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Two New Algorithms for Forward and Inverse
Kinematics under Degenerate Conditions
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We propose a fast algorithm for the computation of any order derivatives
of robots’ forward kinematics. We calculated second derivatives to show
its application in real-time robotics. Then, an algorithm for solving the
inverse kinematics problem at singularities under degenerate conditions is
proposed. The algorithm was successfully tested on a 7 degree of freedom
robot.
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To solve the inverse kinematics problem we need to find the joint displacement that moves
the end-effector of the robot to a specified position. The closed form solution can be
obtained only for non-redundant robots with special geometry. For a general serial
manipulator different iterative methods are used. The majority of the methods in the
literature use the information provided by the Jacobian matrix: the Jacobian transpose
method [1], the Jacobian pseudo-inverse method [2], the damped least-squares Jacobian
inverse method [3], [4]. Real-time control of robots is done without difficulty with one of
these methods to find joint displacements from Cartesian commands as long as the
Jacobian is not singular. Suppose the robot is at a singularity and the desired motion is in a
degenerate direction. In this case the robot may get stuck. This condition does not mean
that the displacement along the degenerate direction cannot be performed. If the
movement is possible and all the points along this direction are in the workspace, there is
at least one joint position for each of these points. Nielsen [5] outlined that this solution
can be found by using the second derivatives of forward kinematics (i.e. Hessian matrices)
the Jacobian matrix being only the first term in a Taylor expansion of the forward
kinematics of a robot. If the first term is rank deficient, other terms (i.e. the higher order
derivatives) give the information needed to accomplish the desired motion. In order to
perform the Taylor expansion of forward kinematics, we propose in this paper an
algorithm for the real-time computation of any order derivatives of forward kinematics of
any serial robot (n joints, rotary or prismatic). Egeland [6] has shown that the Cartesian
acceleration term provides the information required to exit the singularity. Thus, he
proposed to move the robot inside the joint null space. This is easy if the dimension of the



null space is 1. But in general case for a n joints robot, its dimension is n-r (where r is the
rank of the Jacobian matrix). The direction of the null space in which we have to move is
difficult to know, and it is possible that a null space motion doesn’t take a redundant robot
out of the singularity. In order to solve the inverse kinematics problem at singularities,
when the desired motion is in a degenerate direction, a new algorithm for a general serial
robot is proposed in the paper.

This paper is organized as follows. In the first section we introduce a notation for
orientation coordinates which facilitates the mathematics of the algorithms presented here.
In the second section we illustrate the algorithm to calculate any order derivatives of
forward kinematics. The final result is the real-time Hessian matrices computation. In the
third section we illustrate the algorithm for inverse kinematics at singularities under
degenerate conditions. The experimental results are given in the fourth section.
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To represent the kinematics of a robot, we will use the Denavit-Hartemberg modelisation
modified by Dombre and Khalil [7]. The transformation matrix between the end-effector
frame R n  and the reference frame R 0  is 0 �

n . This representation is redundant because the
orientation matrix has 9 parameters, when only 3 are needed. A rotation of θ around a
unitary vector �  can be described with the following four parameters:

( )θµ cos1 = ,    ( )θµ sin2 �
�= ,    ( )θµ sin3 �

�= ,    ( )θµ sin4 	

= (1)

If we calculate these parameters in function of the elements of the matrix 0 �
n  we obtain:
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where � = s s sx y z
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T
 and � = a a ax y z

T
 are the columns of

the orientation matrix. Euler’s parameters are not used in this algorithm because they are
non-linear functions of the elements of the transformation matrix 0 �

n . The notation uses
the advantages of the homogeneous matrix for transformation multiplication and those of
linear vector expressions for deriving easily forward kinematics. Furthermore, if we make
the hypothesis that − ≤ ≤π θ π/ /2 2, the first parameter can be discarded and the
representation of the rotation is minimal. The commanded motions on a robot in one
sampling time are usually not large. If the rotation is larger than π, it can be split into two
rotations. The vectorial form of the forward kinematics of a robot is:
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this is a set of linear functions of the elements of the transformation matrix 0 '
n .
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We take the p order Taylor development of the transformation matrix 0 '
n  calculated in � .

Let �� � �= + δ  so that:

( ) ( ) ( )[ ] ( )[ ] ( )���������� ��
� 	�

�

	 	�
��

	 		
��� 





 ++++= ∑∑∑

= ==

...
2

1~
1 1

02

1

0
00 δδ

∂∂
∂δ

∂
∂

(4)

To know the general derivative of the matrix 0 �
n  we use the following theorem:
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If the reference frame is the initial end-effector frame:
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the general derivative of the forward kinematics may be calculated as follows:
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where p p p pn= + + +1 2 &  and p j  is a positive or null integer.

This theorem show that all derivatives can be calculated only by calculating the first
derivatives.
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The Jacobian matrix is calculated by deriving the forward kinematics. We will note
with j the j-th columns of the Jacobian matrix. The subscript "p" indicates the position and
the subscript "o" the orientation. The forward kinematics defined by equation (3) is a set
of linear functions of the elements of the transformation matrix 0 H

n . If the reference frame
is the initial end-effector frame, the elements of the j-th column of the Jacobian matrix are
obtained directly by using equation (6) for p=1. The first derivative of the matrix 0 H

n  can
be written as follows:
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where j
o

ST  is the skew matrix associated to the vector j
o

T . The terms of the Jacobian
matrix in this vector are the derivatives with respect to q j of rotation around axis x, y and

z. Equation (7) is available for both prismatic and rotary joint. The difference between
rotary and prismatic joints is made when the Jacobian matrix elements are calculated.
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Let h i j
k
,  be the (i,j) element of the k-th Hessian matrix � k  ({ }6,...,2,1=

�
):
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We calculate only elements with 1 ≤ ≤i n  and i j n≤ ≤  because the transformation matrix
is a continuous function of 	  and so by using the Schwartz theorem, we have h hj i

k
i j
k

, ,= .

As for first derivatives, the (i,j) element of the Hessian matrix are obtained directly from
equation (6) for p=2. By using equation (7), the second derivatives can be written in
function of the elements of the Jacobian matrix:
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This equation is available for both prismatic and rotary joint. The difference between
rotary and prismatic joints is made when the elements Jacobian matrix are calculated.
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The algorithm proposed in this paper minimizes the following function:

min
δ

δ. /Φ = 2 (10)

subject to:

( ) ( )( ) 2
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δ
(11)

Our idea is to take a second order Taylor expansion of the norm of the Cartesian error:
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We define C, <  and =  in the following way:
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Equation (12) gives a better approximation of the Cartesian error than other methods,
thanks to the term using the Hessian matrices. We test the vector L  of equation (13). IfM N

≠ , we can use any of the existing algorithms. If O P=  and δ Q R≠ , δ S  is a degenerate
vector, we cannot use those algorithms, and we have to solve the set of equations (10)
and (11) written hereafter. The minimum value of Ψ  is 0, thus our problem is equivalent
to minimize equation (10) with the following constraint:
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The Lagrange operator of equations (10) and (14) is:
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The necessary conditions for solving this set of equations are:
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If λ = 0, equation (16) implies δ � �=  and equation (17) doesn’t hold when δ � �≠ . So λ
is not null and µ  is defined as µ λ= −1 / . Equation (16) can be expressed as follow:� � �

δ µδ= . Therefore δ �  is an eigen vector of �  and µ  is its eigen value. We choose a
normalized vector �  and a scalar α  so that δ α� �= . By plugging this equation into
equation (17), we get:

C + =1

2
02α µ (18)

C is positive, therefore we have to choose a negative eigen value of �  to verify equation
(18). The solution to equation (18) is:

α
µ

= ± − 2C (19)

The bigger is the norm of the eigen value µ , the smaller is α . Since �  is normalized the
norm of α  is the norm of δ � . We want the smallest norm of δ �  to satisfy equation (10),
so we have to choose the lowest eigen value of � . The sign of α  determines the
configuration of the robot when it exits the singularity.
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The algorithm was tested on the PA-10 from Mitsubishi, a 7 degree of freedom robot. The
Singular Value Decomposition (S.V.D.) algorithm was used to calculate the eigen values
and vectors of � . The pseudo-inverse algorithm was used to inverse the Jacobian
matrix.The computation period is 20 milliseconds on a MVME 167 processor card (VME
bus). Suppose now the robot in a singularity. We want to move the end-effector of the
robot along a degenerate direction. When we use the pseudo-inverse algorithm the robot
doesn’t move because we filter noise on joint measurements. If we don’t filter the joint
measurements, it is possible that robot moves but is not possible to control when
movement occurs nor the configuration of the robot. On the other hand when we use also



Hessian information the Cartesian error norm is small and the movement start
immediately. It is therefore possible to move away from a singular configuration in a
degenerate direction with little tracking error. The lower the initial velocity the lower the
initial Cartesian error norm. We have carried out several tests at every singularity with
similar results: we can reduce the Cartesian error as we wish if we accept a lower initial
velocity and we can choose the initial configuration of the robot. If there are no negative
eigen values, the Taylor expansion needs to be taken to a higher order, and a new
algorithm is needed. In the case of the seven degree of freedom Mitsubishi robot arm, our
experimental results confirmed that there is at least one negative eigen value at each
singularity.

��� ' � +!0 . " � ' .
The first algorithm described in this paper allows recursive computation of all derivatives
of the robot kinematics from their first derivatives. In this way, the Hessian matrices are
easily obtained from the Jacobian matrix. To calculate all Hessian matrices of an n joints
serial robot, we need 6 2n  multiplication and 3 2n  additions. With this algorithm, it possible
to calculate in real-time, the Hessians from closed form equations, with significant
improvement of performance of robots around singularities. The second algorithm
described in this paper solves the problem of moving a general manipulator in a
degenerate direction from a singularity of its workspace. The basic idea is based on taking
a Taylor expansion of the norm of the function to minimize. To illustrate the algorithm, a
second order expansion was performed in this paper. There may be robots for which
higher orders are needed. Using the first algorithm given in the paper we can calculate the
necessary matrices used for solving the problem at any order.
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