

n
y

)
.

(15)

Burgers’ scheme. The study of the inviscid Burgers’
equation provides a more conservative scheme solution,
especially at “shock” and “fan wave” cases [65]. In this ex-
plicit scheme, the product terms in the same variable (which
convey that the flow is transporting itself), vnxD

+
x v

n
x and

vnyD
+
y v

n
y in (15), are replaced with Ux and Uy respectively,

which are given by:

Ux =
1

2

(
sgn

(
vnx (x, y)

)(
vnx (x, y)

)2
+ Fx −Bx

)
,

Fx =

{(
vnx (x+∆x, y)

)2
, if vnx (x+∆x, y) < 0

0, otherwise

Bx =

{(
vnx (x−∆x, y)

)2
, if vnx (x−∆x, y) > 0

0, otherwise

(16)

and

Uy =
1

2

(
sgn

(
vny (x, y)

)(
vny (x, y)

)2
+ Fy −By

)
,

Fy =

{(
vny (x, y +∆y)

)2
, if vny (x, y +∆y) < 0

0, otherwise

By =

{(
vny (x, y −∆y)

)2
, if vny (x, y −∆y) > 0

0. otherwise

(17)

Comparison of schemes. Figure 24 shows the compari-
son between the two schemes, especially for the “shock” and

“fan wave” cases. After some propagation iterations, the
upwind scheme starts to produce artifacts around the shock
and fan flows (the color boundary of orange and blue), while
the Burgers’ scheme provides a more stable flow.
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