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Stability Analysis of Invariant Visual Servoing

and Robustness to Parametric Uncertainties

Ezio Malis

I.N.R.I.A. - ICARE Research Group, Sophia Antipolis, France.

Abstract. This paper concerns the stability analysis of a new visual servoing ap-
proach which is invariant on camera intrinsic parameters. Contrarily to standard
methods, the invariant visual servoing approach can be used with a zooming cam-
era or when the reference image is learned with a camera different from that used
for servoing. Even if the error computed in an invariant space does not depend on
the camera intrinsic parameters, they are needed to estimate the interaction matrix
which links the camera velocity to the displacements of the features in the invariant
space. Thus, calibration errors can affect the stability of the control law. For this
reason, it is important to study the robustness of the proposed vision-based control
with respect to uncertainties on the parameters of the system.

1 Introduction

Visual servoing is a very flexible method for the control of uncalibrated dy-
namic systems evolving in an unknown environment. Typical applications
of visual servoing are the positioning of a robot and the tracking of objects
using the information provided by an in-hand camera. The visual servoing
approaches proposed in the literature [16,18] can be classified depending on
the a priori knowledge available on the parameters of the system and on the
observed object. If a 3D model of the object is available we can use a “model-

based” approach [35,28], while if the 3D model of the object is unknown we
must use a “model-free” approach [12,24]. Model-free methods, needs a pre-
liminary learning step during which a reference image of the object is stored
(teaching-by-showing). After the camera and/or the object have been moved,
several vision-based control methods [2,12,25] have been proposed in order
to drive the robot back to the reference position. When the current image
observed by the camera is identical to the reference image the robot is back to
the desired position. The model-free approach has the advantage of avoiding
the knowledge of the model but it cannot be used with a zooming camera. If
the camera intrinsic parameters (e.g. the focal length) change during the ser-
voing, then the reference image must be learned again. Both model-based and
model-free approaches are useful but, depending on the ”a priori” knowledge
we have of the scene, we must switch between them. In order to solve this
problem, I propose in this paper a unified approach to vision-based control
which can be used whether the model of the object is known or not [22]. The
key idea of the unified approach, which is an extension of the work presented
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in [21], is to build a reference in a projective space which can be computed
if the model is known or if an image of the object is available. Thus, only
one low level visual servoing technique must be implemented at once. The
new unified approach is called invariant visual servoing since we work in a
projective space which is invariant to camera intrinsic parameters [21] and
at the same time invariant to the knowledge of the 3D model of the object
[22]. Contrarily to standard model-free approaches, this allows us to use the
invariant visual servoing approach with a zooming camera or to learn the ref-
erence image with a camera different from that used for servoing [20]. There
are various ways in which invariance to camera parameters can be obtained
[14,34,21]. In [21] invariance to all the camera intrinsic parameters has been
obtained by selecting three interest points to build a projective transforma-
tion. Consequently, the selection of the three points raised the problem of the
best choice. The problem has been solved in [22] by building the projective
transformation from all points available in the image. The control in the in-
variant space can be carried-out within the task-function framework [29] and
its structure is very similar to standard image-based approaches [12,16,18].
Even if the task function of the invariant visual servoing does not depend on
the camera intrinsic parameters, they are needed to estimate the interaction
matrix which links the camera velocity to the displacements of the features
in the invariant space [23]. Thus, calibration errors can affect the stability of
the control law. In the recent past, research on the stability of image-based
visual servoing has been concentrated on the solution of convergence prob-
lems [5]. Indeed, the image-based approach is a local method which, even in
the absence of calibration errors, can fail if the initial camera displacement is
too large [5]. In order to avoid these potential convergence problems several
possible solutions have been proposed: hybrid, partitioned and interpolation
approaches. In hybrid approaches, some global information is introduced by
estimating the camera displacement between the current and reference views
[25,27,8]. The rotation of the camera is thus controlled directly in the Carte-
sian space while some image-based information is used to control the transla-
tion. More recently, a partitioned approach [7] has been proposed in order to
avoid the camera displacement reconstruction. Another solution to potential
stability problem of the image-based approach is provided by interpolation
approaches. These methods define a path in the image by interpolating initial
and reference image features [17,26,23]. Thus, the error in the image is main-
tained small at each iteration of the control law. Interpolation approaches are
an elegant solution to potential convergence problems of local approaches. In
the case of the invariant visual servoing it is even possible to define a path in
the projective space such that the robot follows a straight line in the Carte-
sian space [23]. Even using interpolation approaches, the problem of finding
the local robustness domain of the vision-based control law has not been yet
solved. Due to the complexity of the problem, only few theoretical results
have been obtained concerning the stability analysis of image-based visual
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servoing in the presence of calibration errors. The theoretical analysis has
been carried out only in very simple cases [11], often considering a simplified
model for the camera intrinsic parameters [6,19,9] but always supposing that
the depth distribution was perfectly estimated [11,6,19,9,23]. The objective of
this paper is to to study the robustness of visual servoing with respect to both
intrinsic and extrinsic camera parameters. The application of robust control
analysis tools [1,4,31] allows us to find an approximation of the robustness
domain of the invariant visual servoing.

2 Modeling

2.1 Perspective projection

Let F0 be a frame attached to an object represented by the homogeneous co-
ordinates of a discrete set of n 3D points X i = (Xi, Yi, Zi, 1) (i = {1, 2, ..., n}).
Let F be the current camera frame and let the origin of the frame coincide
with the center of projection. Let the plane of projection be parallel to the
plane (−→x ,−→y ). Without loss of generality we can suppose that the distance
between the two planes is 1. A 3D point X i ∈ P3 is projected to the point
mi ∈ P2 with normalized homogeneous coordinates:

mi =
1

Zi

[
R0 t0

]
X i = (xi, yi, 1) (1)

where R0 and t0 are respectively the rotation and the translation between
frame F0 and F .

2.2 Camera model

Pinhole cameras perform a perspective projection of a 3D point. The infor-
mation measured by the camera is an image point pi:

pi = K mi = (ui, vi, 1) (2)

The triangular matrix K(t) contains the camera intrinsic parameters:

K(t) =



f sf u0

0 rf v0

0 0 1


 (3)

where f is the focal length (measured in pixels), u0 and v0 are the coordinates
of the principal point (in pixels), s is the skew and r is the aspect ratio. In
most of the papers dealing with the stability analysis of visual servoing several
parameters are often supposed to be known. While s and r can be accurately
estimated this is not true for the principal point. It has been shown not only
that its calibration is very sensitive to noise [13] but also that its inaccurate
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location has a significant effect on the calibration of others parameters or
on the reconstruction accuracy [15]. The non-singular (3×3) matrix K(t)
defines a projective transformation from the normalized coordinate system
M to the image coordinate system P. Thus, an approximation K̂ of the
matrix is needed in order to estimate a normalized point from a measured
image point: m̂i = K̂−1 pi = (x̂i, ŷi, 1).

2.3 Invariance to camera intrinsic parameters

Suppose that n points are available. Using all the image points, with pro-
jective coordinates pi = (ui, vi, 1), and all the the normalized points, with
projective coordinates mi = (xi, yi, 1), we can compute the following sym-
metric (3×3) matrices:

Sp =
1

n

n∑

i=1

pip
>
i and Sm =

1

n

n∑

i=1

mim
>
i (4)

Since pi = Kmi, the matrix Sp can be written as a function of Sm and of
the camera intrinsic parameters K:

Sp =
1

n

n∑

i=1

pip
>
i = K

(
1

n

n∑

i=1

mim
>
i

)
K> = KSm K> (5)

If the points are not collinear and n > 3 then Sp and Sm are positive definite
matrices and they can be written, using a Cholesky decomposition, as:

Sp = Tp T>
p and Sm = Tm T>

m (6)

where both Tp and Tm are (3×3) non-singular upper triangular matrices.
Thus, from equations (5) and (6) we obtain:

Tp = K Tm (7)

The matrix Tp defines a projective transformation from the projective image
space P ∈ P2 to a new projective space Q ∈ P2. Similarly, the matrix Tm

defines a projective transformation from the projective space M∈ P2 to the
same space Q ∈ P2. We can compute the same vectors qi ∈ Q from image
points:

qi = T−1
p pi (8)

or from the knowledge of model of the object and the desired position:

qi = T−1
m mi (9)

Equations (8) and (9) define the same point in Q since:

qi = T−1
p pi = T−1

m K−1pi = T−1
m K−1Kmi = T−1

m mi
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As a consequence, the new projective space Q is independent on camera in-
trinsic parameters (T−1

m and mi do not depends on camera intrinsic param-
eters). Thus, the position of the camera can be controlled by driving the set
of invariants qi ∀i ∈ {1, 2, ..., n} to some reference values q∗

i ∀i ∈ {1, 2, ..., n}
while the zoom of the camera can be controlled separately.

3 Vision-based control

The control of the pose of the camera rigidly attached to the robot end-
effector is achieved by minimizing an error computed in the space Q which
only depends on the camera pose. Let t and R be respectively the translation
and the rotation between the reference camera frame F∗ and the current
camera frame F . Let r = θu be the (3×1) vector containing the axis of
rotation u and the angle of rotation θ. Then, ξ = (t, r) is a (6×1) vector
containing global coordinates of an open subset S ⊂ R3 × SO(3). The key
idea of the proposed visual servoing approach is to always work in a projective
space Q ∈ P2 which can be computed from points belonging to the image
space P ∈ P2 (if the model is unknown) or points belonging to the projective
space M ∈ P2 (if the model is known). The approach does not need the
explicit calibration of the camera and can be used even if the camera is
zooming as shown in Figure 1.

CURRENT

CAMERA

ZOOM

REFERENCE

INVARIANTS IMAGE

CONTROL ROBOT

FEATURES

INVARIANTS

MODEL

FEATURESPOSE

IMAGE

Fig. 1. Block diagram of the invariant control approach.

Similarly to the standard image-based approach, the control of the cam-
era is achieved by stacking all the reference points of space Q in a (3n×1)
vector s∗(ξ∗) = (q∗

1,q
∗
2, · · · ,q

∗
n). Similarly, the points measured in the cur-

rent camera frame are stacked in the (3n×1) vector s(ξ) = (q1,q2, · · · ,qn).
If s(ξ) = s∗(ξ∗) then ξ = ξ∗ and the camera is back to the reference position
whatever the camera intrinsic parameters. The derivative of vector s is:

ṡ = L v (10)

where the (3n×6) matrix L is called the interaction matrix and v is the
velocity of the camera. The interaction matrix depends on current normalized
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points mi(ξ) ∈ M (mi can be computed from image points mi = K−1 pi),
on the invariant points qi(ξ) ∈ Q and on the current depth distribution
z(ξ) = (Z1, Z2, ..., Zn). Consider the following (6×1) task function:

e = L̂+(s− s∗)

where L̂+ is the pseudo-inverse of an approximation of the true (3n×6) in-
teraction matrix. In [12], the interaction matrix is supposed to be constant.
In this paper, we consider the most general case when C depends on s as
needed in [22]. In that case :

ė =
dL̂+

dt
(s− s∗) + L̂+ṡ = (O(s− s∗) + L̂+L) v (11)

where O(s− s∗) is a 6× 6 matrix such that O(s− s∗)|s=s∗ = 0. Consider the
following proportional control law:

v = −λ e (12)

where λ is a positive scalar factor which tunes the speed of convergence.
Using this control law the robot can be driven back to the reference position.

4 Stability Analysis

In this section, the local stability of the control law (12) is analyzed. The local
stability is valid only in a neighborhood of the equilibrium point. However,
when the initial error is large, it is possible to sample the trajectory and
consider only small errors at each iteration of the control law [23]. Plugging
equation (12) into (11), we obtain the following closed-loop equation:

ė = −λ(O(s− s∗) + L̂+L)e (13)

It is well know from control theory that the non-linear system (13) is locally
asymptotically stable in a neighborhood of s = s∗ if and only if the linearized
system is stable:

ė = −λQe (14)

where Q = L̂+L|s=s∗ . The linear system (14) is asymptotically stable if and

only if Q has eigenvalues with positive real part:

real(eig(Q)) = real(eig(L̂+L)) > 0

The matrix depends on two set of unknown parameters: Q = Q(K̂, ẑ). Ob-

viously if K = K̂ and ẑ = z then Q = I and the system is stable. If Q is
full rank then e = 0 is the only equilibrium point of the system (i.e. if ‖e‖
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decreases then it decreases towards e = 0). It is well known from control
theory that if Q > 0 then the norm of the task function ‖e‖ decreases to
zero. However, we need to prove that so does the error s− s∗ in the absence
of local minima and singularities. The problem to know if, and in which case,
a local minimum can be found is beyond the aim of this paper and it will
be addressed in future work. In this paper, Q is supposed to be full rank.
As already mentioned, the local asymptotic stability of the system can be
proved considering the system linearized around e = 0 (i.e. ξ = ξ∗):

ė = −λQ(ξ)|e=0e = −λQ(ξ∗)e

where Q(ξ∗) = L̂+(ξ∗)L(ξ∗). The system is locally stable if Q(ξ∗) > 0 since
in that case Q(ξ∗) has eigenvalues with positive real part. However, to prove
the local asymptotic convergence of e to zero, we need also to show that s−s∗

never belongs to Ker(Ĵ+). This means that it exists a neighborhood U of ξ∗

such that e = L̂+(ξ∗)(s− s∗) 6= 0, ∀ξ ∈ U (i.e. e = 0 only if s(ξ) = s∗). Let
us suppose that s(ξ) 6= s∗ and therefore ξ 6= ξ∗ = 0. The Taylor development
of s(ξ) in a neighborhood of ξ∗ = 0 is:

s− s∗ = L(ξ∗) ξ +O2(ξ) (15)

Multiplying by ξT L̂+(ξ∗) (where ξT L̂+(ξ∗) 6= 0 since ξ 6= 0 and L̂+(ξ∗) is
full rank) both sides of equation (15) we obtain:

ξT L̂+(ξ∗)(s− s∗) = ξT L̂+(ξ∗)L(ξ∗)ξ +O3(ξ)

remember that if Q = L̂+(ξ∗)L(ξ∗) > 0 then ξT Qξ ≥ 2σ‖ξ‖2, where σ > 0
is the minimum singular value of the positive definite matrix Q + QT . If
L̂+(ξ∗)(s− s∗) = 0 then:

0 ≥ 2σ‖ξ‖2 +O3(ξ)

that means:

‖ξ‖2 ≤ |O3(ξ)|

which is impossible since, by definition of O3(ξ), it exists a neighborhood of
ξ∗ in which:

‖ξ‖2 > |O3(ξ)|

Therefore, e = L̂+(ξ∗)(s− s∗) 6= 0 if s 6= s∗ in a neighborhood of ξ∗ and the
system is locally asymptotically stable.

5 Robustness to Parametric Uncertainties

The parameters used to compute the control law are only roughly known
and some of the can vary with time when the camera is zooming. Let g =
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(g1, g2, ..., gp) a vector containing p parameters (in our case p = n+ 5 where
n is the total number of depth parameters and 5 is the total number of
camera intrinsic parameters). The closed loop matrix Q can be expressed as a
function of the true and estimated parameters Q = Q(g, ĝ). Obviously, when
the parameters are perfectly known Q(g, ĝ)|ĝ=g = I. Matrix Q can be viewed
as a set of multivariate polynomials Q(g) whose variables are the parameters
g = (g1, g2, ..., gp). As already mentioned, the system is locally stable if and
only if the eigenvalues of Q have positive real part. The eigenvalues of the
(6×6) matrix Q are the roots of the characteristic polynomial:

p(λ,g) =

6∑

k=0

ck(g)λ
k

where the coefficients ck(g) are polynomial functions of the uncertain param-

eters g. Given the measurement precision on the parameters gi ∈
[
g

i
, gi

]
, it

is possible to test the stability of the system. The necessary and sufficient
conditions for the roots of the polynomial to be positive are obtained from
the Routh-Hurwitz stability criterion without explicitly computing them.
To check if the polynomial is stable we need to transform the bounds on
the uncertainty into bounds on the coefficients of the polynomial. Indeed,
if g ∈

[
g, g
]
then ck(g) ∈ [ck, ck]. Thanks to the Kharitonov theorem [1],

the stability of the uncertain polynomial can thus quickly checked using the
Routh-Hurwitz stability criterion on the Kharitonov polynomials. However,
the bounds on the coefficients of the polynomials are often conservative. Thus,
if the Kharitonov polynomials are not stable we cannot conclude on the sta-
bility of the original system.

An approximation of the robustness domain can be obtained by bounding
directly the eigenvalues of the closed-loop matrix. After setting g̃i = gi − ĝi,
matrix Q can be approximated as:

Q(g) ≈ Q0 +

p∑

i=1

g̃iQi (16)

where Q0 = I, Qi =
∂Q(g)

∂gi
|g=ĝ and g̃i = (g̃1, g̃2, ..., g̃p). Matrix Q can be re-

garded as a perturbation of the identity matrix I. Let us define the spectral

variation of M̃ with respect to M [31]:

svM(M̃) = max
i

min
j
|λ̃i − λj |

The Bauer-Fike theorem states that [31]:

svM(M̃) ≤ ‖M̃−M‖

In our case, the spectral variation S with respect to I is:

svI(Q) = max
i
|λ̃i − 1| ≤ ‖E‖
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Thus, a simple sufficient condition for the stability of Q is ‖E‖ < 1. Indeed,
if ‖E‖ < 1 then:

max
i
|λ̃i − 1| < 1

which implies λ̃i > 0. From the definition of spectral variation, all others
eigenvalues λk ∀k are such that |λ̃k − 1| ≤ |λ̃i − 1|. Thus, |λ̃k − 1| < 1 which
means λ̃k > 0 ∀k. Now, since E =

∑n
i=1 g̃iQi :

‖E‖ ≤
m∑

i=1

|g̃i|‖Qi‖

setting µi = ‖Qi‖ > 0 the condition can be imposed by bounding the previous
inequality:

n∑

i=1,i6=j

µi|g̃i| < 1

in this equation, the error |g̃i| is weighted by the scalars µi. The smaller is µi

the less is the influence of the error |g̃i| on the stability of the system. Numer-
ical examples show that the control is particularly robust to uncertainties on
camera intrinsic parameters. As it will be shown in the experimental results,
more than 50 % error of the focal length estimation can be tolerated. On the
other hand, the system is less robust to uncertainties on the depth distribu-
tion. As an example, 10 % error on the depth distribution can be enough to
make the system unstable.

6 Open problems

The standard procedure for visual servoing approaches is to design a control
law for the nominal system [16,18]. Only few authors [3,32,33] have applied
robust control techniques in order to directly take into account uncertainties
at the design level. Despite these technique may be very conservatives their
application to the invariant visual servoing scheme seems a possible solution
to deal with the problem of large uncertainties on both camera intrinsic
and extrinsic parameters. Indeed, if the environment is completely unknown
and the system is uncalibrated the stability of the visual servoing in the
presence of large errors on the parameters, can become a serious issue since
the robustness domain is unknown. In addition to the problem of providing
some information about the unknown depths of the object in the camera
frame (i.e. the camera extrinsic parameters), the proposed invariant approach
introduces new control problems since several intrinsic parameters can vary
with time. Since it is generally impossible to estimate accurately on-line all
the time-varying parameters, it is necessary to take into account the influence
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of such uncertainties on the stability of the visual servoing directly at the
design level. Another unresolved problem is the control of the zoom of the
camera. Indeed, the zoom can be used to enlarge the field of view (zoom out)
if the object is getting out of the image and to reduce the field of view (zoom
in) to improve the extraction of the visual features. Unfortunately, these two
objectives cannot be achieved at the same time and a compromise must be
found.

7 Experimental Results

The vision-based control approach proposed in the paper has been validated
on the 3 d.o.f. system Argés (see Figure 2) at INRIA Sophia-Antipolis. The
Argés monocular system is an experimental platform used to develop active
vision algorithms. The hardware is made of on-the-shelf components:

• a Computer controlled CCD Camera Acom1 PAL with a f=5.9 to 47.2
mm zoom-lens, automatic AGC 18dB and motor iris, a numerical auto-
focus on 10bits, white balance, plus rs232C and video interface;

• a Pan-tilt turret, from RobotSoft, with a resolution of 3.086 minutes of
arcs, a 4 lbs capacity and a speed up to 300 deg/sec, using constant
current bipolar motor drives, via a rs232C interface;

• a linear degree of freedom, from CharlyRobot, with a resolution of 0.1
mm, using a slow screw driven control;

Fig. 2. The 3 d.o.f. robot Argés with a zooming camera.

The objective of the experiment is to position the camera with respect to an
object represented by 7 points (see Figure 3(a)). Suppose that the model is
unknown (i.e. model-based approaches cannot be used) and that the camera
is zooming during the servoing (i.e. standard model-free approaches cannot
be used). On the other hand, we can use the approach proposed in the paper.
The camera, with a focal length f∗ = 2500 pixels, is driven to the reference
position and the corresponding image is stored (see Figure 3(a)). Then, the
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camera is displaced to its initial position. The initial displacement is tx = 350
mm for the linear degree of freedom, rx = 4 degrees and ry = 17 degrees (i.e.
tilt and pan respectively). At the initial position, the camera zooms out and
the focal length is changed to f0 = 1670 pixels. The corresponding initial
image is given in Figure 3(b). The problem of matching/tracking features,
common to all visual servoing techniques, is beyond the aim of this paper and
it has been already investigated in the literature [10]. In the experiments, I
focus on the general properties of the vision-based control approaches, there-
fore I consider that the matching/tracking problem has already been solved.

(a) Reference image (b) Initial image

100 200 300 400 500 600
−0.2

0

0.2

iteration number

(c) Error in the invariant space (d) Final image

Fig. 3. Camera positioning a with respect to 7 non coplanar points.

From the initial and reference images we can compute the invariants qi

and q∗
i ∀i ∈ {1, 2, ..., n} in the projective space Q. Using the control law

plotted in Figures 4(c) and (d), the error qi − q∗
i is zeroed (except for noise)

(Figure 3(c)). Consequently, the camera is back to the reference position (i.e.
the translational and rotational errors in Figures 4(e) and (f) converge to zero
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with an accuracy of 1 mm and 0.1 degrees). Since the camera parameters are
unknown we use in the control law an extremely bad approximation of the
focal length f̂ = 600 pixels and we suppose that the principal point is in the
center of the image. Despite the camera internal parameters K̂ and the depth
distribution ẑ are only approximated, the control law is stable and converges.
Obviously, if the calibration errors are big the performance of the visual
servoing decreases (long time of convergence, unpredictable behavior). On the
other hand, we can use the zoom of the camera to improve the performance
of the servoing. During the servoing, the zoom is used to enlarge the field of
view of the camera if the object is getting out of the image and to bound
the size of the object to improve the robustness of features extraction. At
the convergence, the camera focal length is f ≈ 2720 (see Figure 4(b)).
Consequently, the camera is back to the reference position, the images at the
convergence (see Figure 4(d)) is not identical to the reference image because
the camera has different focal lengths.

100 200 300 400 500 600
−16

−14

−12

−10

−8

−6

−4

−2

0

2

iteration number

(a) Translation speed (mm
s

)

100 200 300 400 500 600 700 800 900 1000
−0.04

−0.02

0

0.02

0.04

0.06

iteration number

ω
x

ω
y

(b) Rotation speed ( deg

s
)

100 200 300 400 500 600
0

50

100

150

200

250

300

350

iteration number

(c) Translation error (mm)

100 200 300 400 500 600
−25

−20

−15

−10

−5

0

5

iteration number

r
x

r
y

(d) Rotation error (deg)

Fig. 4. Experimental results of the invariant visual servoing approach.
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8 Conclusion

In this paper, it has been shown that the invariant visual servoing approach
is robust to uncertainties on the parameters of the system. However, only
a rough approximation of the robustness domain has been obtained. Since
several intrinsic parameters can vary with time, and it is generally impossible
to estimate accurately on-line all the time-varying parameters, it is necessary
to take into account the influence of such uncertainties on the stability of
the visual servoing. Thus, the approach could be considerably improved by
directly applying robust control techniques at the design level.

Appendix A

The interaction matrix in the invariant space is obtained by stacking togheter
all the interaction matrices Lqi relative to the points qi

Lq = (Lq1,Lq2, ...,Lqn)

From equation (9), and knowing that Ṫ−1
m = −T−1

m ṪmT−1
m , we obtain the

derivative of qi:

q̇i = Ṫ−1
m mi + T−1

m ṁi = T−1
m (ṁi −Ami)

where A is the following triangular matrix:

A = ṪmT−1
m =



a11 a12 a13

0 a22 a23

0 0 0




The matrix A can be obtained by solving the following equation:

Ṡm = ṪmT>
m+TmṪ>

m = ṪmT−1
m TmT>

m+TmT>
mT−>

m Ṫ>
m = ASm+SmA>

The entries of the matrix A are linear functions of the camera velocity:

Ami = Ci v

where Ci is a (3×6) matrix. Similarly, ṁi is a linear function of the camera
velocity:

ṁi = Lmi v

where:

Lmi =



− 1

Zi
0 xi

Zi
xiyi −(1 + x2

i ) yi

0 − 1
Zi

yi

Zi
1 + y2

i −xiyi −xi

0 0 0 0 0 0




Thus, the interaction matrix relative to the point qi can be written as:

Lqi = T−1
m (Lmi −Ci )
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