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ABSTRACT

Reversible energy conversion between magnetic and kinetic energies has been recently demonstrated in a system of counterstreaming
electron beams [see A. Ghizzo et al., Phys. Rev. Lett. 131, 035101 (2023)]. During the first step of the instability, the growth of a current-
driven filamentation magnetic field is observed when propagative oblique solutions are considered, followed by the reversal of energy transfer
from magnetic to kinetic energy in a second step. This highlights a new physical mechanism of the Vlasov equation: the enhancement of fila-
mentation of the distribution function in the presence of the phase synchronization of the Van Kampen eigenmodes. This gives rise to a
bifurcation toward self-organization and to a strong plasma heating. This new plasma heating mechanism possibly provides a new perspective
on the role played by the filamentation in phase space in the relativistic regime of Weibel-type instabilities.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0205253

I. INTRODUCTION

In a configuration characterized by two counter-propagating elec-
tron beams, Weibel-type instabilities can couple with electrostatic
unstable modes by generating the so-called oblique instabilities (OIs).
Recently, in Ref. 1, we have shown via kinetic simulations—performed
with both semi-Lagrangian (SL) and particle-in-cell (PIC) Vlasov–
Maxwell codes—how the spatial filamentation induced by these modes
is capable of affecting, both linearly and nonlinearly, the phase-space
filamentation of the distribution function by synchronizing the phases
of the Van Kampen modes. In this work, we further discuss the role
played by phase-space filamentation in this process.

Two filamentation mechanisms are involved: on the one hand,
the filamentation of the distribution function in the velocity space, an
intrinsic property of the Vlasov equation, and on the other hand, the
spatial filamentation of currents, related to the current filamentation
instability (CFI), a kind of Weibel instability. This leads to large-
amplitude fluctuations of the distribution function in the phase space,
to which hereafter we refer as to a “reinforced filamentation.” This pro-
cess may lead to a change in the saturation regime of the OIs, where
the energy stored in the magnetic field can be transferred back to
plasma particles via a kinetic heating mechanism first discussed in
Ref. 1. Such a process differs from the magnetic reconnection, which is

forbidden in the 2D2V geometry considered in that work. A global re-
organization takes place in which collisionless wave–particle interac-
tions transfer the energy stored in the beams and in the magnetic field,
into the internal energy of the plasma.

The amplification of magnetic fields induced by temperature or
momentum anisotropy and the conversion of the magnetic energy
into kinetic or internal energy represent two complementary features
of the dynamics of a magnetic field in a collisionless plasma. The first
process is exemplified by Weibel-type instabilities. Previous linear
studies of Weibel-type instabilities2–14 have identified different classes
of electron beam-plasma instabilities: the current filamentation insta-
bility15–19 (CFI), the Weibel instability (WI), the electrostatic two-
stream instability (TSI), and finally the oblique instability (OI).20,21

The special case of two counterstreaming electrons beams is particu-
larly relevant to astrophysical plasmas, e.g., in the gamma-ray burst
production scenario22 or in interpenetrating plasma flows.23,24 WI is
driven by thermal anisotropy in the plasma provided that the perpen-
dicular temperature T? is larger than the parallel temperature (Tk
here), where the symbols? and k denote the perpendicular and paral-
lel direction with respect the wave vector k. While TSI modes are lon-
gitudinal (i.e., with k aligned to the beams), CFI modes are
perpendicular (i.e., with k perpendicular to the beams). In these
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systems, we usually observe the conversion of kinetic energy into mag-
netic energy.

The reverse process of energy transfer where the magnetic energy
is converted into kinetic energy through acceleration or heating of
charged particles is usually met in magnetic reconnection.25–33 Such a
process involves a topology change of field lines, which leads to a new
equilibrium configuration of lower magnetic energy. In ideal magneto-
hydrodynamics (MHD), magnetic field lines consistently move with
the plasma due to the frozen-in flux principle, ensuring they cannot
break or tear apart. However, satellite observations (see, e.g., Refs. 24
and 34) indicate the occurrence of rapid global magnetic reconnection
processes, suggesting the presence of anomalous efficient dissipation of
magnetic energy. How such physical processes occur and how fast line
breaking takes place are today open questions.

These two energy transfer mechanisms are not only complemen-
tary but strongly correlated with turbulence and with associated direct
cascades, magnetic reconnection, and collisionless plasma heating.34–45

This paper is devoted to extending ideas about the turbulence cas-
cade into the deep kinetic regime. The importance of the energy con-
version implied by magnetic reconnection in the turbulence cascade
has been already pointed out by several authors,46–49 so as the role
played by phase-mixing in Ref. 50. In this context, it is of interest to
develop a better understanding of the basic mechanisms of kinetic
heating, which encompasses processes of conversion from magnetic
into kinetic energy that are more fundamental than magnetic recon-
nection and that may become important in kinetic plasma turbulence.
This study is based on a two-dimensional (2D) configuration consist-
ing of two counter-propagating electrons beams with a linearly polar-
ized electromagnetic field. Such a configuration is unstable to CFI, and
it can develop a turbulent cascade toward large wave vectors. In order
to take into account this turbulent cascade in a self-consistent way
with the CFI instability, we focus on a particular class of these instabil-
ities: the oblique modes.

Recently, in Refs. 51 and 52, two different classes of OI modes
have been investigated by solving the corresponding dispersion rela-
tion: the first one, referred here as “the non-propagative branch,”
exhibits the generation and the growth of a quasi-static magnetic field
from CFI, in which the kinetic energy is converted into magnetic
energy. However, by solving numerically the dispersion relation, a sec-
ond branch of solutions has been identified in Ref. 51. This is the prop-
agative branch of oblique modes. While the beginning of the
dynamics, driven by this propagative OI mode, is very similar to the
dynamics of the non-propagative branch, a transition toward a differ-
ent dynamics is observed in its nonlinear evolution. When several
propagative OI modes are excited, this dynamics leads to the emer-
gence of a direct-like cascade to smaller scales. Here, we will focus on
the physical mechanism that leads to the reversion of the energy trans-
fer, associated with this direct-like cascade. This mechanism, first pro-
posed in Ref. 1, is linked to the emergence of a spatial filamentation of
the distribution function. This is a direct result of the turbulent cas-
cade, which produces thinner and thinner filaments in the configura-
tion space. In the strong relativistic regime, such a process induces an
enhancement of the filamentation of the distribution function (here
referred to as the “reinforced” filamentation). This mechanism can
induce deep modifications in the energy transfer and can lead to a
strong stochastic heating. The emergence of these effects introduces
asymmetries (elements of irreversibility) between two fundamental

aspects of the Vlasov model: the filamentation of the distribution func-
tion in links with the time reversibility of the Vlasov equation and the
phase synchronization mechanism of Van Kampen modes.53 The
analysis of phase synchronization of oscillators (Kuramoto’s approach)
can help to identify and characterize these aspects.

The formulation of the Vlasov–Maxwell system as a (nonlinear)
Hamiltonian Kuramoto system, involving differential equations, high-
lights the role of Van Kampen mode synchronization in the heating
process. A linear analysis shows that the amount of phasestrophy (a
kind of enstrophy extended to phase space) plays the role of an
“energy” in the linear regime, and demonstrates a connection between
mode synchronization and filamentation of the distribution function.
Quantifying the phasestrophy flux density represents however a useful
analysis tool even in the nonlinear regime: it provides an estimate of
the importance of the synchronization process (cf. also Ref. 1) and dis-
plays a secular growth when Van Kampen mode synchronization
becomes global.

This paper addresses the statistical properties of energy transfer
across scales, recognizing the possible significance of a direct cascade,
induced by nonlinear interactions, as well as the role of phase synchro-
nization of Van Kampen modes at the kinetic scales. Phase-space fila-
mentation driven by (global) phase synchronization can trigger an
alternative channel of the conversion between kinetic and magnetic
energy. With respect to our previous work,1 we investigate here in
greater detail the features of the phase-space filamentation involved in
this complex mechanism.

The paper is organized as follows. In Sec. II, we briefly recall the
Vlasov–Maxwell (VM) model and we discuss in Sec. III several of its
fundamentals aspects, mainly those related to the concepts of phase
synchronization of Van Kampen modes. We also discuss the notion
of “the enhanced” filamentation process of the distribution function
in the presence of transition toward global phase synchronization.
Section IV shows the main differences between free-streaming and
reinforced filamentation. Section V presents the numerical particle-
in-cell and semi-Lagrangian (Vlasov) schemes and discusses the
results of the study of two classes of oblique Weibel-type modes,
propagating and non-propagating. Section VI is devoted to the dis-
cussion of a new collisionless plasma heating scenario that origi-
nates from the growth of propagative oblique Weibel modes in the
presence of large fluctuations. Finally, conclusions are presented in
Sec. VII.

II. THE VLASOV–MAXWELL MODEL AND THE PHASE-
SPACE FILAMENTATION
A. The physical model

Assuming a linearly polarized electromagnetic wave in the form
of two electric and magnetic field components E ¼ ðEx; Ey; 0Þ and
B ¼ ð0; 0;BzÞ, our model uses a two-dimensional (2D) configuration
where the “simplified” electron Vlasov equation for a phase-space dis-
tribution function f ¼ f ðx; y; px; py; tÞ reads
@f
@t

þ px
mc

@f
@x

þ py
mc

@f
@y

þ e Exþ
pyBz

mc

� �
@f
@px

þ e Ey�pxBz

mc

� �
@f
@py

¼ 0:

(1)

The corresponding electromagnetic field ðE;BÞ obeys the Maxwell
equations
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@Ex
@t

¼ c2
@Bz

@y
� Jx
e0
; (2)

@Ey
@t

¼ �c2
@Bz

@x
� Jy
e0
; (3)

@Bz

@t
¼ @Ex

@y
� @Ey

@x
; (4)

together with the Poisson law (divE ¼ q=e0), where the electron cur-
rent density J ¼ ðJx; Jy; 0Þ and the charge density q are defined by

J ¼ e
ð

p
mc

fd3p and q ¼ e
ð
fd3p� en0: (5)

Here, n0, e< 0, and m are the fixed background ion density, the ele-
mentary charge, and rest mass of electron, while c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2=m2c2
p

represents the Lorentz factor. J and q verify together the continuity
equation

@q
@t

þ divJ ¼ 0 (6)

that expresses the local charge conservation.

B. Filamentation of f in the phase space vs spatial
filamentation of currents

One of the fundamental properties of the Vlasov equation (1)
concerns the conservation of any functional of f, noted Gð f Þ, G being
an arbitrary function of f. This conservation leads to the so-called
Casimir invariants Cð f Þ ¼ Ð d3xd3pGð f Þ ¼ const. Their conservation
follows from the invariance of the Vlasov equation under time reversal
and from the fact that Gð f Þ commutes with the Hamiltonian. From a
mathematical point of view, the asymptotic convergence of f holds
only in the “weak” sense (see Refs. 54–56) and the derivatives of the
distribution f with respect the velocity variables grow quickly in time.
Indeed, linear Landau damping suggests that a “homogenization” phe-
nomenon takes place leading to an entropy-preserving kinetic dissipa-
tion where kinetic fast oscillations globally compensate each other in
an averaging process in phase space. This leads to the phenomenon of
the filamentation of f in the velocity space (or equivalently the momen-
tum space), which is one aspect of filamentation, namely, the “kine-
matic filamentation” of the distribution function in the velocity space,
one of the fundamental properties of the Vlasov equation. This kine-
matic feature can be modified or even amplified by CFI. CFI induces a
filamentation of current densities in configuration space, which also
leads to the production of thinner and thinner filaments of the current
densities and, consequently, of the distribution function itself.

While the generation of thinner filaments goes on, the informa-
tion transfer from the small to the large wavenumbers follows from
the energy transfer between scales associated with this filamentation
process. Information is usually conserved in a continuum velocity
space (i.e., when the size of the elementary cell tends to zero) and the
entropy is exactly conserved. It is such a mathematical property that
“guarantees” the time reversibility of the Vlasov equation in the kinetic
scales, as met for instance in the echoes problem in Ref. 57.

Furthermore, from a physical point of view, the kinematic fila-
mentation is a real physical phenomenon in plasmas that might be
responsible of the collisionless plasma heating as it, e.g., observed in
the Earth’s magnetosheath in Refs. 34 and 45 or in interpenetrating

plasmas in Ref. 24. From Eq. (1), it can be seen that the value of f cannot
change along a characteristic. Often the characteristics of the Vlasov
equation mix together phase-space regions where the value of f is signifi-
cantly different. Steep gradients of f are this way generated. In simula-
tions that are performed on a (Eulerian) fixed grid in phase space, the
grid almost inevitably becomes too coarse as this fine graining develops,
which leads to the growth of the entropy. From a numerical point of
view, this “filamentation” problem was well known in Eulerian Vlasov
simulation and has been often discussed in Refs. 58–63.

On the another hand, oblique Weibel-type instabilities can induce
small-scale, large-amplitude fluctuations in the distribution function,
leading to what we refer to as “dynamical filamentation.” This phe-
nomenon may alter the typical filamentation property of the Vlasov
equation in velocity space. Consequently, the “kinematic filamentation”
is enhanced, and we can correlate it with the variation in the phasestro-
phy flux within the Kuramoto description.

III. SYNCHRONIZATION VERSUS FILAMENTATION IN
THE VLASOV FORMALISM
A. Synchronization aspects in the VM system

Expressing the Vlasov equation (1) in the following form:

@f
@t

þ p
mc

:
@f
@x

¼ R x; p; tð Þ; (7)

where

R x; p; tð Þ ¼ �e E þ p� B
mc

� �
:
@f
@p

: (8)

The Fourier transform of Eq. (7) reads

@fk
@t

¼ � ik:p
mc

fk þ Rk p; tð Þ: (9)

Thus, the Fourier component fkðp; tÞ of the distribution function f can
be described, from an oscillator point of view, by its real amplitude
jfkðp; tÞj and its phase ukðp; tÞ. By separating real and imaginary parts,
Eq. (9) leads to the set of differential equations:

@jfkj
@t

¼ jRkj cos Hk � ukð Þ; (10)

@uk

@t
¼ � k:p

mc
þ jRkj

jfkj sin Hk � ukð Þ; (11)

where jRkj and Hk ¼ Hkðp; tÞ define the amplitude and the corre-
sponding phase of the quantity Rk ¼ jRkjeiHkðp;tÞ. Equation (11)
describes the Kuramoto dynamics (see Refs. 64–67), in which the
angles are coupled through the sine function. The synchronization
model was used in Refs. 68 and 69 to study the Landau damping in the
Vlasov–Poisson model. Extension to the gyrokinetic modeling was
proposed in Refs. 70 and 71 for the study of the ion-temperature-gra-
dient instability in tokamaks.

In Eq. (11), the first term in the right-hand side of the equation
corresponds to the intrinsic filamentation process of f in the momen-
tum space (coming from the free-streaming term), which is related to
the Van Kampen modes.53 This term plays the role of the natural fre-
quency xn of the nth oscillator in Eq. (A3) of the Hamiltonian formu-
lation of the Kuramoto model (see Appendix A). In a similar way, the
parameter Kr, product of the coupling strength K by the order
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parameter r (cf. the Hamilton–Jacobi equation (A2) in the Appendix
A), is replaced by the term jRkðp; tÞj=j f kðp; tÞj ¼ jUkj. This depends
explicitly of the inverse of the amplitude jfkj, whose evolution satisfies
Eq. (10).

The set of Eqs. (10) and (11) for the Vlasov–Kuramoto
approach is equivalent to the set of equations in the Hamilton–
Jacobi formalism given in (A2) and (A3). Table I summarizes the
correspondence between the two models. By rewriting the
Hamiltonian in the form

H ¼ �
ð
d3pd3k

k:p
mc

Jk þ
ð
d3pd3kjUkjJk sin Hk � ukð Þ;

and by introducing an action Jk ¼ jfkj, the set of Eqs. (10) and (11)
reads

_J k ¼ � @H
@uk

¼ jUkjJk cos Hk � ukð Þ; (12)

_uk ¼
@H
@Jk

¼ � k:p
mc

þ jUkj sin Hk � ukð Þ: (13)

Using the Maupertuis principle, we clearly see that it is the quantity
jfkðp; tÞj that plays the role of the action Jn in Eq. (A2) and that it is
possible to define, for each Van Kampen mode of wave vector k, an
entropy density Sk written in terms of the logarithm of the action den-
sity as

Sk ¼ �kB ln jfk p; tð Þj ¼ kB lnWk: (14)

Here, Wk ¼ 1=jfkðp; tÞj denotes a “number” of configurations or
micro-states characterized by the wavevector k in the ½k; k þ dk�
interval. Thus, in Eq. (14), the entropy density Sk counts the num-
ber of effective Fourier “modes” in an interval ½k; k þ d3k�, exactly
as the thermodynamical (Boltzmann’s) entropy SB ¼ kB lnW
counts the number of microscopic configurations W correspond-
ing to a macroscopic state. This provides an interpretation of syn-
chronization in the strong coupling regime in terms of entropy:
the “network” of Van Kampen oscillators tends to synchronize by
“maximizing” their entropy production, a feature already observed
in the Hamiltonian framework of the Kuramoto model, as previ-
ously mentioned in Ref. 72.

B. The “reinforced” filamentation concept

We can consider without loss of generality a simplified system
with wavevector k ¼ ðkx; ky; 0Þ. In order to study the influence of
CFI on the transition toward spontaneous synchronization, it is illumi-
nating to perform a linear analysis of the Vlasov–Maxwell set of
Eqs. (1)–(5): we expand the distribution functions f, Fourier trans-
formed with respect to x, through a linearization of f around the equi-
librium F0ðpÞ ¼ n0

P
j ajF0j as

f ¼ n0
X
j

ajF0j þ dfk p; tð Þei kxxþkyyð Þ: (15)

F0 describes here the initial counterstreaming electron beam distribu-
tion. We have considered the case of a weakly relativistic distribution
function of two-shifted Maxwellians of velocity C2 ’ 0:90mc ¼ �C1

and of temperature T1 ¼ T2 ¼ 6 keV, the distribution being isotropic.
The use of oblique propagative modes allows us to study the filamenta-
tion and synchronization processes from an innovative point of view,
because the dynamics of these modes occurs at the interface between
the concept of instability (CFI in a simplified configuration and the
cascade process) and the concept of fully developed turbulence, which
takes place during the wave–particle interaction processes.

The Maxwellian distribution of each stream depends on the drift
momentum Cj according to

F0j ¼ A exp � p2x
2m2c2b2x

 !
exp � py þ Cjð Þ2

2m2c2b2y

 !
; (16)

where we have assumed the current neutrality condition
n0
P

j¼1;2 ajF0jðCj=mcÞ ¼ 0. Moreover, we only consider a two-
counterstreaming case without perpendicular/longitudinal tempera-
ture anisotropy, i.e., we assume here the condition bx ¼ by ¼ b
¼ vth=c; vth being the thermal velocity. With the definitions of
dfk ¼ jdfkjeiuk for the perturbed distribution function, Ex;k
¼ jEx;kjeihx;k ; Ey;k ¼ jEy;kjeihy;k for the electric field components, and
Bz;k ¼ jBz;kjeihz;k for the magnetic field component, a little algebra
leads to

@

@t
�em;k þ �u;kð Þ ¼ S�;c;k: (17)

TABLE I. Correspondence table between (the Hamiltonian) Kuramoto’s model and the Vlasov model. We have introduced the notation Rðx; p; tÞ ¼ �eðE þ p
�B=ðmcÞÞ � rpf , where f ¼ f ðx; p; tÞ is the electron distribution function and fkðp; tÞ ¼ jfkjeiukðp;tÞ is the Fourier transform of f. A corresponding Hamiltonian can be built in
the form �H ¼ H0 þ dH, where H0 ¼ � Ð d3pd3kjfkjk:p=mc; dH ¼ Ð d3pd3kjUkjjfkj sinðHk � ukÞ, where jUkj ¼ jRkj=jfkj is independent of the quantity jfkj.

Kuramoto’s model Vlasov model

Element oscillator n Van Kampen eigenmode k
H0

X
n

xnJn �
ð
d3pd3kjfkjk:p=mc

dH Kr
X
n

Jn sinðHn � unÞ
ð
d3pd3kjUkjjfkj sinðHk � ukÞ

Phase un uk

Action Jn Jk ¼ jfkðp; tÞj
Natural frequency xn xk ¼ �k:p=ðmcÞ
Entropy density kB ln Jn kB ln jWkj ¼ �kB ln jfkðp; tÞj
Coupling strength Kr jUkj � jRkj=jfkj
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Here, �em;k is the electromagnetic energy spectral density defined by
�em;k ¼ 1

2 e0ðjEx;kj2 þ jEy;kj2 þ c2jBz;kj2Þ and �u;k is a generalization of
the phasestrophy flux density, for the mode k; defined by

�u;k ¼ �
ð
d3p

px
mc

jdfkj2

2
@F0
@px

: (18)

This quantity has been introduced by analogy with the “phasestrophy”
integral, abbreviation of “phase-space enstrophy,” namely, the scale-
invariant self-similarity of df 2, introduced in Ref. 73 for tokamak tur-
bulence, which provides measure of a two-point phase space density
correlation. In Ref. 74, it was shown how a slightly different form of
Eq. (18), in which the derivative of F0 was evaluated on the beam initial
velocity [cf. Eq. (20) therein], provides a useful tool to quantify the
momentum exchanged between electromagnetically interacting elec-
tron beams. In Ref. 1, Eq. (18) was used for the same purpose. Details
of the derivation of Eq. (18) are given in Appendix B. From (B23), by
neglecting the electric field contribution and in the absence of source
term S�;c;k , Eq. (17) reads as after integrating over the k space:

�m þ �u ¼ const: (19)

It must be noted that Eq. (19) formally holds only in the linear limit,
due to the jdf j � F0 constraint, using which Eq. (17) is obtained.
Nevertheless, it has been shown in Ref. 1 to provide a reliable measure
of the momentum exchanged between electron beams also during the
nonlinear dynamics (the same for the analogous integral named dVy

of Ref. 74), since Eq. (18) is well defined regardless of the amplitude of
jdf j2. Equation (19) is the generalization to the electromagnetic case of
the expression derived by Kruskal and Oberman in Ref. 75 (see also
Refs. 76 and 77) for the “energy” conservation in the electrostatic case.
In an equivalent way, a connection can be established between the dif-
ferent phases hx;k , hy;k , and hz;k , of the electromagnetic field compo-
nents and the phase uk introduced in the dynamics of the distribution
function, which evolve following Eq. (B25) as

1
2
e0 jEx;kj2 @hx;k

@t
þ jEy;kj2

@hy;k
@t

� c2jBz;kj2 @hz;k
@t

� �

þ
ð
d3p

px
mc

jdfkj2

2
@F0
@px

@uk

@t
þ k:p

mc

� �
¼ S�;s;k: (20)

By neglecting the electric contribution of the electric field, one obtains
from Eq. (20) the condition:

� 1
2
e0c

2jBz;kj2 @hz;k
@t

þ
ð
d3p

px
mc

jdfkj2

2
@F0
@px

@uk

@t
þ k:p

mc

� �
¼ S�;s;k: (21)

The source terms S�;c;k and S�;s;k used in Eqs. (17) and (21) are given in
the Appendix B by Eqs. (B22) and (B26). The system of Eqs. (17) and
(21) allows to highlight the physical mechanisms leading to the rever-
sal of the energy transfer observed in the system during the numerical
simulations. We make the following assumptions:

• The magnetic contribution remains dominant over the electrical
energy (given the results observed in the numerical simulations).

• The two source terms S�;c;k and S�;s;k are negligible, as a first
approximation, in particular if the system keeps a certain

symmetry according to the component py of the momentum, due
to the presence of the term

P
j ajðCj=mcÞF0j, which leads to the

electric mean quasi-neutrality along py. Note that a strong sym-
metry breaking in py leads to the transfer of the momentum in py
and thus to a modification of the conservation of the total quan-
tity �m;k þ �u;k , integrated in the configuration space. Equation
(17), for a given wave vector k, leads to the conservation of
the sum of the magnetic energy spectral density, defined by
�m;k ¼ 1

2 e0c
2jBz;kj2 and the phasestrophy73 flux density �u;k , satis-

fying Eq. (18). In the absence of the source term S�;s;k , Eq. (21)
reads as

1
2
e0c

2jBz;kj2 @hz;k
@t

¼
ð
d3p

px
mc

jdfkj2

2
@F0
@px

@uk

@t
þ k:p

mc

� �
: (22)

If @hz;k=@t � xB, where xB represents the characteristic fre-
quency of the magnetic mode, i.e., the mode associated with the
Weibel-type instability, we recognize two possible cases:

• The case of a stationary magnetic mode, with xB � 0, induced by
a CFI-type instability. The synchronization process takes here in
a weak coupling regime, without resonance, to a partially syn-
chronized state.

• The case of a Weibel-type instability, oblique in nature. Here, the
direct cascade associated with oblique modes leads inexorably to
a broadened spectrum in wave vectors and to a “reinforced” fila-
mentation regime. The magnetic mode that is induced by the OI
corresponds to a propagative mode of non-zero frequency
xB 6¼ 0. A synchronization induced by the resonant term
@uk=@t þ k:p=mc ’ 0 may occur in a neighborhood of some
specific mode, which we can call k0. A transition to a global syn-
chronization becomes possible and the term @uk0ðp; tÞ=@t þ
p:k0=mc tends to zero. Due to the singularity associated with it,
this is usually called a secular term since, being the product
between a bounded quantity, close to zero but finite and an ever
growing one (related to the integrand in the definition (18) of the
phasestrophy), it is doomed to diverge. We thus obtain a singu-
larity in the phasestrophy flux �u. Considering the invariance of
�u þ �m ¼ const, approximatively valid also in the linear regime
(and in the absence of source terms S�;c;k and S�;s;k , cf. Fig. 6,
below), thus implies a decrease of the magnetic energy, which is
transformed into kinetic energy.

IV. FREE-STREAMING FILAMENTATION VERSUS
REINFORCED FILAMENTATION

In principle, the “reinforced” filamentation differs from the usual
“free-particle” filamentation. In the presence of a strong mode cou-
pling, such as the one which can be highlighted by the momentum
transfer measured by the phasestrophy introduced in Sec. III, the
“reinforced filamentation” is the main mechanism responsible to an
entropy production observed in numerical experiments. The entropy
increase induced by coarse-graining mechanism, once the size of the
filaments reaches the elementary (numerical) grid, is here “enhanced”
by the instabilities at play, which may induce a thinning/stretching of
the filaments at a rate faster than that, which is given by the “kine-
matic” filamentation associated with the free streaming of particles. At
the same time, self-organization processes in the phase-space mediated
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by synchronization of oscillatory modes (e.g., in a Kuramoto-like sce-
nario) can further affect the filamentation by inducing, e.g., the emer-
gence of filaments at a specific spatial scale. With the notion of
“reinforced” or “enhanced” filamentation, we here mean the combina-
tion of all these possible effects, in contraposition to the kinematic fila-
mentation given by the free streaming of particles.

In this sense, the variation of entropy related to the reinforced fil-
amentation is also connected to the bifurcation, which involves the
phase synchronization. A detailed investigation of the entropy “anom-
alous” evolution reported in Refs. 1 and 52 goes beyond the scope of
this present study and will be reported in a future, dedicated work.

We turn here the attention to the characterization of the features
or properties, which give a “reinforced” character to the filamentation
of f in the velocity space, especially in connection with a Kuramoto-
type synchronization. In order to analyze in greater detail the coupling
between the filamentation of f and the phase synchronization mecha-
nism, and their mutual impact on plasma dynamics as well, we con-
sider the example of a kinematic filamentation. To this end, we
consider the free streaming of a Gaussian distribution in the coordi-
nate space, while preserving its Maxwellian distribution. It should be
noted that a purely homogeneous initial condition in configuration
space is not sufficient to induce a filamentation mechanism of f in the
absence of the Lorentz force, so it is necessary here to introduce a spa-
tial inhomogeneity in the distribution. Figure 1 (top frame) shows, at a
given instant, the filamentation process of the distribution function in
the reduced phase space x � px .

The stretching process of the filament leads inexorably to thinner
and thinner filaments whose length increases in the phase space. This
dynamics is perfectly reproduced by the Vlasov electromagnetic
(VLEM) solver,78 in which the force term in Vlasov equation was sup-
pressed. Numerical integration shows that the entropy is perfectly con-
served in the simulation up to the seventh decimal place. This filament
stretching mechanism also corresponds to a phase synchronization of
the Van Kampen modes. Figure 1, bottom frame, shows a phase map-
ping uðx; px; tÞ of the corresponding distribution obtained from a
Hilbert transform of the distribution function: we clearly observe locking
at a phase u ¼ p=2 in regions of phase space where the filament is
stretching, while the phase remains close to zero in regions of near-zero
density (e.g., in the tail of the distribution, but also between the various
filaments in the plasma bulk).

The complex envelop and the fast oscillating phase have been
obtained by using a spatial Hilbert transform of the reduced distribution
function gðx; px; tÞ ¼

Ð
dpyf ðx; Ly=2; px; pyÞ in the x � px phase-space

plane, according to the following procedure: the signal g is Fourier trans-
formed in x and the positive kx modes are multiplied by þi, while the
negative kx modes are multiplied by –i. The resulting function is Fourier
transformed back to obtain gHilbert, which results in a Hilbert transform.
Then, the complex amplitude of the g ¼ aðx; px; tÞeiuðx;px ;tÞ þ c:c: dis-
tribution is given by a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g2Hilbert
p

, while the phase u obeys
tanu ¼ gHilbert=g.

The phase-locking displayed in Fig. 1 appears to be an intrinsic
property of the free-streaming system, which completely follows from
its kinematics evolution (i.e., it is mediated by the v@f =@x term). In
the presence of external forces, which induce modifications of the
phase-space distribution function that go beyond the action of the
v@f =@x free-streaming term, the phase-locking can give rise to more
complex self-organization processes, which may possibly lead to the

emergence of localized filaments with some initial characteristic thick-
ness. This will be discussed later in Secs. V and VI, when nonlinear
simulations of OI modes will be discussed.

We conclude this section by noting that the behavior of f in this
kinematic filamentation process is remarkably similar to that found for
the baker transformation, so-called because of its similarity to the
kneading and folding operations involved in the preparation of pastry
dough. The baker transformation involves a compression in the px
direction followed by a stretching in x. It must be pointed out that the
baker transformation has an entropy that is constant for all time and
which is equal to the entropy of the initial distribution (a property that
results of the Kolmogorov automorphism property79 of the baker
transformation).

More recently, the possibility of the emergence of a bifurcation in
Vlasov systems has been proposed in Ref. 80, when it is driven by an

FIG. 1. Formation of phase-space filaments as an initial Gaussian distribution
evolves according the free-streaming motion, i.e., the 2D advection equation
@f=@t þ v:rf ¼ 0 (where v ¼ p=mc is the electron velocity) in the projected
phase space ðxxp=c; px=mcÞ (on top). The corresponding map of the phase of the
distribution function �f ðx; px ; tÞ ¼

Ð
dpy f ðx; y ¼ Ly=2; px ; pyÞ is plotted on bottom

frame at the same time txp ¼ 32. Note that the phase uðx; px ; tÞ is locked at p=2
inside the filaments, even at a very weak level of the distribution function. The simu-
lation has been performed using the VLEM solver.
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inhomogeneity in the density, where the basic conditions of weak reso-
nance are possible. As we have seen, the spatial inhomogeneity is
required also by the kinematic filamentation due to the free streaming
of particles. The generalization of this process, in the presence of a
non-zero Lorentz force, leads to a profound change in the nature of
the filamentation of the distribution function in phase space, involving
a re-organization of Van Kampen modes into clusters of synchronized
modes.

V. NUMERICAL EXPERIMENTS ON THE NONLINEAR
DYNAMICS OF A SINGLE OI MODE
A. Filamentation aspects in PIC and semi-Lagrangian
numerical schemes

In this section, we first recall some general features of the integra-
tion scheme of Lagrangian (i.e., PIC) and semi-Lagrangian solvers,
especially in relation to the notion of phase-space filamentation. We
will then discuss some numerical results obtained with both types of
numerical schemes, in which the filamentation process is highlighted.
The simulation cases we consider here are initialized with the same
configuration unstable to OI modes, which we will later (Sec. VI) show
to lead to a “new” kind of kinetic heating, occurring in a cascade-like
turbulent process, when a broad band of unstable modes is excited.
However, in order to show and discuss some fundamental features of
the nonlinear OI dynamics, which act as “ingredients” of the more
complex kinetic heating in a turbulence-like scenario, in the simulation
cases considered in this section we will perturb this configuration with
a single wavenumber corresponding to the most unstable OI mode
compatible with the size of the simulation box.

Filamentation is a real phenomenon in solutions of the Vlasov
equation; it is not a spurious side effect of the numerical schemes. The
source of filamentation lies in the treatment of the free-streaming term
@f =@t þ v@f =@x ¼ 0, whose exact solution in the Fourier space reads
as f ðk; v; tÞ ¼ f ðk; v; 0Þeikvt and which clearly show that f ðk; v; tÞ can
oscillate with respect to v at the frequency kt. A first solution for the
correct treatment of filamentation of the Vlasov equation was finally
given by Knorr and Cheng in Ref. 81, which first introduced the con-
cept of time splitting. This numerical scheme is now known as the
semi-Lagrangian (SL) scheme (see Refs. 78, 82–84), which is based, for
each time step, on the two following sequences:

• first, transport either f itself (by using the semi-Lagrangian back-
ward characteristics)

• then compute the value of f at the origin of the characteristics by
reconstructing the distribution function from the different mesh
point values using a cubic spline interpolation technique.

Particle codes involve a Lagrangian formulation:85–87 the particle-
in-cell (PIC) technique can be regarded as a discretization of the phase
space in terms of a superposition of moving elements, each represent-
ing a “cloud” of physical particles, usually referred as superparticles. In
PIC codes, superparticle trajectories are computed from the electro-
magnetic fields, prescribed on a fixed grid whose typical size is of the
order of the Debye length. At the end of the time step, the charge of
each superparticle is redistributed among the neighboring grid points,
allowing one to solve the Maxwell equations. Thus, while the SL
scheme invariably implies a loss of information, the particle method
involves a smoothing of information, which, on the other hand, is in
principle numerically conserved during the evolution of plasma.

Numerical smoothing techniques, for instance those consisting in
redistributing the charge of superparticle among the neighboring
points in space, efficiently decrease the individual effects introduced by
the grid (which are unwanted since associated with a numerical noise),
but they do not change the scaling of these effects. In order to suppress
them, we must smooth the electromagnetic field components not only
over the interparticle distance but also at the scale of the Debye length.
As a drawback, however, we thus begin to modify the possible real col-
lective behavior of the plasma.

Free-streaming filamentation is well resolved in PIC codes and
the Lagrangian scheme is not subject to noise due to the filamentation
process. This makes the PIC model a very well-adapted scheme to
study the mechanism of filamentation amplification, but a price must
be payed in terms of the corresponding amplified thermal noise.

In the following, both SL (which hereafter we will sometimes refer
to as “Vlasov”) and PIC codes are used next to simulate the process of
energy transfer. The spatial meshes of both numerical schemes are
chosen to be small enough to fully describe both the wave numbers
corresponding to the chosen oblique modes and the excitation of
large-k oblique modes associated with possible direct cascades. The
number of grid points of the spatial configuration is chosen in order to
obtain a very accurate description of spatial filamentation, if present in
the system, i.e., with a sampling of order of NxNy � ðL=DxÞdx � 2562,
L being the typical system length along a given direction and dx the
spatial dimension of the problem (here dx¼ 2).

Both SL Vlasov and PIC codes are initialized with the same sam-
pling in the configuration space. To assume an equivalent description
in the momentum space with the two different numerical methods,
the ratio between the momentum space sampling used in the (SL)
VLEM code78 NVlas to the number of superparticles by cell Npart (used
in the SMILEI code) is chosen as NVlas=Npart ¼ gPICN2

p � 1. This cor-
responds to a graininess parameter of the order of gPIC � 10�4 for the
PIC solver SMILEI.88 Although both numerical approaches solve the
Vlasov equation, the Eulerian or semi-Lagrangian description corre-
sponds to a statistical approach where the graininess parameter g ini-
tially tends toward zero. In the particles-in-cell approach, the
reintroduction of finite-size superparticles leads to a PIC specific grain-
iness parameter gPIC in principle small but finite. In the simulations we
have carried out, we have NpxNpy ¼ N2

p ¼ 1282 in the momentum
space in the SL scheme, which is equivalent to use 1282 particles by cell
in the SMILEI code (corresponding to a value of the inverse of the
graininess parameter of gPIC ’ 6:1� 10�5). The numerical parame-
ters used in the PIC/Vlasov comparison are detailed in Appendix C.
Space variables being normalized in de ¼ c=xp units, times to the
inverse of the plasma frequencyx�1

p , and energy densities to n0mc2.

B. Vlasov–Maxwell modeling of oblique Weibel-type
instability: OI in a counterstreaming configuration

We now discuss some numerical results, obtained with the two
complementary numerical approaches, a Lagrangian approach, based
on the use of (PIC) SMILEI code and finally the VLEM solver. In both
codes, we used the same spatial grid with a mesh size Dx; Dy of the
order of one-hundredth of the Debye length and an equivalent number
of particles by cell (in the PIC code) or of grid point in the p-space (for
the SL VLEM code) as discussed in Sec. III A.

The two symmetrical electron beams have normalized velocities
b1 ¼ vy1=c ¼ �0:67 and b2 ¼ vy2=c ¼ 0:67, counter-propagating in
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the y direction. Charge and current neutrality are initially ensured by
imposing n1 þ n2 ¼ n0 (where n1 ¼ n2) and n1b1 þ n2b2 ¼ 0, for all
simulations corresponding to the non-propagative OI and to the prop-
agative branch of OI. The initial distribution function is composed of
two drifted Maxwellian distributions f ðx; p; t ¼ 0Þ ¼Pj njF0jðpÞ,
where

F0j ¼ 1

2pb2th
exp � p2x þ py þ Cjð Þ2

2m2c2b2th

 !
; (23)

where bth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTeq=mc2

p
is the thermal velocity normalized to the

light velocity c. For each propagating electron beam, we choose the
same temperature Teq ¼ 6keV . To start the instability, a perturbation
on a single mode ðnx; nyÞ is introduced in the z-component of the
magnetic field in the form of dBz ¼ B0 sinðnxDkxx þ nyDkyyÞ. This
allows us to excite the most unstable mode of wave vector components
ðkx; ky; 0Þ for each class of solution of the OI. The corresponding val-
ues are given in Table II. In both simulations, we use a time step of
Dtxp ¼ 0:005.

1. Temporal evolution of the kinetic and
electromagnetic energy densities

Guided by the linear analysis of the dispersion relation of OI (see
Refs. 9,10, and 51) and summarized in Table II, numerical simulations
have been carried out in the weakly relativistic regime to investigate
the nonlinear dynamics of this class of solutions up to its nonlinear sat-
uration regime. SL Vlasov–Maxwell simulations, shown in Fig. 2, high-
light the different behavior in the temporal dynamics of the
propagative OI class with respect to the non-propagative OI modes. A
comparison between the SL VLEM code and the PIC SMILEI code is
shown in Fig. 3, which focuses on the temporal evolution of the mag-
netic and electric energy density components, obtained with the SL
VLEM code (left column) and with the SMILEI code (right column).
The magnetic energy density shown in Fig. 2 is reproduced to facilitate
a direct comparison.

The energy evolution shown in Fig. 3 allows us to identify a fun-
damental feature of the linear evolution of the OI mode, in which the
generation of the magnetic field Bz, growing at the expenses of the
momentum anisotropy, is coupled to the increase in the electrostatic

field, which is typical of the two-stream instability (TSI). In particular,
the kinetic energy density �K ¼ Ð d3x

V

Ð
d3pmc2ðc� 1Þf (top frame in

Fig. 2) is transferred to the magnetic energy density
�m ¼ Ð d3x

V
1
2 e0c

2B2
z , shown in the bottom frame, and to the total elec-

tric energy density defined by �e ¼
Ð
d3x
V

1
2 e0ðE2

x þ E2
yÞ (shown in the

middle frame). In the evolution of the non-propagative OI, (i.e., with
ReðxÞ ¼ 0), not shown here (see Ref. 1 for more details), the electro-
static field contribution remains negligible. In the propagative OI
mode shown in Fig. 2, a first peak of the electrostatic energy density is
observed at time t � 40x�1

p with a maximum amplitude of the order

of �m=n0mc2 ’ 0:012, followed by a decrease in the magnetic energy
(bottom frame). A second peak of the electron energy density, associ-
ated with a reversal of the magnetic energy transfer, appears for

TABLE II. Physical parameters used in numerical simulations performed for the
study of the propagative branch, in the case of excitation of a single unstable wave
number.

Used code Vlem (SL) Smilei (PIC)

Box length in x Lx ¼ 2:51327de Lx ¼ 2:51327de
Box length in y Ly ¼ pde Ly ¼ pde
Dominant wave
vector

ðkxde ¼ 5; kyde ¼ 2Þ ðkxde ¼ 5; kyde ¼ 2Þ

Corresponding
mode numbers

ðnx ¼ 2; ny ¼ 1Þ ðnx ¼ 2; ny ¼ 1Þ

Momentum sampling/
particle

NpxNpy ¼ 1282 Npart by cell ¼ 1282

Graininess parameter gPIC¼ 0 gPIC ¼ 6:1� 10�5

FIG. 2. Evolution of the kinetic �K (top frame), electric �e (middle frame), and mag-
netic �m (bottom frame) energy densities of the simulation case of Table II (evolution
of a single propagative OI mode). The simulation has been performed using the
(SL) VLEM solver.
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txp 	 100. As we will see later, in a dedicated section, this process is
linked to phase-space filamentation.

A second simulation was run with the same parameters (see Table
II), using the SMILEI code. The contribution of the electric energy den-
sities, i.e., the �e;x and �e;y contributions of the total electric energy den-
sity �e along the corresponding x and y directions, is shown in Fig. 3.
Comparison with Fig. 2 shows that the PIC and Vlasov solvers exhibit
an identical behavior of the energy transfer and the dynamics of mag-
netic energy remains identical in both simulations. Also, the maximum
amplitude of the y component of the electric energy obtained from the
SMILEI code, shown on bottom right frame in Fig. 3, is very close to
that obtained by the VLEM solver (shown on bottom-left frame).

It can be noticed that, taking into account the level of noise spe-
cific to the Lagrangian scheme, the level of fluctuations remains impor-
tant for the Ey component of the electric field and this happens despite
the use of a large number of particles per cell. However, in spite of the
amplified thermal noise, linked to the grain effect reintroduced in the
PIC scheme, the growth of Ey remains perfectly visible.

2. Contour-plots of the magnetic field

During the nonlinear stage of the OI evolution, a transition is
observed toward a self-organized state, in which the magnetic field Bz
displays the characteristic spatial modulation observed in the evolution

FIG. 3. Evolution of the magnetic energy density �m (upper frames) of the corresponding x-component of the electric energy density �ex (middle frames) and of the y component
of the electrostatic energy (lower frames). The left column corresponds to the simulation performed using the (SL) VLEM code, while the right column shows the results
obtained from (PIC) SMILEI code. Note that the level of noise is bigger along the y component in the PIC numerical scheme in comparison to the semi-Lagrangian VLEM
approach (middle frames).
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of the CFI instability. This transition can be identified in Fig. 4 at the
beginning of the saturation. Figure 4 displays the dynamics of the (nor-
malized) z-component of the magnetic field eBz=mxp in the configu-
ration space, for the OI case (obtained from the VLEM code). Results
of the SMILEI code, shown in Fig. 5 for the same plasma state (propa-
gative OI), show an even more complex dynamics. The self-
organization begins with a transition toward the CFI-like magnetic
configuration, where the plasma adjusts itself in wave vector so to give
a metastable state dominated by magnetic trapping (the electric contri-
bution being negligible at that time).

In the nonlinear saturation regime shown in the PIC simulations,
however, one can observe an oscillatory process in the dynamics of the
magnetic field where the field oscillates, depending on the x-space
direction, between two possible asymptotic states. In the CFI-like mag-
netic configuration, the magnetic field presents a homogeneous struc-
ture along the y direction (this type of structure is similar to the one
observed at the bottom right, at time txp ¼ 40, in Fig. 4). It appears
quite early in the time evolution (until after the first magnetic energy
peak in Figs. 2 and 3). The subsequent slight decrease and oscillation
of the magnetic field can be interpreted as linked to the existence of a
bifurcation between the two oblique modes CFI and OI (note that the
OI mode presents an inhomogeneity according to the y direction).
This phenomenon has been observed in simulations performed with
both PIC and Vlasov codes. In the right column of Fig. 5, we show this
oscillation process at two different times chosen on long scales in the
saturation regime (simulation performed with SMILEI). The

amplitude of the oscillations is however smaller in the VLEM model.
This seems to indicate that the Lagrangian integration scheme ampli-
fies the phenomenon because of its larger numerical noise.

3. Time evolution of the phasestrophy flux density

As mentioned in relation to Eq. (18), the phasestrophy

Su ¼ Ð d3x
V

Ð
d3p ðdf Þ2

2@F0@px

, introduced in Ref. 73 in the context of the gyro-

kinetic modeling for studying the turbulence and the transport in
tokamaks, is a kind of L2 norm representing the phase-space density
auto-correlation function linked to the growth of filaments and there-
fore to the “kinematic” filamentation.

Equations (17) and (21) give an insight on how the energy trans-
fer takes place in the presence of a phase synchronization process by
showing a link with the phasestrophy flux density �u;k and the source
terms S�;c;k and S�;s;k . When the source terms are both zero, the result-
ing conditions (19), i.e., �m þ �u ¼ const, highlight an energy transfer
occurring in the linear stage of the OI, which takes place in combina-
tion with the energy conservation �m þ �K ¼ const (assuming that the
electric energy density �e is negligible). This is also verified in the non-
linear regime. The variation of �u, during the growth of the OI, can be
interpreted in terms of momentum transfer,74 a process already
observed in tokamak turbulence,73 of which we take �u;k as a measure
for the “enhanced” filamentation mechanism associated with the

FIG. 4. Series of contour-plots of the magnetic field component eBz=mxp at differ-
ent times chosen in the beginning of the saturation regime of OI (propagative
branch). The corresponding time history of the magnetic energy density is shown in
Fig. 2 (bottom frame). The simulation has been carried out using the SL VLEM
code. The same simulation case studied using the PIC code is shown in Fig. 5. A
toward a CFI-like magnetic pattern is clearly visible in the series of plots, which
show that a homogeneous state along the y direction at time txp ¼ 40 (bottom
right frame), typical of the CFI, is attained. The simulation has been performed
using the (SL) VLEM solver.

FIG. 5. Contour-plot of the magnetic field component eBz=mxp, using the same
physical parameters of Fig. 4. Results have been obtained from a simulation per-
formed with the PIC code SMILEI. The beginning of the simulation displays results
very similar to those obtained with the semi-Lagrangian code (cf. Fig. 4). Here, the
emphasis is on the long time dynamics of the magnetic field: we observe an oscilla-
tion between two different states characteristic of the OI and CFI magnetic field evo-
lution, respectively. This oscillating behavior was also observed in the semi-
Lagrangian simulation but with a smaller frequency.
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mode k. In Fig. 6, we have shown in the same figure the time evolution
of the (total) phasestrophy flux density �u, of the magnetic energy den-
sity �m, and of their sum �u þ �m, in the linear phase of the OI, i.e., for
a time txp 
 35. We observe that the quantity �u þ �m is very well
conserved in the linear regime of the OI, at least as long as the level of
synchronization remains low. This is consistent with the results already
discussed in Refs. 1 and 74. As synchronization takes place, at the end

of the linear stage, the term
Ð
d3p px

mc
jdfk j2
2@F0@px

@uk
@t þ k:p

mc

� �
in the right-hand

member of Eq. (22), although finite, leads to a growth in the flux den-
sity of phasestrophy. In particular, an abrupt change of several order of

magnitudes is measured when the quantity @uk
@t þ k:p

mc tends toward

zero. As already discussed in Ref. 1, this occurs when a global synchro-
nization takes place. Although this happens in the advanced nonlinear
stage of the instability (cf. Fig. 7), in which Eq. (19) is formally not
valid anymore, the growth of the enstrophy evaluated according to
Eq. (18) is still a reliable proxy for the momentum exchanged during
the synchronization process. Indeed, Eq. (18), is defined regardless of

the ordering of jdfkj2=ð@F0=@pxÞ. One may also look at Fig. 2 of Ref.
1, where a striking difference in the phasestrophy evolution is visible,
between the simulation case considered here (i.e., Fig. 7, here), and
another simulation case in which no synchronization takes place (i.e.,
in which only non-propagative oblique modes are excited).

Such conservation is thus verified only in the absence of synchro-
nization [when the phase synchronization takes place, the source term
S�;c;k , which contains some terms like cos ðhy;k � ukÞ in Eq. (B10),
becomes non-null]. In that case, a transfer of energy is possible leading
to an increase in the phasestrophy or the phasestrophy flux density (in
absolute value). The time evolution of the phasestrophy flux density
j�uj is shown in Fig. 6. The phasestrophy flow is not a Casimir invari-
ant in the strict sense; however, it evolves little in the absence of a syn-
chronization mechanism. Its divergence is instead associated with the
“bifurcation” process that leads to a global synchronization in the
Kuramoto model.

In Fig. 7, we thus observe two major events. The first one, at
txp � 50, is related to the transition to the CFI-like state, with
�K ! �m. A second event takes place at a later time, for
txp � 150� 250, and is linked to the reversal of the energy transfer,
i.e., �m ! �K þ �e;y : in the presence of an OI instability, the phases of
the Van Kampen modes are locked (since the phase Hk � uk tend to
zero, and the source terms S�;c;k and S�;s;k are modified), which leads to
a growth of the quantity j�u;kj.

The first growth in the phasestrophy density flux around time
txp � 40� 100 results directly from the OI and from the associated
conversion of the kinetic energy of the particle beams into magnetic
energy, the electrical energy being negligible in this case. The second
growth phase, occurring at time xp � 150� 250, results from the
reversal in the energy transfer process, where the magnetic energy is
converted into kinetic energy due to the enhanced filamentation. This
process can be observed directly from Eq. (22). During the phase syn-
chronization, the term on the right-hand side of Eq. (22), i.e.,
@uk
@t þ k:p

mc

� �
in the integrand, tends toward zero, due to the transition

associated with the global phase synchronization mechanism men-
tioned above in relation to Fig. 7. In particular, given that the left-hand

term �m
@hz;k
@t of Eq. (22) remains finite, this transition is accompanied

by a divergence of the term px
mc

jdfk j2
2@F0@px

and therefore of the flux of the pha-

sestrophy density. At a microscopic level, the reversibility of the energy
transfer is compatible with the time reversibility of the Vlasov equa-
tion, which is responsible, e.g., both of the reversibility of the kinematic
filamentation and of the phenomenon of the plasma echoes.

C. Role of phase-space filamentation

In order to provide a more detailed view of the physical filamen-
tation mechanism involved, we have represented in Fig. 8 a plot of the
distribution function in the x � px phase space, evaluated at y ¼ Ly=2
and averaged along py (the corresponding simulation is carried out
with the VLEM solver).

The focus here is on the phase-space dynamics of the distribution
function f at the beginning of the OI. The filamentation process takes
place since the beginning of the first peak in the phasestrophy growth,
which occurs around the times txp ¼ 45� 50. At these times, the for-
mation of two filaments in the vicinity of the X points is observed.
These structures, which appear in the form of a very narrow filament,

FIG. 6. Plot of the phasestrophy flux density eu, of the magnetic energy density em,
and of their sum eu þ em, vs time, in the linear regime of the OI instability. The sim-
ulation has been performed using the (SL) VLEM solver.

FIG. 7. Time history of the phasestrophy flux density �u. This must be compared
with the previous results in Fig. 1. Results were obtained from a simulation per-
formed by the VLEM solver. Reproduced with permission from Ghizzo et al., Phys.
Rev. Lett. 131, 035101 (2023). Copyright 2024 American Physical Society.
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stretching progressively in the phase space, are characteristic of the
process of the “reinforced” filamentation of f. The adjective “rein-
forced” is used in contraposition to the “kinematic” filamentation due
to the free convection of the distribution function, so to stress the fact
that here the instabilities at play enhance the rate at which filamenta-
tion occurs in the phase space. These filamentary structure can also
split in two, as observed, at time txp ¼ 50, in the vicinity of point X
(top right), and can lead to the appearance of two or more “tilting
stripes,” in the phase synchronization processes. Note that these tilting
stripes are related to the enhanced filamentation process and differ
from the analogous structures (Sec. IV), which are usually observed
during the (linear) plasma dynamics of both the Vlasov and Kuramoto
models (cf. Sec. IV).

These filamented structures have been already observed in the
continuum limit of the Kuramoto’s model in Ref. 89, in the case of an
infinite population of oscillators. Such pairwise filamentary structures
(often characterized by a thin critical layer in phase space) are a conse-
quence of the phase synchronization. This synchronization pattern
(which is also shown in Fig. 8 on top right, close to the X points)
emerges also during the bifurcation toward a globally synchronized
state in the case of the discrete Kuramoto model from a continuum
spectrum.

Figure 9 shows the formation of a thin filament obtained in a
simulation performed with the SMILEI code: the emergence of this
thin filamented structure is visible from time txp � 30� 40, and it
follows the “stretching” process of the vortex structure, located in the
central region.

This stretching of the filament leads to thinner filaments whose
length increases while their thickness decreases (following the mass
conservation imposed by the Liouville theorem) while tending to a

zero thickness (which is comparable to a Dirac type distribution). This
dynamics is perfectly reproduced by the SMILEI code and is shown in
the left frames of Fig. 9. In the top right frame of the same figure, at
time txp ¼ 40, the filament located in the vicinity of an “X-type” point
(i.e., a bifurcation point in the phase space) disappears at txp ¼ 44.
The “O-type” point where there is a phase-space vortex (e.g., at time
txp ¼ 42) is also stretched and deformed in time, but it literally splits
into two parts, two curved filaments which mutually move away from
each other and thus form a kind of boundary layer. These filaments
keep on extending and getting thinner over time. The X-type points
appear to be unstable with respect to the phase-space dynamics and

FIG. 8. Series of plots of the distribution function in the x � px phase space in the
case evolution of a single propagative OI mode (see Table II). The simulation has
been carried out by the (SL) VLEM code.

FIG. 9. Contour-plots of the distribution function in the x � px phase space for the
nonlinear evolution of a propagative OI mode (cf. Table II), obtained with the PIC
SMILEI solver. These results highlight the (nonlinear) process of “enhanced filamen-
tation” forced by phase synchronization of Van Kampen modes. A progressively
thinner filament is produced during the stretching mechanism until it disappears at
time txp ¼ 44, on the top right frame. A critical layer structure is formed at time
txp ¼ 46 (middle right frame), which is characteristic of a phase synchronization
process. Finally, at the X-point, on the bottom right frame, we observe the resur-
gence of a strong filamentation process. We have added the symbols of the X- and
O-point in the bottom-left frame for the sake of clarity.
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quickly lead to the emergence of further filaments, which are perfectly
visible in the bottom right of Fig. 9, at txp ¼ 52.

VI. COLLISIONLESS PLASMA HEATING
IN A TURBULENCE-LIKE CASCADE INITIALIZED
WITH A COUNTERSTREAMING BEAM CONFIGURATION

We have shown that the global energy exchange between kinetic
and magnetic energy, derived from the Vlasov equation, is mediated
by the coupling mechanism between the phase synchronization of Van
Kampen modes (whose dynamics is described by basic oscillators in
the Fourier spectrum modeled in a mean-field Kuramoto framework)
and a “reinforced” filamentation process (which differs from the usual
kinematic filamentation process) of the Vlasov equation. As previously
mentioned in Sec. III, the �k:p=mc free advection term in the time
derivative of the phase in Eq. (11) can trigger an alternative “channel”
of the conversion between kinetic and electromagnetic energy, leading,
in the regime of “reinforced filamentation” discussed above, to the
reversal of the energy transfer. The role of phase-space filamentation,
and in particular, of a spatially sheared flow, in the anisotropic conver-
sion between order kinetic energy of the plasma to its internal (ther-
mal) energy had been already put in evidence in Refs. 38, 90, and 91.

This process provides a new perspective on the collisionless dissipa-
tion mechanisms and on the collisionless plasma cascade. In this section,
we discuss a last numerical experiment, showing that the collisionless
plasma heating induced by the OI nonlinear dynamics is an efficient
mechanism of energy transfer in a turbulent-like scenario in which several
modes are excited. We will also show that the nonlinear dynamics associ-
ated with this process may lead to a global self-organization of the system,
due to a bifurcation-type mechanism, which can be modeled in the
mean-field (Hamiltonian-type) Kuramoto approach.

We will show indeed that a global re-organization takes place in
which collisionless wave–particle interactions transfer the “free” ordered
kinetic energy stored in the high-energy beams into disordered kinetic
energy, by increasing the internal energy of the plasma and thus heating
it. The first step of the process consists in the generation and growth of
an electromagnetic field excited by the Weibel-type instability (i.e., OI
modes) at the expenses of the initial ordered kinetic energy of the beams.
This magnetic energy acts as a temporary “reservoir” of potential energy,
which is later re-converted into disordered kinetic energy, i.e., internal
energy of the plasma. In the turbulence-like scenario, this conversion
from magnetic to internal energy occurs if a bifurcation in the Vlasov–
Maxwell system takes place when an initial perturbation encompassing
a broad spectrum of wave numbers is applied.

A. Numerical experiments on the nonlinear dynamics
of a broad spectrum of OI modes

A last simulation (we refer here as OI with broad spectrum) is
now carried out, by using the VLEM code, using an initial magnetic
field perturbation in the form

dBz ¼
X15

nx ;ny¼1

B0 sin nxDkxx þ nyDkyy þ unx ;ny

� �
; (24)

where unx ;ny is a random phase, and Dkx and Dky are the fundamental
wavevector components. Physical parameters, used in this simulation,
are summarized in Table III.

Figure 10 shows the temporal evolution of the different energy
densities: kinetic �K (top), electric �e (middle), and finally magnetic �m
(bottom). The physical parameters are identical to those used in the
previous simulations corresponding to the excitation of a single OI
mode, discussed in Sec. V. Differently from those cases, here a large
spectrum is initially excited.

The use of an extended spectrum in wave vectors allows to excite
a wide range of modes. These include several modes in both the non-
propagative and propagative branches of OI modes, but also the stan-
dard TSI and CFI instabilities. This initialization, which is likely more
realistic than the cases considered for theoretical simplicity in Sec. V,
also allows for a direct cascade process. In Ref. 52, we have indeed
shown that the propagative branch of the OI modes is characterized by
a saturation mechanism (different from the magnetic trapping typical
of the non-propagative OI branch occurring at kde � 1), which is
dominated by electrostatic trapping and by the nonlinear excitation of
increasingly larger wavenumbers, up to values kde � 1.

The time evolution of the energy densities displayed in Fig. 10
shows the emergence of four different phases of this dynamics:

• step (I): a first stage is characterized by an exact conservation of
the energy contributions, corresponding to the initial equilibrium
in the time interval ½0; 17x�1

p �,
• step (II): a second stage is characterized by the growth of the elec-
tromagnetic energy in both the electric (middle frame) and mag-
netic components (lower frame). This is associated with a
corresponding decrease of the kinetic energy (upper panel). This
second phase of the instability gives rise to an energy transfer of
kind �K ! �m þ �e, which saturates at time txp � 35 in Fig. 10.

• step (III): the reversal of the energy transfer (i.e.,
�m ! �K ; �e � �K ; �m) takes place in the third phase of the
plasma dynamics, in the time interval ½40; 100�x�1

p and is charac-
terized by a slow decrease of both the electric �e and magnetic �m
energy densities.

• step (IV): the last phase corresponds to the saturation regime
where the kinetic energy has reached its maximum level in ampli-
tude, close to its initial level and where the magnetic energy
exhibits a low-frequency oscillation at a low level of amplitude.

Two main stages can be recognized in the four steps identified
above, in relation to the crucial role played by the OI modes: a first,
main stage (constituted by steps (I) and (II)) is characterized by the

TABLE III. Numerical and physical parameters used in the semi-Lagrangian VLEM
code for a simulation case in which the magnetic perturbation is introduced to excite
a broad spectrum in wavenumbers, by thus allowing for the coupling between station-
ary OI and propagative OI modes.

Case OI with broad spectrum

Used code Vlem (SL)
Box length in x Lx ¼ 2pde
Box length in y Lx ¼ 2pde
Wave numbers excited nx; ny 2 ½1; 15�
Momentum sampling/ particle NpxNpy ¼ 1282

Magnetic perturbation amplitude eB0=mxp ¼ 5� 10�5

Corresponding figures Figs. 10–12
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growth of the most unstable OI modes. This is associated with an
energy transfer from the kinetic �K to electromagnetic �e þ �m energy
density, till saturation, observed at time txp � 40. A second stage
(constituted by steps III and IV) initiates with the saturation of the
most unstable OI modes. This gives rise, due to an “augmented” fila-
mentation process, to the reversal of the energy transfer from magnetic
to kinetic, leading to a strong plasma heating process. Mass and energy
are well conserved during the entire simulation, their relative variations

being of the order of 4:00� 10�4 and 1:20� 10�4, respectively. In
this case in which a large spectrum of oblique modes is excited, the
amount of kinetic energy transferred to magnetic energy remains quite
small.

Figure 11 illustrates the dynamics of the normalized magnetic
field component, eBz=mxp at different times (left column,) together
with the plot of the electron density, normalized to n0, at the same
instants (right column). In the strong nonlinear regime, where the
phase synchronization is expected to be quasi-global (i.e., leading to a
resonant filamentation process, forced by the synchronization of Van
Kampen modes), the excitation of a wide spectrum leads also to the
excitation (and thus “linear” growth) of the non-propagative OI mode
(with wavenumber nx¼ 2 and ny¼ 1). This is shown in Fig. 11, at time
txp ¼ 34, i.e., at a time close to the beginning of the saturation phase
(bottom-left frame). Even if, during the whole process the electric field
component remains weak (cf. the relative amount of electrostatic
energy in the center frame of Fig. 10, its impact on saturation of the OI
is not negligible. In the representation of the electron density in
Fig. 11, we observe the emergence of thin filaments associated with a
transition from a dominance of low-k OI modes to a dominance of
large-k OI modes, all corresponding to the propagative branch of OI,
as it was already observed in Ref. 52. Such a transition is linked to the
amplification of fluctuations of f due to a coupling with a process of fil-
amentation that takes place in both the velocity and the coordinate
spaces.

In Fig. 12, we show the contours of the distribution function in
the p-space. The distribution function is concentrated in space, i.e.,

FIG. 10. Illustration of the time evolution of counterstreaming beam configuration in
which a wide spectrum of unstable modes is excited on the Bz component (cf. Table
III): the reversal of the energy transfer (�m þ �e ! �K ) takes place just after the
saturation regime of the OI. Almost all of the magnetic energy is eventually trans-
ferred back into kinetic energy in the form of stochastic heating. A residual part of
the magnetic energy (bottom figure) but also of the electrostatic energy (middle fig-
ure) remains over a long timescale: the electromagnetic field is not completely
attenuated. A large amount of the ordered kinetic energy initially stored in the two
electron beams is transformed into heat during a stochastic process. The simulation
has been performed with the VLEM code.

FIG. 11. Illustration of the plasma dynamics for the simulation case of Table II. In
the left column, plots of the magnetic field component eBz=mxp at two different
times showing the amplification and the growth of the magnetic field in the form of
tilting stripes. These are characteristic features of the growth of an oblique instabil-
ity. On the right column, the corresponding plot of the electron density in the config-
uration space is shown at the same times, exhibiting the emergence of small-scale
(spatial) filamentation structure driven by the “reinforced” filamentation mechanism.
The results were obtained from a simulation performed by the VLEM solver.
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located at x ¼ Lx=2 and y ¼ Ly=2. The plasma heating scenario, in
which the initial ordered energy associated with the beams is finally
converted into thermal (random) energy of the electron, is visible in
the broadening of the initially bi-Maxwellian distribution function
over time. The top left panel represents the electron beams behavior, at
time txp ¼ 16, and exhibits a symmetry breaking in electron beams,
showing the appearance of an inhomogeneous structure. Closer
inspection of different patterns in x � px or y � py sub-phase spaces
(not shown here) reveals, as expected, that the electron dynamics
exhibits finer substructures consisting of thin filaments at the electrons
scales down to the (electron) inertial lengths.

VII. CONCLUSION

The phase-space filamentation of the distribution function and
the synchronization of Van Kampen modes are two intrinsic features
of the Vlasov–Maxwell system, which we have shown to play a crucial
role in the conversion of magnetic energy into internal energy of a col-
lisionless plasma. In this work, we have used two complementary
numerical schemes, namely, the PIC and semi-Lagrangian models, to
show with numerical experiments how these features intervene in the
nonlinear dynamics of oblique Weibel-type instabilities (Secs. V and
VI). In this regard, we have also pointed out some specific features of
the concept of “reinforced” or “enhanced” (phase-space) filamentation,
which we have introduced in contraposition to the notion of

“kinematic” filamentation of a free-streaming bunch of particles (Sec.
IV). We have also shown (Sec. III and Appendix B) how the combined
effect of this “reinforced filamentation” with synchronization aspects
of Van Kampen modes described in a Kuramoto-type representation
of the Fourier modes of the Vlasov plasma can be diagnosed with a
detailed examination of the time history of an integral quantity, the
“phasestrophy,” which measures the momentum exchanged between
beams of cold electrons. This quantity also contributes to a quantity
which, during the linear stage of the instability, is a constant of motion,
the sum of the phasestrophy and of the magnetic energy density
�u þ �m ¼ const.

We have applied these tools to better characterize (Sec. VI) a new
kinetic heating mechanism, first identified in Ref. 1, which can be rele-
vant to the energy transfer in a turbulent-like energy cascade. This pro-
cess takes place during the nonlinear dynamics of oblique Weibel-type
modes, thanks to the role played by their propagative branch, which
was identified in Refs. 51 and 52. This branch displays a saturation
mechanism which—differently from other Weibel-type modes—is
dominated by electrostatic trapping rather than by magnetic trapping,
and which naturally leads via nonlinear coupling to the excitation of
higher wave number OI modes. This process resembles a classical tur-
bulence cascade. A remarkable feature of this kinetic heating process is
the reversal of the energy transfer from the kinetic to the magnetic
energy components that is typical of Weibel-type modes. Interestingly,
the non-trivial conversion from magnetic to kinetic energy is some-
times also observed in non-ideal plasmas, as for instance in magnetic
reconnection. However, in the geometry here considered, magnetic
reconnection cannot take place [the suppression of the electron
dynamics along the z-component forbids the generation of magnetic
fields in the (x, y) plane]. Thus, the kinetic heating related to the rein-
forced filamentation studied here, intrinsic to the Vlasov equation, is
more general than and remains independent of the magnetic
reconnection.

However, if one looks at the role of phase-mixing induced by
phase-space filamentation, which several previous works have sug-
gested to be at the basis of kinetic magnetic reconnection itself (see
Refs. 92–96), this kinetic heating process seems to be more fundamen-
tal than magnetic reconnection itself. In particular, two interesting ele-
ments deserve to be investigated in future works: if and when magnetic
reconnection in a kinetic regime can originate from this kinetic heating
process; and which elements of the kinetic heating mechanism, here
identified to occur in the nonlinear evolution of a counterstreaming
beam configuration, may be generally relevant to magnetic reconnec-
tion and to kinetic turbulence at the electron scales.
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APPENDIX A: THE INFINITE-N KURAMOTO MODEL IN A
HAMILTONIAN APPROACH

In providing a Hamiltonian description of a conservative sys-
tem of N coupled oscillators, we may identify a new set of action-
angle variables, say Jn;un for each oscillator n with 1 
 n 
 N .
Following Ref. 72, we can introduce a Hamiltonian in the form

H ¼ H0 þ dH ¼
X
n

Jnxn þ Kr
X
n

Jn sin �u � unð Þ; (A1)

where the first term in the r.h.s. describes the uncoupled oscillators
having the natural frequencies xn while the second takes into
account the coupling via the coupling parameter K. The mean-field
(Hamiltonian) Kuramoto model reads

_J n ¼ � @H
@un

¼ KrJn cos �u � unð Þ; (A2)

_un � Xn ¼ @H
@Jn

¼ xn þ Kr sin �u � unð Þ: (A3)

Equation (A3) constitutes the Kuramoto equation for the phase of
the nth oscillator, while (A2) describes the dynamics of action Jn.
Following Refs. 72 and 97 we can introduce and entropy Sn for each
oscillator n, in the form

Sn ¼ kB ln Jn; (A4)

the total entropy of the system S being defined by the sum of all the
Sn terms. It can be shown (Ref. 72) that this model yields a positive
entropy production, compatible with the violation of Casimirs
induced by the coarse-graining of sub-grid phase-space filaments.
In Refs. 1 and 52, a numerical decrease in entropy has been numeri-
cally measured, in relation to the violation of Casimirs induced by
phase-space filamentation, which is apparently compatible with a
self-organization process related to a Kuramoto-type global syn-
chronization, discussed in Secs. III and VI. These numerical effects
will be discussed in a forthcoming, dedicated work.

APPENDIX B: DERIVATION OF THE INVARIANT
QUANTITIES USED TO CHARACTERIZE THE
“ENHANCED” FILAMENTATION

We here provide details about the derivation of invariant-type
quantities in the linearization of Vlasov–Maxwell equations in the
case of a counter-propagating beams system, which are introduced
in Sec. III. We expand the distribution function in Fourier trans-
form in x, through a linearization process around the initial equilib-
rium F0ðpÞ ¼ n0

P
j¼1;2 ajF0jðpÞ in the form

f ¼ n0
X2
j¼1

ajF0j þ
X
k

dfk p; tð Þexp i kxx þ kyy
� �

; (B1)

and the electromagnetic field component

E ¼
X
k

Ek tð Þexp i kxx þ kyy
� �

and

Bz ¼
X
k

Bz;k tð Þexp i kxx þ kyy
� �

: (B2)

Linearizing the Vlasov equation (1) leads to

@dfk
@t

¼ �i
k:p
mc

dfk þ e
X

j2 x;yf g

pjEj;k
m2c2b2j

 !
F0 pð Þ

þ Fy;k
n0
P

j¼1;2 ajCjF0j

m2c2b2y
þ en0

X
j¼1;2

pxpy
m3cc2

Bz;k

 !

�
X
j¼1;2

ajF0j pð Þ 1

b2x
� 1

b2y

 !
; (B3)

where the Fourier component of the Lorentz force component Fy is
defined by Fy;k ¼ eðEy;k � pxBz;k=mcÞ. Assuming that the current
neutrality condition n0

P
j ajðCj=mcÞF0j ¼ 0 is initially satisfied, the

Fourier components of linearly polarized electromagnetic field, i.e.,
the components Ex;k; Ey;k and Bz;k, obey to

@Ex;k
@t

¼ ikyc
2Bz;k � e

e0

ð
d3p

px
mc

dfk p; tð Þ; (B4)

@Ey;k
@t

¼ �ikxc
2Bz;k � e

e0

ð
d3p

py
mc

dfk p; tð Þ; (B5)

@Bz;k

@t
¼ ikyEx;k � ikxEy;k: (B6)

The last term in the right-hand side of (B3) disappears when
bx ¼ by ¼ bth: this condition would correspond to suppress the
Weibel instability, which is driven by a temperature anisotropy
(we recall that, for counterstreaming beams along the direction y,
the Weibel instability is excited when bx > by). Thus, without
loss of generality, we can consider only a situation of two coun-
terstreaming electron beams having the equal (normalized) ther-
mal velocities bth (i.e., with bth ¼ vth=c and vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=m

p
),

supposing for them Maxwellian velocity distributions along y.
The perturbed distribution function, dfkðp; tÞ, in the Fourier space
reads
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@dfk
@t

¼ �i
k:p
mc

dfk þ e
X

j2 x;yf g
pjEj;k

X
j

ajF0j
m2c2b2th

þ Fy;k
n0
P

j ajCjF0j

m2c2b2th
:

(B7)

We now introduce the exponential notation dfk ¼ jdfkðp; tÞj
�exp iukðp; tÞ, where uk is the phase and jdfkj is the modulus of the
complex quantity dfk , and a similar notation for the different elec-
tric field components Ej;k ¼ jEj;kj exp ihj;kðtÞ for j 2 x; yf g and
Bz;k ¼ jBz;kj exp ihz;kðtÞ for the Bz component of the magnetic field.
Separating the real and imaginary parts in Eq. (B7) allows us to sep-
arate it in the two sets of equations:

@jdfkj
@t

¼
X
j

eajF0j
m2c2b2th

X
j2 x;yf g

pjjEj;kj cos hj;k � uk

� �

þ jFy;kjc
n0
X
j

ajCjF0j

m2c2b2th
; (B8)

@uk

@t
jdfkj ¼ � k:p

mc
jdfkj þ

X
j

eajF0j
m2c2b2th

X
j2 x;yf g

pjjEj;kj sin hj;k � uk

� �

þ jFy;kjs
n0
X
j

ajCjF0j

m2c2b2th
: (B9)

The real quantities jFy;kjc and jFy;kjs represent the “Lorentz force”
contributions of “cosine” and “sine” functions:

jFy;kjc ¼ e jEy;kj cos hy;k � uk

� �� pxjBz;kj
mc

cos hz;k � ukð Þ
� �

; (B10)

jFy;kjs ¼ e jEy;kj sin hy;k � uk

� �� pxjBz;kj
mc

sin hz;k � ukð Þ
� �

: (B11)

To complete the analysis of the linearized Vlasov–Maxwell system,
we must also determine the time evolution of the amplitudes and
phases of the first-order perturbations of the electromagnetic field
components. By thus separating the real and imaginary contribu-
tions of field components in Eqs. (B4)–(B6), we can write the field
amplitudes as

@jEx;kj
@t

¼ �kyc
2jBz;kj sin hz;k � hx;kð Þ

� e
e0

ð
d3p

px
mc

jdfkj cos uk � hx;kð Þ; (B12)

@jEy;kj
@t

¼ kxc
2jBz;kj sin hz;k � hy;k

� �
� e
e0

ð
d3p

py
mc

jdfkj cos uk � hy;k
� �

; (B13)

@jBz;kj
@t

¼�kyjEx;kjsin hx;k�hz;kð ÞþkxjEy;kjsin hy;k�hz;k
� �

; (B14)

and the corresponding phases as

jEx;kj @hx;k
@t

¼ kyc
2jBz;kj cos hz;k � hx;kð Þ

� e
e0

ð
d3p

px
mc

jdfkj sin uk � hx;kð Þ; (B15)

jEy;kj
@hy;k
@t

¼ �kxc
2jBz;kj cos hz;k � hy;k

� �
� e
e0

ð
d3p

py
mc

jdfkj sin uk � hy;k
� �

; (B16)

jBz;kj @hz;k
@t

¼ kyjEx;kj cos hx;k � hz;kð Þ � kxjEy;kj cos hy;k � hz;k
� �

:

(B17)

Using the set of Eqs. (B12)–(B14), it is possible to determine the
quantity jEx;kj@tjEx;kj þ jEy;kj@tjEy;kj þ c2jBz;kj@t jBz;kj, which can
write as follows:

jEx;kj @jEx;kj
@t

þ jEy;kj @jEy;kj
@t

þ c2jBz;kj @jBz;kj
@t

¼ � e
e0

ð
d3p
h
pxjEx;kj cos uk � hx;kð Þ

þpyjEy;kj cos uk � hy;k
� �i jdfkj

mc
; (B18)

while the quantity into bracket is defined from (B8) to beX
j2 x;yf g

epjjEj;kj cos hj;k � uk

� �

¼ m2c2b2th
n0
X
j

ajF0j

@jdfkj
@t

�
n0
X
j

ajCjF0j

m2c2b2th
jFy;kjc

2
64

3
75
: (B19)

This leads us to the final expression

@

@t
1
2
e0jEx;kj2 þ 1

2
e0jEy;kj2 þ 1

2
e0c

2jBz;kj2
� �

¼ �
ð
d3p
mc

m2c2b2th
n0
X

j
ajF0j

jdfkj @jdfkj
@t

� jdfkjjFy;kjc
n0
X
j

ajCjF0j

m2c2b2th

2
64

3
75
:

(B20)

This in turn leads us to the energy-phasestrophy conservation law

@

@t
�e;k þ �m;k þ �u;kð Þ ¼ S�;c;k; (B21)

where the source term S�;c;k is defined by

S�;c;k ¼
ð
d3p

jdfkj
n0
X

j
ajF0j

X
j

aj
Cj

mc
F0jjFy;kjc: (B22)

In the absence of source term S�;c;k ¼ 0, and by integrating over the
k space, Eq. (B21) leads to the invariant quantity

�e þ �m þ �u ¼ const: (B23)

To complete the analysis, we can also calculate the quantity
jEx;kj2@thx;k þ jEy;kj2@thy;k � c2jBz;kj2@thz;k by multiplying the set of
Eqs. (B15)–(B17) defining the temporal dynamics of phases hj;k , for
j 2 x; y; zf g, by the corresponding field component amplitudes.
Combining the obtained equations with (B9), we obtain
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1
2
e0 jEx;kj2 @hx;k

@t
þ jEy;kj2

@hy;k
@t

� c2jBz;kj2 @hz;k
@t

� �

¼ �
ð
d3p
mc

jdfkj2
2

� @uk

@t
þ k:p

mc

� �" #
m2c2b2th

n0
X

j
ajF0j

�
ð
d3pjdfkj2jFy;kjs

n0
X

j
ajCjF0j

mc
X

j
ajF0j

: (B24)

Finally, we obtain

1
2
e0 jEx;kj2 @hx;k

@t
þ jEy;kj2 @hy;k

@t
� c2jBz;kj2 @hz;k

@t

� �

þ
ð
d3p

px
mc

jdfkj2

2
@F0
@px

@uk

@t
þ k:p

mc

� �
¼ S�;s;k; (B25)

where the source term S�;s;k is defined as

S�;s;k ¼ �
ð
d3p

jdfkj
n0
X

j
ajF0j

X
j

aj
Cj

mc
F0jjFy;kjs: (B26)

Equations (B23) and (B25) constitute the set of invariant quantities
that are used in Sec. III to characterize the “reinforced” filamenta-
tion mechanism driven by the global synchronization of Van
Kampen modes.

APPENDIX C: PIC VERSUS VLASOV CODES

The numerical semi-Lagrangian scheme, used for the Vlasov
code, solves the characteristic equations in the backward directions
so as the Lagrangian scheme of the PIC code solves it for the single
particle. Thus, it is clear that “pushing one particle” in the PIC
approach or interpolating the distribution at a given (particle) loca-
tion from the foot of the characteristics need the same numerical
cost in Ref. 98, it was estimated it to be close to the ratio of two
quantities NVlas=Npart , where NVlas is the total number of mesh
points in the phase space in the SL case, and Npart is the total num-
ber of “superparticles.”We have

NVlas ¼ L
Dx

� �dx

N
dp
p ; Npart ¼ g�1

PIC
L
Dx

� �dx

: (C1)

Note that this gPIC � ðL=DxÞdx=Npart provides an “ab initio” finite
discrepancy between the Vlasov equation integrated by PIC schemes
and its continuum, mathematical limit. Its effect on the filamenta-
tion dynamics and on synchronization is thus a priori not easily
quantifiable, if not through comparison with Eulerian schemes
(which are however affected by the usual numerical limitations
imposed by the grid sampling).

Let us then suppose (e.g., based on our “experience” with the
VLEM code) that for an accurate enough description of the filamen-
tation in the one-dimensional problem of interest here, we need
Dx � kDe=100 and a momentum sampling in momentum space, at
least of Np � 100. This constraint is severe and imposes to choose a
large number of particles in the PIC code, i.e., Npart � NVlas to so to
guarantee an equivalent numerical accuracy (at least initially) in
both models (see Sec. V B). We see that NVlas=Npart can be written

as a function of the quantity gPIC ¼ 1=ðn0kdxDeÞ, which represents the
graininess parameter (related to the particle discreteness of the PIC
approach (for dx¼ 2 and dp¼ 2), Npart can now be put in the form
Npart ¼ g�1

PICðL=DxÞdx , leading to
NVlas

Npart
¼ gPICN

dp
p ¼ gPICN

2
p : (C2)

In Table IV, we give the expected numerical cost between the two
different approaches for a physical problem, characterized by a typi-
cal graininess parameter gPIC.
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