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Fibropapillomatosis (FP) is a debilitating tumoral disease affecting sea turtles

worldwide. While mainly afflicting immature individuals and potentially altering

vital functions, the precise impact of this panzootic on turtle health and survival

remains unclear. Moreover, the etiological factors implicated in the FP

emergence, development and transmission are not yet definitively identified.

Among them, an infection by a spreading herpesvirus and the contamination by

pollutants (either organic pollutants and trace elements) are suspected. Here, we

provide an overview of discoveries, knowledge and propose hypotheses related

to FP within five key FP research areas, i.e., virology studies, transmission studies,

contamination studies, host genomic studies, and veterinary treatment assays.

Moreover, we recommend urgent research avenues to develop at the interface

of virology, epidemiology, ecotoxicology, oncology, physiology, immunology,

cellular and evolutionary biology, in order to characterize the dynamics of FP and

to predict its consequences on sea turtle populations. Importantly, extending the

implementation and development of strong collaborations between

rehabilitation centers, field biologists and research laboratories at large

geographical scale is required to rapidly increase our knowledge on FP and

work towards its effective management.
KEYWORDS

sea turtle, conservation, fibropapillomatosis, viral agent, pollution, veterinary medicine,
host genomics
1 Introduction

Fibropapillomatosis (FP) is a debilitating tumoral disease affecting sea turtles, mainly at

the immature stage (Work et al., 2004). It is characterized by single or multiple internal and

external fibroepithelial lesions ranging from 0.1 to 30 cm in diameter (Herbst, 1994).

Internal lesions can grow on any visceral tissue (Rossi et al., 2021) and are histologically
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described as fibromas, myxofibromas, and fibrosarcomas (Work

et al., 2004). External FP-lesions have also been fairly found on all

epithelial soft tissues, as well as on the carapace and plastron (see

Figure 1 in Rossi et al., 2016). These external FP-lesions exhibit a

variety of colors (black, pink, white) and gross appearances: flat

plaques, pedunculated, sessile, verrucous, smooth or polypoid

nodules (Page-Karjian et al., 2014; Manes et al., 2023b). Light-

microscopy observation of FP-external tumors revealed

orthokeratotic hyperkeratosis, epidermal hyperplasia, dermal

papillary differentiation, ballooning degeneration of epidermal

cells and fibroblastic proliferation in the dermis (see Figure 3 in

Reséndiz et al., 2021 for a histological cross section of a skin tumor).

Depending on their size, number, position, and degree of

invasiveness, these lesions can interfere with vision, feeding and

locomotion (Aguirre and Lutz, 2004), potentially leading to

deleterious consequences on turtle survival (Work et al., 2004;

Chaloupka et al., 2008; Flint et al., 2010a but see Chaloupka et al.,

2009; Flint et al., 2010b; Patrıćio et al., 2011; Hargrove et al., 2016).

Numerous molecular and epidemiological pieces of evidence point

to a herpesvirus infection as a potential causal agent of FP

(Quackenbush et al., 2001; Kang et al., 2008).

The first case of FP was observed in the 1930s in a captive green

turtle at the New York Aquarium (Smith and Coates, 1938). Initially,

the green sea turtle (Chelonia mydas) was then presumed to be the

only species affected by this disease. However, typical FP-(external)

lesions have now also been reported in all of the seven sea turtle

species. The green turtle still remains the most frequently and

severely affected species (see Supplementary Table 1 in Jones et al.,

2016 for examples of FP prevalence in all seven sea turtle species) and

the disease has reached a panzootic status in this species (see

Supplementary Table S1 in Dujon et al., 2021). The full extent of

the impact of the FP emergence and spread on population dynamics

remains unclear (Jones et al., 2016), but is a topic of prime

importance since most sea turtle species are categorized as

vulnerable to critically endangered on the IUCN red list (Seminoff,

2023), because of various abiotic and biotic environmental pressures,

such as bycatch, vessel strikes, loss of nesting habitat, and climate

change (Hamann et al., 2010; Rees et al., 2016).

Attesting the concern of the scientific community for the

conservation of sea turtle populations facing this panzootic

(Aguirre and Lutz, 2004; Hamann et al., 2010; Rees et al., 2016;

Mashkour et al., 2020), a growing number of scientific peer-

reviewed papers studying FP have been published over the last

two decades, most of them reporting FP-cases in new geographical

areas (see a recent example, Origlia et al., 2023) or describing

current local coastal FP prevalence (as reviewed in Buenrostro-Silva

et al., 2022 for the American continent). Consequently, we now

have a better overview of the disease distribution and prevalence

over global coastal habitats (but a constant and concomitant effort is

still needed to get a clear and updated resolution). However, there is

an urgent need for a multidisciplinary, global and standardized

approach at the interface of virology, epidemiology, ecotoxicology,

oncology, physiology, immunology, cellular and evolutionary

biology to characterize the dynamics of FP and predict the

consequences of this panzootic on sea turtle health, survival and

population dynamics (as mentioned for example in Hargrove et al.,
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2016; Mashkour et al., 2020; Jones et al., 2022). Here, we propose to

apply such an interdisciplinary approach within five key FP

research areas: 1) virology studies, 2) transmission studies,

3) contamination studies, 4) host genomic studies, 5) veterinary

treatment assays. Finally, this paper then aims A) to present FP-

related questions that need to be answered to fill the knowledge gaps

and to propose standardized research guidelines and B) to stimulate

the development of collaborative research projects in order to help

sustain the financial, logistical and technical difficulties associated

with the research on this topic.
2 Open questions in FP research

2.1 Do ChHV5 dynamics influence FP
development pattern(s) and severity?

Based on the Hill’s disease causation criteria and primary FP

transmission studies (Hill, 1965; Herbst et al., 1995, 1996), FP seems

to be primarily associated with a herpesvirus infection (Quackenbush

et al., 2001; Kang et al., 2008). More specifically, the Chelonid

alphaherpesvirus 5 (hereafter designated by its widespread

abbreviation ChHV5), is the most plausible viral candidate as it is

frequently detected in tumoral tissue from FP-affected individuals

(Jacobson et al., 1991; Quackenbush et al., 2001). This

fibropapilloma-associated turtle herpesvirus, from the Scutavirus

chelonidalpha5 species, is a linear double-stranded deoxyribonucleic

acid (DNA) virus from the subfamily Alphaherpesvirinae (Benkő

et al., 2021). At this time, four ChHV5 variants have been identified

in marine turtles: the eastern Pacific, western Atlantic/eastern

Caribbean, mid-west Pacific and Atlantic variants (Patrıćio et al.,

2012). Variants are geographic in nature, not being specific to

different sea turtle species or rates of disease presentation (Work

et al., 2020; Whitmore et al., 2021; Farrell et al., 2022). However, while

the viral origin of FP might explain the rapid spread of the disease

worldwide (Work et al., 2015b), its implication in the development

and dynamics needs to be (molecularly) confirmed. Indeed, on one

hand, this virus has already been successfully detected in FP-afflicted

turtles (using molecular and microscopy techniques, Quackenbush

et al., 2001 and Jacobson et al., 1991 respectively) and also cultured in

vitro with turtle tumoral cells and organotypic skin culture (Work

et al., 2017). But, on the other hand, only three of the four Koch’s

postulates (Rivers, 1937) have been fulfilled so far (Work et al., 2009).

Specifically, the isolation of ChHV5 from FP-afflicted turtle and its in

vitro culture using standard cell monolayers have not been

successfully achieved yet, while a wide variety of validated protocols

used to induce viral replication has been tested (i.e., treatment with

diverse chemical modulators of replication, incubation at varying

temperatures, co-cultivation with known-infected fibroblasts, Work

et al., 2009; 2020). Moreover, similar to many herpesviruses, ChHV5

has the capacity to enter a state of latency after a lytic infection (Page-

Karjian et al., 2017; Farrell et al., 2021). The difficulty to confirm a

causal link between ChHV5 infection and tumor development is also

associated with the fact that ChHV5 is near ubiquitous in sea turtle

populations. Indeed, absence of FP lesions does not necessarily imply

an absence of ChHV5 infection (Page-Karjian et al., 2015; Alfaro-
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Núñez et al., 2016). Healthy tissue samples from both FP-afflicted and

clinically healthy turtles can carry ChHV5 DNA and ribonucleic acid

(RNA) (Quackenbush et al., 2001; Farrell et al., 2022). Consequently,

the prevalence of individuals positive for ChHV5 is generally much

higher than the prevalence of individuals with FP lesions. This

observation can be explained by several factors. Firstly, cases of

turtle tumor regression have been documented (Guimarães et al.,

2013; Manes et al., 2023b), implying that turtles might be tested

positive for the virus without showing any tumor-related symptoms.

Secondly, ChHV5 has been detected in populations which have never

been reported to be afflicted by FP tumors (such asMediterranean sea

turtles, Serra et al., 2023), thus ChHV5 infection alone does not seem

sufficient to lead to the development of FP tumors. Thirdly, as

proposed by the “viral hit and run hypothesis” (Ambinder, 2000;

Niller et al., 2011), if the virus is the key initiator, its action likely

happens very early in the oncogenesis process (lytic phase) and the

virus might no longer be needed for tumor growth (latent phase,

Farrell et al., 2021). Limited information is currently available on how

the dynamics of these lytic and latent states of ChHV5 influence the

emergence, growth and regression of FP tumors: A) increased viral

load in high tumor burdens is due to latent viral DNA replication,

rather than increased lytic activity and B) new grown tumors do not

show an increase in ChHV5 expression (a proxy for lytic viral

infection) compared to established tumors (Farrell et al., 2021;

Yetsko et al., 2021). Finally, the development of FP lesions might

also depend on the infected tissue and/or the local viral load and

potentially only occurs when a certain threshold is locally reached

(Jones et al., 2016; Duffy and Martindale, 2019). It should also be

noted that using viral metagenomic methodologies, at least 3

additional viruses have been proposed as potential etiological

agents of FP in sea turtles: the Dyozetapapillomavirus 1 (Siddell

et al., 2020), also named Chelonia mydas papillomavirus 1 – CmPV1

(Mashkour et al., 2021), the Chelonid alphaherpesvirus 6 – ChHV6

(Page-Karjian et al., 2020a), and the sea turtle tornovirus – STTV1

(Ng et al., 2009). However, few little data is currently available

regarding their implication into FP pathogenosis. To note, CmPV1

seems to be an especially relevant FP-associated pathogen candidate

as papillomaviruses are oncogenic at a much lower load than

herpesviruses, and this virus has been detected at non-negligeable

prevalence in FP-affected individuals (Mashkour et al., 2018).

Based on this literature review, we strongly recommend further

research to confirm the implication of a viral pathogen in FP

development, and to identify the etiological agent(s) causing this

pathology and its (their) role(s) in triggering FP tumor emergence,

development, and spread.

First, with methodological and technical improvements, the

fulfilment of the fourth Koch’s postulate will definitively confirm

the implication of ChHV5 in FP etiology (Work et al., 2009). This

approach should also need to be considered for CmPV1 to assess its

etiological implications. In this line, conducting cell culture

experiments where cells collected from healthy individuals are

exposed to fresh tumor extracts containing the virus(es) should

be one of the main future priorities (see successful method

described in Work et al., 2017 for ChHV5, and in Mashkour

et al., 2018 for CmPV1). Importantly, inoculation should now be

done using pure virus, but it then requires to develop laboratory
Frontiers in Ecology and Evolution 03
techniques allowing both culture and isolation of ChHV5 and

CmPV1. Moreover, to be as informative as possible, an

experimental setup is also expected to include transmission

electron microscopy of infected cells. Work et al. (2017)

developed an innovative cell culture set up to culture ChHV5,

however, it was not readily scalable to get cell-free ChHV5 at a level

that could be used to fulfill Koch’s postulates. Therefore, prior to

ChHV5 inoculation experiments, this ChHV5 cell culture model

would need to be refined further or alternative scalable models to be

established. Same process should now be initiated for CmPV1.

While exploration of ChHV5 genome has already been initiated

(Ackermann et al., 2012; Morrison et al., 2018; Whitmore et al.,

2021), new studies of the viral genomes are needed as the complete

ChHV5 reference genome remains incomplete, with a (suspected

repetitive) region still not sequenced. In this line, novel long-read

sequencing technologies (e.g., Pacific Biosciences or Oxford

Nanopore Technologies) are ideally placed to complete the full

reference genome of ChHV5. Considering the few publication

already available, sequencing global ChHV5 genomes should help

glean useful information to now robustly identify and confirm the

virulence factors involved in the FP context. Assuming that the FP

viral origin is true, such an approach will also be particularly

appropriate to understand the dynamics of clinical symptoms

stages (i.e., from clinically healthy to the development of tumors

until complete recovery or death).

Characterizing the temporal viral dynamics (latent vs lytic) in

relation to clinical symptoms should also be achieved. To do so,

detailed transcriptomic and immunohistochemical profiling of

various tumors should be achieved (see the methodology used on

external new, established and postsurgical regrown tumors and

internal lung and kidney tumors by Farrell et al., 2021; Yetsko et al.,

2021). Notably, running these analyses for a wide range of external

tumors should help determine whether the viral activity differs

according to the size, colour and characteristics of the tumors as

well as their anatomical position. Extending this approach should

also help characterize the tumors and understand why they present

such high phenotypical diversity and variety in growth rate (Manes

et al., 2023b). In addition, increasing the number of individuals

tested should participate in clarifying how the FP-associated

differential gene expression varies according to the individual-

specific clinical symptoms stage (i.e., viral infection but clinically

healthy, tumor emergence, tumor growth, tumor regression,

complete recovery, death). Finally, drawing the transcriptomic

and immunohistochemical profiles of virus-infected but not FP-

affected individuals (i.e., clinically health individuals) should be

conducted. Such studies will help complete the description of the

viral dynamics for every clinical symptom stage and specifically

highlight the implication of the viral etiological candidates in FP

emergence, which seems to actually be the most sensitive stage to

the viral infection (Farrell et al., 2021). To go further, the use of

innovative molecular histological approaches (such as RNAscope)

should also be implemented to describe turtle cellular modifications

associated with the viral etiological candidates and then characterize

their modes of action.

To note, the lack of consensus on the protocols used to detect

and quantify the two main viruses potentially associated with FP
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makes it difficult to compare data obtained by different studies (see

differences in ChHV5 detection using quantitative Polymerase

Chain Reaction (PCR), nested-PCR, or singleplex PCR techniques,

Alfaro-Núñez and Gilbert, 2014; Jones et al., 2020). This

methodological bias may then explain the contradictory results

found in the current literature (Jones et al., 2020). Therefore, in

the future, we strongly recommend the use of the validated

laboratory techniques for qPCR, RNA-seq and DNA-seq,

regarding both DNA and RNA extraction as well as viral detection

and quantification (Page-Karjian et al., 2015; Blackburn et al., 2021;

Mashkour et al., 2021; Yetsko et al., 2021; Farrell et al., 2022).

Importantly, we do not seek here to be proscriptive about which

ChHV5 qPCR assay should be adopted as the global standard.

Ideally, the decision which assay(s) to adopt should come from

consensus building across the international FP research community.

In our opinion, the subject of standardization should be the topic of a

specific workshop e.g., at an international sea turtle conference, and

based on a collaborative interlaboratory comparison of method

performance conducted altogether by global FP researchers (see

the conclusive study conducted for SARS-CoV-2 molecular

detection, Deng et al., 2022). In our laboratories, both the Page-

Karjian et al. (2015) UL30 and Mashkour et al. (2021) Dpol qPCR

assays, which hit somewhat overlapping regions of the same ChHV5

gene, have worked well (Atlantic, Caribbean and Gulf of Mexico

samples). The Mashkour et al. (2021) Dpol assay was originally

utilized for Australian samples, indicating it would likely function

well in global populations. This laboratory protocol standardization

will allow the generation of comparable, consistent and reliable

datasets at the global scale. Moreover, we also recommend to use

standardized tissue and tumor sample collection procedures (sterile

biopsy punch of 4 to 6 mm) and storage practices (RNA later or

simply frozen at −80°C for DNA analyses). As far as possible, we also

recommend to homogenize the samples collected as well as to collect

paired samples (FP tumors and nearby healthy tissue). Importantly,

we recommend to preferentially collect tissue samples rather than

blood samples which have significantly lower ChHV5 loads even in

heavy FP-afflicted turtles (Page-Karjian et al., 2015). Moreover,

varying ChHV5 detection between fresher and historical samples

has been reported by a number of laboratories, for sea turtle tissues

and blood samples, and marine leech samples. Consequently, since

ChHV5 may be degraded even at −80°C (Kelley, 2022), we

encourage to perform analyses within one year after sample

collection to avoid false negatives measurements.
2.2 What are the main drivers of
FP epidemiology?

Fibropapillomatosis was first observed on a captive green turtle

(Smith and Coates, 1938). Since then, FP has been increasingly

reported in wild neritic turtles (no pelagic turtle with FP has been

recorded so far for logistical constraints), and has been classified as an

epizootic disease since the late 1980s (Dujon et al., 2021). Concerningly,

the disease is reported in all major ocean basins occupied by sea turtles

(Herbst, 1994) with drastic differences in prevalence at both spatial and

temporal scales (see for instance local annual FP prevalence in Shaver
Frontiers in Ecology and Evolution 04
et al., 2019; Jones et al., 2022; Roost et al., 2022). Several non-exclusive

hypotheses have been proposed to explain the spreading of the FP

causative agent(s) in turtle populations. Body fluids, tumor shedding

into water, or physical contacts might be some routes of transmission

in addition to external parasites, and especially Ozobranchus leeches, as

disease vectors (Greenblatt et al., 2004; Work et al., 2015b; Farrell et al.,

2021; Roost et al., 2022). Interestingly, individuals from sympatric turtle

species in a given geographical area usually host the same viral variant,

suggesting a viral horizontal transmission (Herbst et al., 2004; Ene et al.,

2005; Greenblatt et al., 2005; Patrıćio et al., 2012; Rodenbusch et al.,

2014; Ariel et al., 2017; Jones et al., 2020). To note, a vertical

transmission from mother to offspring also seems to be plausible as

ChHV5 has been detected in both hatchling tissue samples and crawl

tracks from tumor free hatchlings (Farrell et al., 2021, 2022).

Ethical considerations make in vivo experimental approaches

not desirable to study FP transmission (although successful

experimental inoculations have been conducted, as described in

Herbst et al., 1995). However, ex vivo experimental approaches may

not be robust enough to infer transmission modalities. Therefore, as

the next step in transmission studies, we encourage to focus on viral

phylodynamics, eDNA and histological studies, as complementary

avenues of research to reveal information on transmission

dynamics. To do so, in-depth genomic characterization of the

virus should be pursued across broader geographic areas to

understand how the viral agent circulates among individuals from

a given population and worldwide (Patrıćio et al., 2012; Ariel et al.,

2017; Whitmore et al., 2021). Moreover, it will help identify how the

different variants of ChHV5 vary in prevalence at both local and

large geographical scales. Finally, phylogenomics will improve our

understanding of transmission ability (see promising results for the

moneypox virus, Yu et al., 2023, and the SARS-CoV-2, Turakhia

et al., 2022), which is crucial to understand the observed variations

in disease prevalence. As shedding from tumors appears to be a

probable route of transmission (Work et al., 2014; Farrell et al.,

2021), it is now crucial to determine the persistency of the virus

(ChHV5 and others) in the environment by monitoring viral agent

shedding in water from turtle rehabilitated tanks. To validate the

vertical transmission hypothesis, detection and quantification of

ChHV5 in hatchlings at nest emergence, using swabs, tissues from

deceased hatchlings, egg shells and membrane as well as eDNA

approaches from the crawl tracks of emerging hatchlings, should be

conducted (Farrell et al., 2021, 2022). Such non-invasive approaches

will help determine if hatchlings have already been exposed to

ChHV5 by the time they are leaving the nest (without indicating

exactly at which point from conception to leaving the nest that

infection is occurring), a crucial information for the development of

effective mitigation measures while minimizing impacts of invasive

studies on these endangered species. Finally, the influence of

environmental stressors (population density, diet, pathogen

pressure) and individual physiological status (immune status,

stress levels) should also be determined, using advanced

computational models accounting for confounding factors, to

understand when individuals are more susceptible to both viral

transmission and viral activity. It will help characterize the time and

intensity of the early immune response mounted by the host, as it is

currently not understood why the early host immune response is
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not sufficient to prevent tumor development and growth (Yetsko

et al., 2021). Specifically, we recommend the routine measurement

of white blood cell count and the determination of associated

heterophil/lymphocyte ratio (H/L ratio) at the global geographical

scale. Indeed, these parameters are among the easiest, cheapest,

most repeatable and informative blood immune markers to collect

(see detailed methodology in Kophamel et al., 2022).
2.3 How may pollutants trigger FP
development and dynamics?

Fibropapillomatosis physiopathology is suspected to be

multifactorial, with environmental abiotic and biotic variables

affecting the growth dynamics of FP lesions (Herbst and Klein,

1995; Aguirre and Lutz, 2004; Foley et al., 2005; Work et al., 2015a;

Dujon et al., 2021; Yetsko et al., 2021). This postulate is supported

by the high differences in FP prevalence across both global and local

geographical scales (Roost et al., 2022; Vanstreels et al., 2023).

Exposure to immunomodulatory environmental stressors might

enable ChHV5, a relatively benign opportunistic pathogen, to

reach a certain viral load and cross its oncogenic threshold (Duffy

and Martindale, 2019). However, such relationships between

environmental triggers, turtle immunosuppression and ChHV5

infection have not been confirmed in the FP context so far

(Yetsko et al., 2021). Among the abiotic and biotic potential

candidates, contaminants are regularly proposed as plausible ones

because of their potential influence on both the viral dynamics as

well as the host physiological status and immune response (Aguirre

et al., 1994). Specifically, contamination with organic pollutants and

metallic trace elements are considered as a major turtle threat as

they are commonly found in oceans worldwide, can accumulate in

organs (Brodie et al., 2014) and have already been associated with

turtle decreased health conditions (chlorinated organic pollutants,

Camacho et al., 2013; trace elements, Perrault et al., 2017). In line

with this, higher FP coastal prevalence have recurrently been found

in juvenile and sub-adult individuals residing in anthropized areas

with contaminated waters such as near-shore waters and lagoons

close to high intensity agricultural, industrial and urban areas (Van

Houtan et al., 2014). However, while some studies reported

significant associations between FP prevalence or severity and

levels of PCBs (Yan et al., 2018), and trace elements (da Silva

et al., 2016; Perrault et al., 2017); others found no association (either

with organic pollutants, Keller et al., 2014; Sánchez-Sarmiento et al.,

2017; or trace elements, Pérez et al., 2023).

To increase our understanding of these potential associations

between environmental contaminant and FP dynamics, we first

encourage to standardize the methodology to measure pollutant

levels, i.e., from tissue sampling to the analytical methods applied,

for generating comparable data worldwide. Indeed, reported

contrasting results may be explained by the different tissues

(blood, heart, kidneys, liver, muscle, carapace, fat, eggs) used to

measure contaminant levels: each of which has varying (lipidic)

composition and therefore different bioaccumulation properties

(e.g., the liver exhibits high (lipidic) bioaccumulation properties

while blood has low ones, see Brodie et al., 2014). We recommend to
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use blood and keratinized tissues, two different but common sample

matrices in ecotoxicological studies. First, it will provide insights

into both the current and accumulated contamination experienced

by any individual, respectively (Schneider et al., 2015). The choice

of these two sample matrices is also motivated by the fact that

1) they are of limited invasiveness and can then be collected on live

individuals (after obtaining appropriate ethical approbation) and

2) laboratory protocols already exist to measure numerous organic

pollutants and trace elements levels on these matrices. Finally,

sample processing should be standardized and contamination

measurements should be conducted following appropriate

laboratory techniques validated for the molecule to detect, and

approved from consensus among the global FP research

community. In terms of research directions, we first propose

studying contamination from both FP-afflicted and healthy turtles

living in the same area. Secondly, concomitant measurements of

contaminant residue levels and viral presence and load between

healthy and FP-afflicted turtles across several seasons (detailed in

Jones et al., 2016) should also be pursued. Importantly, rather than

searching for particular contaminants, future studies should

implement the studied chemicals list based on local water

contamination reports. Indeed, the effect of contaminants on

organisms depends on their bioavailability and mixture toxicity

effects resulting from chemicals’ synergetic and antagonistic modes

of action (cocktail effects, Benejam et al., 2010), as well as on the

entire abiotic and biotic context of the studied ecosystem (see

Rattner and Heath, 2002 for a review of the abiotic factors

affecting contaminant toxicity). In other words, a given chemical

should be identified as crucial for FP development in a given area

but not in another. Thus, finding a unique or a given cocktail of

contaminants associated with FP at the worldwide scale might be

unlikely. However, by identifying contaminants locally associated

with FP emergence and/or development, we might be able to

highlight the pollutant chemical properties and modes of action

playing a crucial role in FP development and to target them in other

geographical regions. Ultimately, by determining the chemical

features which could explain the relationship between turtle

contamination and FP prevalence, we should then be able to

establish whether such association is mediated by the efficiency of

turtle immune system. Finally, conducting a global meta-analysis

considering detailed standardized studies across multiple locations

should provide an useful tool for disentangling some of the mixed

ecotoxicological narrative complexity associated with FP (Dujon

et al., 2021; Manes et al., 2023a).
2.4 How do host genomics alterations
influence the FP development?

The majority of tumor types, whether initially induced by

pathogens, environmental exposures or chance mutation, are

ultimately driven by alterations in the host genome and

transcriptome within tumor cells (Hanahan and Weinberg, 2011).

Such oncogenic mutations can come in a number of forms, from

small single nucleotide variants to largescale chromosomal

rearrangements. These mutations can inactivate genes (such as
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tumor suppressors), alter gene functioning, or increase gene

expression levels, ultimately transforming cells into cancer cells

by promoting rapid cell proliferation, and evasion of programmed

cell death and immune system controls. Additionally, epigenetic

changes can also induce the activation of oncogenic signaling

pathways and the inhibition of inherent tumor suppressor defense

mechanisms. Despite the prominent role of mutations and

oncogenic signaling pathways in driving tumor formation and

development, they were historically understudied in the FP

context [e.g., tumor whole genome sequencing (WGS/genomic

DNA) has only been employed for a small amount of tumor

(Yetsko et al., 2021)], with the majority of research effort

generally placed on viral investigations. Failing to consider host

dynamics adequately has hampered our understanding of this

enigmatic disease, slowing the development of effective

mitigation, treatment, and prevention strategies. However, in

recent years, an increasing number of studies have begun to

investigate changes in host FP biology, from immune-related

changes, mutational burdens and targetable perturbations to the

signaling pathways driving tumor growth (Blackburn et al., 2021;

Perrault et al., 2021; Yetsko et al., 2021).

The application of omics technologies, particularly those honed for

human cancer research, such as transcriptomics – functionally

validated in cell lines, animal models and clinical trials, are enabling

the rapid elucidation of the underlying host molecular mechanistic

drivers of FP, as well as the identification of diagnostic, prognostic and

drug targets. As a striking evidence, the first ever sea turtle FP

transcriptomics study contributed to the establishment of a post-

surgical drug treatment which cut FP eye tumor regrowth rates from

67% down to 18% (Duffy and Martindale, 2019). Moreover, the few

available transcriptomics studies of FP tumor tissue compared with

non-tumor tissue have revealed a core oncogenic signaling network

driving tumor growth identical to human pan-cancer drivers (Duffy

et al., 2018; Yetsko et al., 2021). There are broad transcriptional

differences between FP external tumors, and less common internal

tumors. However, the oncogenic signaling pathways: mitogen-activated

protein kinase (MAPK), Wingless and Int-1 (Wnt), transforming

growth factor beta (TGFb) and tumor necrosis factor (TNF) are

common to both of them (Yetsko et al., 2021) and may in the future

be therapeutically targeted to expand treatment options. Specifically,

these FP transcriptomic signaling changes most related to patient

outcome are in tumor suppressor pathways, particularly apoptotic

and immune response genes. Concomitantly, sea turtles which

retained higher expression of these tumor suppressor genes within

their tumors had better rehabilitation outcomes (Blackburn et al.,

2021). In addition to revealing viral dynamics, novel treatment

options, and serving as putative rehabilitation outcome biomarkers,

transcriptomic and genomic profiling of FP tumors can help identify

likely contaminants contributing to FP tumorigenesis (Yetsko et al.,

2021). Indeed, for other cancers, applying deep genomic sequencing to

tumors revealed environmental contaminants responsible for initiating

tumorigenesis (COSMIC, 2018; Stammnitz et al., 2018). Similarly,

transcriptomic profiles associated with exposure to organic

pollutants, trace elements, and viruses were detected in FP tumors
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(Yetsko et al., 2021). Such approaches should then be pursued to

complement field-based environmental contaminant, and blood/tissue

burden contaminant studies.

Fibropapillomatosis tumors do harbor mutations within their

cancer cell genomes (Yetsko et al., 2021). To improve our

fundamental understanding of the nature of FP, further research

should be conducted, in larger cohorts of turtles, examining the

specific mutational events driving FP tumor formation and growth.

Such research can also identify shared mutational FP drivers

between tumors and individuals, elucidate anti-cancer treatment

options and identify DNAmutational signatures of tumor initiating

environmental exposures. Epigenetic modifications have been

shown to play a prominent role in many human cancer types, but

epigenetic analysis has yet to be applied to FP tumor biology

(Hanahan and Weinberg, 2011). FP epigenetics should be

investigated as a matter of urgency, as it will likely also lead to

novel insights into this panzootic disease.

Building on the outcome of gene expression prognostic

biomarker discovery, with putative FP biomarkers already

identified (Yetsko et al., 2021), the development of RT-qPCR

assay could enable to find rapid, cost-effective gene expression-

based host biomarkers (i.e., RNA) for applications in rehabilitation

and field settings. Similarly, whole genome sequencing can identify

recurrent FP-associated mutations. Of the identified mutations,

some are likely to have prognostic value, as is the case with most

human cancers. Therefore, qPCR assays could also be developed as

prognostic biomarkers, targeting host genomic mutations (gDNA).

When used at scale, qPCR or RT-qPCR can cost less than $10 USD

per sample. Such outcome biomarkers could help quantify the

severity of FP for free-roaming populations. Additionally, they

could help inform likely outcomes, and treatment and

management decisions within rehabilitation facilities. Indeed, it

could contribute to classify patients into those likely to respond

to intervention, and those whose tumors are too aggressive, as

aggressive and responsive tumors have different underlying

molecular profiles, i.e., gene expression profiles and mutational

burdens. Host biomarkers for the presence of internal tumors

should be particularly beneficial for early detection in

rehabilitating sea turtles, as well as for providing a survey tool for

monitoring the prevalence of internal tumors in wild populations.

The growing awareness of the centrality of host immune and

genomic alterations to the development, progression and outcome

of FP will help globally tackle this panzootic.
2.5 How to increase treatment efficiency
and prophylaxis for FP-affected turtles?

Wild FP-afflicted turtles found lethargic and floating on the sea

surface or washed up on the shore are generally temporarily

admitted in local rehabilitation facilities (when existing) to be

cured before being released back (Manire et al., 2017). The

decision to euthanize FP-afflicted turtles is justified, in most

regions, by the presence of internal tumors. Indeed, these are
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currently incurable through medication, and surgical removal of

internal tumors is not routinely conducted because it requires

specific technical expertise. In addition it is only possible for few

internal tumors locations due to the turtle hard shell. However,

diagnosis of internal tumors currently requires the appropriate

veterinary equipment, i.e., a computed tomography (CT) scanner

or X-ray, which is rarely present in rehabilitation facilities due to

financial limitations (but see Li et al., 2022 for a promising platform

based on ChHV5 glycoprotein B detection). Most often, the clinical

cares provided to FP-affected turtles are the surgical removal of

external tumors (using CO2 lasers notably, Raiti, 2008) and the

treatment of secondary infections (Page-Karjian et al., 2014).

However, tumor regrowth has been reported in at least 50% of

the surgically treated turtles that have been released and

subsequently re-stranded (Farrell et al., 2018; Page-Karjian et al.,

2019). Such observation shows that the complete removal of FP

tumors is not always possible and rehabilitation success (i.e.,

survival probability and release success) may be correlated to

tumor burden for the majority of FP turtles (Stacy et al., 2019).

While one could then wonder whether releasing a few cured

individuals each year should have positive and significant effects

on local population dynamics, there have been documented cases of

previously FP-treated turtles reaching sexual maturity and

successfully nesting, thereby contributing to future generations.

Importantly, considering the viral FP origin as true, the non-

negligible proportion of tumor regrowth should indicate that

tumor-free individuals were still carrying out ChHV5 DNA.

Actually, sea turtles with higher ChHV5 transcriptional loads

(RNA-seq) had the best rehabilitation outcomes (Farrell et al.,

2021). In other words, individuals with more active virus fared

better than those with lower levels of active virus. This indicates that

lytic ChHV5 virus may actually improve the likelihood of turtle

survival, possibly by initiating a stronger host immune response

(unlike latent virus evading the host immune system, Krump and

You, 2018), which could then complement surgical tumor removal

by better targeting tumors (Blackburn et al., 2021; Farrell et al.,

2021). In the same sea turtle patient cohort, higher expression

levels of immune-related host genes were also associated with

better patient outcomes (Yetsko et al., 2021). Then, the

appropriate research avenue to explore is now determining

whether releasing ChHV5-positive tumor-free turtles back into

their native contaminated and degraded habitats will not likely

lead to re-occurrence of the disease, compromising their

rehabilitation success.

With the constant progress of the veterinary medicine, new

therapeutic approaches to treat these turtles are expected, with the

objective to increase survival rate and reduce tumor reoccurrence.

Interestingly, with the recent trend of applying advanced human

oncology knowledge to wildlife medicine (Duffy and Martindale,

2019), there is hope of developing new clinical treatment in a decent

timeframe. Such reasoning is particularly applicable in the FP context

as similarities between human and turtle tumoral cells have been

documented (Duffy et al., 2018; Yetsko et al., 2021). This approach is

one of the most promising as there is already a panel of efficient orally
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deliverable drugs used in human oncology that may be administrated

routinely in rehabilitation centers after their validation through

pharmacokinetic and toxicology studies, i.e., immunomodulators or

anti-cancer drugs such as Vismodegib, targeting host genetic

perturbations through identified oncogenic signaling pathways, like

SHH and Wnt pathways (but see also MAPK and TGF signaling,

Duffy et al., 2018; Yetsko et al., 2021); or anti-cancer drugs, such as 5-

Fluorouracil or Bleomycin acting as cytotoxic agents (Donnelly et al.,

2019). To note, 5-Fluorouracil has already shown promising results

with a significant reduction of post-surgical eye FP tumor regrowth,

from 67% down to 18% (Duffy et al., 2018). Lysine may also be

administrated to prevent tumor regrowth when conducting surgically

FP lesions removal (Page-Karjian et al., 2014). Finally, any attempts

to use anti-viral drugs for FP treatment, targeting specifically

herpesvirus, such as Acyclovir or Ganciclovir, have failed so far,

having no effect (D. J. Duffy, unpublished data). Such observation

would corroborate with the “viral hit and run” hypothesis which

implies that anti-viral treatment may only be efficient during the very

early FP stages. However, when turtles are admitted in rehabilitation

centers, tumors are already self-sufficient replicating due to oncogenic

mutations and transcriptional changes in the host genome and

transcriptome, with any remaining virus which may largely be

latent. Promisingly, at the beginning of 2024, the first autogenous

vaccine therapy for chelonid herpesvirus has successfully been

applied in a juvenile green turtle in Colombia (Castro et al., 2024).

While this finding opens a new era for FP treatment, it is important to

keep in mind that there is a crucial lack of hindsight on such

treatment in wild animals (see notably the case studies of avian

cholera in albatross species and west Nile virus in the California

condor). Then, before considering vaccination as an appropriate

preventive cure, several questions must be answered. Notably,

which individuals to target (clinically healthy individuals randomly

captured in the wild vs FP-affected turtles from rehabilitation

centers)? How frequently does the vaccine need to be administrated

per individual? Is there any window of efficiency (hatchlings vs

immature turtles vs breeding males and females)? Which

proportion of the population to vaccine in order to ensure an

efficient protection of the whole population?

The most important point to develop, related to improving

treatments, is the implementation of strong collaborations between

rehabilitation centers and research laboratories worldwide. Indeed,

rehabilitated turtles are a unique opportunity to increase our

knowledge on FP. Notably, they are regularly checked (at least once

a week) which is essential in the FP context as tumors can double in

size in less than two weeks (Farrell et al., 2018). Moreover, the entire

removal of external tumors – as part of the therapeutic process –

allows us to collect significant quantity of tumor tissue that could be

used to assess oncogenic and viral dynamics according to tumor size,

color, and aspect as well as to their status (regrowth, new growth,

established). Moreover, this ready sample access can help follow up as

well as descriptively and functionally validate detected correlations

between environmental cofactors and FP. Such close collaboration

between rehabilitation centers and research laboratories has already

provided us numerous crucial insights on the dynamics of the
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potential viral etiological agents in American FP-afflicted turtles (see

for instance Duffy et al., 2018; Page-Karjian et al., 2019, 2020b, 2021;

Blackburn et al., 2021; Farrell et al., 2021; Yetsko et al., 2021). It

should now be globally extended to confirm these local results and

draw general conclusions. Moreover, the regular health and condition

record of FP-afflicted turtles should help us monitor the turtle

immune status all along the recovery process (from their transfer

in rehabilitation center to their release or death). This should be

determinant in understanding how the viral agents interfere with host

immune function, especially in the context of tumoral regrowth and

new growth but also when tumor regression is observed. Such

research issue is feasible by weekly monitoring selected health

blood parameters (hematocrit, H/L ratio, glycemia, potassium) and

comparing external aspect of turtle post-tumor removal through

standardized pictures. This methodology will also provide a chance to

identify secondary infections and opportunistic pathogens (Work

et al., 2003), more likely due to their FP-related immunosuppression

(Work et al., 2001; Page-Karjian et al., 2014). Moreover, by

monitoring them after release in the wild through photo-

identification (i.e., a non-invasive, cheap and standardized method

to study FP prevalence, Hancock et al., 2023), it should be possible to

precisely evaluate the probability of tumor development as well as

their survival probability. Finally, such FP-afflicted turtles should be

ideal patients for any veterinary treatment assay to conduct in the

next years.
3 Conclusion

Fibropapillomatosis is a complex neoplastic multifactorial

disease. As highlighted throughout this article, numerous and

crucial knowledge gaps need to be filled, to increase our

understanding of this disease. Specifically, the interplay between

environmental triggers (e.g., pollutants), viral triggers (e.g., ChHV5)

and host responses (e.g., immune response, gene expression

changes and mutational burdens) requires further elucidation and

studies focusing on the functional understand of all these three

aspects and their interrelatedness, rather than attempting to

examine them in isolation, should be prioritized. Several of the

approaches proposed here, such as blood chemistry (e.g., white

blood counts and H/L ratio), genomics and transcriptomics assays

(e.g., qPCR and RT-qPCR-assay respectively) as well as veterinary

treatment trials, require time but also high logistic and financial

supports, limiting their advancement. Because budgets allocated

worldwide to FP studies are currently quite limited, increasing local

and global collaborative projects should help share costs to reach

our scientific objectives in a reasonable timeframe. Finally, it is now

essential to standardize the protocols used, by choosing robust and

validated methods available in the literature (i.e., viral detection,

tumor scoring, sampling, storage and matrix processing) to achieve

powerful comparative studies at the global scale. As an ultimate
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step, it will contribute to improve treatment protocols and to

propose appropriate conservation measures at the local scale

(Mashkour et al., 2020; Jones et al., 2022).
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