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Abstract

In this note, we are interested in the asymptotic efficiency of Sobol’ indices esti-
mators. After recalling the basis of asymptotic efficiency, we compute the efficient
influence functions for Sobol’ indices in two different contexts: the Pick-Freeze and
the given-data settings.

1 Introduction
The use of complex computer models for the simulation and analysis of natural systems
from physics, engineering, and other fields is by now routine. These models usually depend
on many input variables, and it is thus crucial to understand which input parameter
or which set of input parameters have an influence on the output. This is the aim of
sensitivity analysis which has become an essential tool for system modeling and policy
support (see, e.g., [19]). Global sensitivity analysis methods consider the input vector
as random and propose a measure of influence of each subset of its components on the
output of interest. We refer to the seminal book [20] for an overview on global sensitivity
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analysis or to [6] for a synthesis of recent trends in the field. Among the different measures
of global sensitivity analysis, variance-based measures are probably the most commonly
used. The definition of the so-called Sobol’ indices, introduced in [17] and later revisited in
the framework of sensitivity analysis in [21, 22], is based on the Hoeffding decomposition of
the variance [12]. More precisely, for the output Y of a computer code Y = G(V1, . . . , Vp)
where the inputs Vi are assumed to be mutually independent, the Sobol’ index of Y with
respect to a subset of inputs X of dimension d is defined by

SX = Var(E[Y |X])
Var(Y ) = E[E[Y |X]2]− E[Y ]2

Var(Y ) .

Since in practice computing explicitly the theoretical value of SX is out of reach, one
of the main tasks in sensitivity analysis is to provide estimators of SX , with guaranteed
asymptotic properties such as consistency, rate of convergence, central limit theorem. In
the recent years, a myriad of different estimators has been proposed, see [6, Chapter 4]
for a complete review. To compare these different estimators, it is then relevant to define
a notion of “optimality” using a concept similar to the Cramér-Rao bound in parametric
statistics.
Optimality is assessed via the notion of asymptotic efficiency introduced in the seminal
works [11, 13] in a parametric setting and further extended to semi and non-parametric
models in [2, 16, 1] (see also [4, 23] for an extensive description of the theory of asymptotic
efficiency). For Sobol’ index inference specifically, the whole difficulty in showing asymp-
totic efficiency revolves around determining the so-called efficient influence function of the
parameter ψ = E[E[Y |X]2]. Once this is done, assessing the asymptotic efficiency of a
particular estimator boils down to checking if its first order asymptotic Taylor expansion
matches the empirical mean of the efficient influence function.
We tackle the issue of asymptotic efficiency in the two main frameworks related to Sobol’
index inference, namely the Pick-Freeze and the given-data settings. When the context
allows it, using the particular Pick-Freeze setting where two draws Y, Y X of the response
are available for each realization of the input X, considerably simplifies the estimation
process. The key to its success is to exploit a secondary expression of the parameter of
interest given by

ψ = E[E[Y |X]2] = E[Y Y X ]
making a simple empirical estimator of ψ available. By calculating the efficient influence
function, we show this natural estimator to be asymptotically efficient in this context.
The result remains valid under the sole assumption that the pair (Y, Y X) is exchangeable
(i.e. (Y, Y X) and (Y X , Y ) are identically distributed), thus providing a necessary and
sufficient condition for asymptotic efficiency of the parameter ψ = E[Y Y X ] in the semi-
parametric model of exchangeable bi-variate distributions.
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In most situations however, the practitioner cannot afford the luxury of choosing the
input’s values when generating the data. The most common scenario is to deal with inde-
pendent and identically distributed (i.i.d.) copies of (X, Y ), which constitutes a particular
case of given-data. In this situation, we determine the efficient influence function in the
non-parametric model on the distribution of the pair (X, Y ). Asymptotically efficient
estimators of the Sobol’ index have been proposed in the literature, although they usu-
ally require strong assumptions such as a low-dimensional input or an extensively smooth
non-parametric regression function x 7→ E[Y |X = x]. In practice, building an asymptoti-
cally efficient estimator that lives up to its theoretical properties on numerical simulations
(e.g. for high-dimensional inputs) remains somewhat of an open problem [7].
The article is organized as follows. In Section 2, we recall the definitions of efficient
influence function and asymptotic efficiency as well as the useful Lemma 2.5 from [23]
that links the two notions. Section 3 is devoted to the characterization of the efficient
influence functions for Sobol’ indices in the Pick-Freeze and in the given-data settings.

2 Asymptotic efficiency
Let us consider a set P of probability measures and a functional ψ : P → R. Suppose
that we observe an i.i.d. sample Z1, . . . , Zn from the distribution P ∈ P and we want to
estimate the parameter ψ(P ). The aim is to define a notion of asymptotic optimality for
an estimator of ψ(P ) based on the n-sample (Z1, . . . , Zn).
Inspired from [4, 23, 25], this section deals with asymptotic efficiency in semiparametric
models that is the analog of the efficiency theory developed in the parametric setting in
the sense of the Cramér-Rao bound (the minimal variance of an unbiased estimator of
the natural parameter in an exponential family).

Definition 2.1. A parametric submodel {Pt, t ∈ [0, ε), ε > 0} ⊆ P dominated by some
measure µ is differentiable in quadratic mean at t = 0 with score function g ∈ L2(P0) if

lim
t→0+

∫ (√ft −
√
f0

t
− 1

2g
√
f0

)2
dµ = 0 (1)

where ft = dPt/dµ for t ∈ [0, ε).

Letting the maps t 7→ Pt range over all collections of differentiable submodels with a
common root P0 = P ∈ P , we obtain a collection of score functions that defines the
tangent set at P denoted by ṖP ⊂ L2(P ).
A fundamental requirement to define asymptotic efficiency in semiparametric models is
the pathwise differentiability of the target functional ψ. The motivation is to proceed to
a distributional Taylor expansion of the parameter ψ(P ) around P along differentiable
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submodels. In the rest of the section, when considering a differentiable submodel {Pt, t ∈
[0, ε)}, it is always assumed implicitly that g is the score function, P0 = P and the map
t 7→ ψ(Pt) is differentiable at t = 0.

Definition 2.2. A function ψP ∈ L2(P ) is an influence function for estimating ψ(P ) if

lim
t→0+

ψ(Pt)− ψ(P )
t

= EP [ψP (Z)g(Z)]

for any differentiable submodel {Pt, t ∈ [0, ε)}. Moreover, the efficient influence function
ψ̃P is the unique influence function in the closure of the linear span of ṖP in L2(P ).

The notation EP [h(Z)] means that the expectation is taken with respect to P and thus
Z is assumed to be P -distributed. Remark that the efficient influence function can be
obtained as the orthogonal projection of any influence function onto lin ṖP (the closure
of the linear span of ṖP in L2(P )). Furthermore, it entails that EP [g(Z)] = 0 and
EP [g2(Z)] <∞ [24, Lemma 1.7].
For parametric models, the Cramer-Rao bound only applies to unbiased estimators which
is far too restrictive in the semiparametric context. The notion of regularity defined below
is used instead as a requirement for an estimator ψn built from an i.i.d. sample Z1, ..., Zn

to be asymptotically efficient.

Definition 2.3. An estimator ψ̂n is regular if there exists a probability distribution L
such that

√
n(ψ̂n − ψ(P1/

√
n)) L−→

n→∞
L (2)

for all differentiable submodels {Pt, t ∈ [0, ε)}, where for all n ∈ N, the sample Z1, ..., Zn

is drawn from P1/
√

n.

By [23, Theorem 25.20], for a regular estimator ψ̂n with centered Gaussian limit distribu-
tion L = N (0, σ2), the variance σ2 must satisfy

σ2 >
EP [ψP (Z)g(Z)]2

EP [g(Z)2] ,

for any submodel {Pt, t ∈ [0, ε)} ⊆ P and influence function ψP . This is the analog
of the Cramer-Rao inequality in parametric models. If ṖP is a linear subspace of L2(P )
(otherwise one must take its linear span lin ṖP instead for the following equation to hold),
taking the supremum over all submodels yields the optimized lower bound

σ2 > sup
g∈ṖP

EP [ψP (Z)g(Z)]2
EP [g(Z)2] = EP [ψ̃P (Z)2].

This leads to the very definition of asymptotic efficiency for a regular estimator.
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Definition 2.4. A regular estimator ψ̂n is asymptotically efficient at P if the limit dis-
tribution L in (2) is the centered Gaussian with minimal variance :

√
n(ψ̂n − ψ(P1/

√
n)) L−→

n→∞
N (0,EP [ψ̃P (Z)2]). (3)

Although the definition of asymptotic efficiency pertains to the limit distribution of an
estimator ψ̂n, the important Lemma 25.23 from [23] reveals that it is in fact a condition
in a, much stronger, probabilistic sense.

Lemma 2.5. A regular estimator ψ̂n is asymptotically efficient at P if and only if the
following expansion holds

ψ̂n = ψ(P ) + 1
n

n∑
i=1

ψ̃P (Zi) + oP(1/
√
n). (4)

When considering several parameters ψ1(P ), ..., ψk(P ) simultaneously, the previous re-
sult has strong implications which directly stem from Definition 2.2. Firstly, marginal
asymptotic efficiency of estimators ψ̂1

n, ..., ψ
k
n implies joint asymptotic efficiency, since the

efficient influence function of the vector parameter Ψ = (ψ1, ..., ψk) at P is the vector
Ψ̃P = (ψ̃1

P , ..., ψ̃
k
P ) of the marginal efficient influence functions. Secondly, asymptotic ef-

ficiency is stable through smooth transformations : if φ is a differentiable function from
Rk to R, the efficient influence function of the parameter φ ◦Ψ(P ) can be identified from
Definition 2.2 in view of

lim
t→0+

φ ◦Ψ(Pt)− φ ◦Ψ(P )
t

= EP

[(
∇φ(Ψ(P ))>Ψ̃P (Z)

)
g(Z)

]
,

where ∇ denotes the gradient operator. As a direct consequence of the Delta method,
the estimator φ(ψ̂1

n, ..., ψ̂
k
n) thus satisfies the condition of Lemma 2.5 ,

φ(ψ̂1
n, ..., ψ̂

k
n) = φ ◦Ψ(P ) + 1

n

n∑
i=1
∇φ(Ψ(P ))>Ψ̃P (Zi) + oP(1/

√
n),

proving it is asymptotically efficient.

How to show that an estimator of ψ(P ) is asymptotically efficient?

• Determine the tangent set ṖP .

• Compute the efficient influence function ψ̃P ∈ lin ṖP for estimating ψ(P ). This can
be done by showing that

∀g ∈ ṖP , lim
t→0+

ψ(Pt)− ψ(P )
t

= EP [ψ̃P (Z)g(Z)]

for some differentiable submodel Pt with score function g.
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• Find an asymptotically efficient estimator ψ̂n of ψ(P ). This is equivalent to showing
that it satisfies the following expansion by Lemma 2.5 :

ψ̂n = ψ(P ) + 1
n

n∑
i=1

ψ̃P (Zi) + oP(1/
√
n)

More generally, when the quantity of interest writes as φ(ψ1(P ), . . . , ψk(P )) where φ is
a differentiable function from Rk to R and asymptotically efficient estimators ψ̂1

n, ..., ψ̂
k
n

are available for each parameter, then φ(ψ̂1
n, ..., ψ̂

k
n) is asymptotically efficient to estimate

φ(ψ1(P ), . . . , ψk(P )), as a consequence of the two following theorems from [23] :

• Theorem 25.50 (efficiency in product spaces) ensures that (ψ̂1
n, ..., ψ̂

k
n) is (jointly)

asymptotically efficient for estimating (ψ1(P ), . . . , ψk(P )) ;

• Theorem 25.47 (efficiency and the Delta method) states that φ(ψ̂1
n, ..., ψ̂

k
n) verifies the

condition of Lemma 2.5 for asymptotic efficiency to estimate φ(ψ1(P ), . . . , ψk(P )).

3 Application to the estimation of Sobol’ indices
We consider the following model

Y = G(X,W )
for some measurable function G, where Y is a real-valued square integrable output and
X ∈ Rd for some d ∈ N∗ is a vector-valued input and W a random term independent
of X. In the context of sensibility analysis, an indicator commonly used to quantify the
impact of one or several inputs on the output Y is the so-called Sobol’ index. Then the
Sobol’ index with respect to X is defined by

SX = Var(E[Y |X])
Var(Y ) = E[E[Y |X]2]− E[Y ]2

E[Y 2]− E[Y ]2 . (5)

The difficult term to estimate is E[E[Y |X]2] since it involves a conditional expectation.
Two procedures then arise. The first one uses the Pick-Freeze trick consisting in rewriting
the variance of the conditional expectation in terms of a covariance. This procedure was
the first method introduced and theoretically studied. The second procedure makes use
of an non-parametric estimation of the regression function m(x) = E[Y |X = x] that
is challenging to obtain. Because these two settings rely on different definitions of the
underlying model and the parameter, the corresponding efficient influence functions are
different and computed separately. In particular, the tangent sets ṖP are specific to the
considered setting as proved in the following.
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3.1 Efficient influence function for the Pick-Freeze setting
As mentioned previously, to avoid a direct estimation of the conditional expectation, the
Pick-Freeze approach [9, 10, 14] relies on the rewriting:

E[E[Y |X]2] = E[Y Y X ],

where Y X = G(X,W ′) is obtained using a copy W ′ of W independent from X,W . Fur-
thermore, since Y and Y X are identically distributed, we have

E[Y ] = 1
2(E[Y ] + E[Y X ]) and E[Y 2] = 1

2(E[Y 2] + E[(Y X)2]).

Hence, given a particular sampling design where both Yi and Y X
i are observed for each

input value Xi for i = 1, . . . , n, the Pick-Freeze estimator of SX defined in Equation
(5) can be built naturally by replacing the expectations E[Y Y X ], E[Y ] and E[Y ]2 by
their empirical version using all the information: the n-sample of Y together with the
n-sample of Y X . As shown in the sequel, this natural estimator is asymptotically efficient
to estimate SX .
More precisely, let P be the set of all distributions of exchangeable random vectors (Y1, Y2)
in L2(R2) : (Y1, Y2) L= (Y2, Y1). It is clear a random vector of L2(R2) is in P if and only
if its cumulative distribution function F is symmetric:

F (y1, y2) = F (y2, y1) ∀(y1, y2) ∈ R2.

Let P be the distribution of (Y, Y X). We check that P ∈ P thanks to [14, Lemma 2.4].
The tangent set of P at P is given by:

ṖP = {g ∈ L2(P ) : EP [g(Y, Y X)] = 0 and g(y1, y2) = g(y2, y1),∀(y1, y2) ∈ R2}.

Indeed, for all P -square-integrable and symmetrical function g, the submodel {Pt, t > 0}
whose Radon-Nikodym densities with respect to P are given by

∀t > 0 , dPt

dP
(y1, y2) = c(t)

1 + e−2tg(y1,y2) with c(t) =
( ∫ 1

1 + e−2tg(y1,y2)dP (y1, y2)
)−1

has score g at t = 0 and clearly lies in P . Moreover, the convergence in L2(µ) of
(
√
ftn −

√
f0)/tn towards g

√
f0/2 with tn → 0+ as n→∞ (i.e. the differentiability in the

sense of Definition 2.1) implies the almost-sure convergence of a subsequence. Hence, the
exchangeability condition in this model implies that all score functions g are symmetrical
P -almost surely.
To determine the efficient influence function, it is sufficient to consider differentiable
submodels with a uniformly bounded score function g, since such functions are dense in
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ṖP with respect to the L2(P )-metric. Hence, we assume without loss of generality that g
is bounded, with ‖.‖∞ designating its supremum norm restricted to the support of P :

‖g‖∞ := sup
(y1,y2)∈supp(P )

|g(y1, y2)|.

Moreover, since all differentiable submodels {Pt, t ∈ [0, ε)} with score g lead to the same
Riesz-representation

lim
t→0+

ψ(Pt)− ψ(P )
t

= EP [ψ̃P (Y, Y X)g(Y, Y X)]

where ψ̃P ∈ ṖP is the efficient influence function, considering the simple submodels Pt =
(1+tg)P is sufficient to determine ψ̃. The boundedness of g guarantees that the submodel
Pt = (1 + tg)P is well defined for ε small enough.

Proposition 3.1 (Efficient influence function - Pick-Freeze [14]). If EP [(Y Y X)2] < ∞,
the efficient influence functions of EP [Y Y X ], EP [Y ], and EP [Y 2] at P are respectively
given by

(y1, y2) 7→ y1y2 − EP [Y Y X ],

(y1, y2) 7→ 1
2(y1 + y2)− EP [Y ],

(y1, y2) 7→ 1
2(y2

1 + y2
2)− EP [Y 2].

Proof of Proposition 3.1. For any bounded function g ∈ ṖP and Pt = (1 + tg)P , we have

EPt [Y Y X ]− EP [Y Y X ]
t

= EP [Y Y Xg(Y, Y X)] = EP

[
(Y Y X − EP [Y Y X ])g(Y, Y X)

]
.

Since the map (y1, y2) 7→ y1y2−EP [Y Y X ] lies in ṖP (i.e. it is symmetrical and P -square-
integrable by assumption), it is the efficient influence function for the parameter EP [Y Y X ].
Proceeding in the same way, we show that (y1, y2) 7→ y1 − EP [Y ] is an influence function
for the parameter EP [Y ], as is (y1, y2) 7→ y2 − EP [Y ] by exchangeability. We can thus
identify the efficient influence function

(y1, y2) 7→ y1 + y2

2 − EP [Y ]

as the only symmetrical influence function. The reasoning is the same for the third
parameter EP [Y 2].
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Proposition 3.2 (Asymptotically efficient estimation of SX - Pick-Freeze [14]). The
estimator SX

n,PF defined by

SX
n,PF =

1
n

∑n
i=1 YiY

X
i −

(
1

2n

∑n
i=1(Yi + Y X

i )
)2

1
2n

∑n
i=1(Y 2

i + (Y X
i )2)−

(
1

2n

∑n
i=1(Yi + Y X

i )
)2

is asymptotically efficient for estimating SX for P ∈ P.

Proof of Proposition 3.2. We proceed as explained in Section 2. Observe that

SX = φ(EP [Y Y X ],EP [Y ],EP [Y 2]) where φ(x, y, z) = x− y2

z − y2 .

By Lemma 2.5, the empirical estimators

1
2n

n∑
i=1

(Yi + Y X
i ) 1

2n

n∑
i=1

(Y 2
i + (Y X

i )2) and 1
n

n∑
i=1

YiY
X

i

are asymptotically efficient to estimate EP [Y ],EP [Y 2] and EP [Y Y X ] respectively. The
asymptotic efficiency of SX

n,PF follows from the differentiability of φ by Theorems 25.47
and 25.50 of [23], as explained in the end of Section 2.

3.2 Efficient influence function for the given-data setting
We now consider the given-data setting where we observe a sample (X1, Y1), . . . , (Xn, Yn)
drawn independently from some distribution P . The model P contains all the distri-
butions on Rd × R that are square integrable with respect to their second argument :
EP [Y 2] < ∞. In this model, the tangent set ṖP at P ∈ P is the maximal tangent set,
containing all P -square-integrable functions g with zero integral

ṖP = {g ∈ L2(P ) : EP [g(X, Y )] = 0}.

Indeed, for all P -square-integrable function g, the submodel {Pt, t > 0} whose Radon-
Nikodym densities with respect to P are given by

∀t > 0 , dPt

dP
(x, y) = c(t)

1 + e−2tg(x,y) with c(t) =
( ∫ 1

1 + e−2tg(x,y)dP (x, y)
)−1

has score g at t = 0 and clearly lies in P for all t > 0 in view of

EPt [Y 2] 6 c(t)EP [Y 2] <∞.
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It remains to determine the efficient influence functions of the three parameters P 7→
EP [Y ], P 7→ EP [Y 2] and P 7→ EP [EP [Y |X]2]. As discussed in Section 3.1, it is sufficient
for this purpose to consider the submodels of the form Pt = (1 + tg)P with g uniformly
bounded. Because the first two parameters are linear, they are particularly easy to deal
with, e.g.

EPt [Y ]− EP [Y ]
t

= EP [Y g(X, Y )] = EP

[
(Y − EP [Y ])g(X, Y )

]
.

We verify easily that the efficient influence functions of EP [Y ] and EP [Y 2] are respectively

(x, y) 7→ y − EP [Y ] and (x, y) 7→ y2 − EP [Y 2],

although the latter requires the additional condition EP [Y 4] < ∞ for it to lie in the
tangent set ṖP . The empirical means 1

n

∑n
i=1 Yi and 1

n

∑n
i=1 Y

2
i are thus proved to be

asymptotically efficient by Equation 4 in Lemma 2.5.
Regarding the estimation of ψ(P ) = EP [EP [Y |X]2], the efficient influence function has
been given (without proof) in [8]. In [5], the authors recover the efficient influence function
when X is one-dimensional and the distribution of (X, Y ) is absolutely continuous with
respect to the Lebesgue measure. We believe that their proof is still valid for a multidi-
mensional input X. For completeness, we here calculate the efficient influence function
in the general case.

Proposition 3.3 (Efficient influence function - given-data setting). If EP [Y 4] < ∞, the
efficient influence function of ψ(P ) = EP [EP [Y |X]2] at P is given by

(x, y) 7→ (2y −m(x))m(x)− ψ(P ) (6)

where m(x) = EP [Y |X = x].

Proof of Proposition 3.3. Let Pt = (1 + tg)P with g uniformly bounded. We recall that
the conditional expectation function of Y knowing X under Pt

mt : x 7→ EPt [Y |X = x]

satisfies
EPt [Y h(X)] = EPt [mt(X)h(X)] (7)

for all measurable function h : Rp → R such that EPt [|Y h(X)|] < +∞. From

ψ(Pt) := EPt [Y mt(X)] = EP [Y mt(X)] + tEP [Y mt(X)g(X, Y )],

we deduce
ψ(Pt)− ψ(P )

t
= EP

[
mt(X)−m(X)

t
Y
]

+ EP

[
Y mt(X)g(X, Y )

]
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recalling that EP [Y m(X)] = EP [m2(X)]. Taking h(x) = m(x) in (7) yields in particular

EP

[
Y m(X)

(
1 + tg(X, Y )

)]
= EP

[
mt(X)m(X)

(
1 + tg(X, Y )

)]
leading to

EP

[
mt(X)−m(X)

t
m(X)

]
= EP

[
(Y −mt(X))m(X)g(X, Y )

]
whence

ψ(Pt)− ψ(P )
t

= EP

[(
(Y −mt(X))m(X) + Y mt(X)

)
g(X, Y )

]
.

Using Lemma 3.4 below, we get∣∣∣∣ψ(Pt)− ψ(P )
t

− EP

[(
2Y −m(X)

)
m(X)g(X, Y )

]∣∣∣∣
=
∣∣∣∣EP

[
(mt(X)−m(X))(Y −m(X))g(X, Y )

]∣∣∣∣
6 ‖g‖∞

√
EP [(Y −m(X))2] ‖mt −m‖P −−−→

t→0+
0

Hence,
lim

t→0+

ψ(Pt)− ψ(P )
t

= EP

[(
(2Y −m(X))m(X)− ψ(P )

)
g(X, Y )

]
revealing (x, y) 7→ (2y −m(x))m(x)− ψ(P ) ∈ ṖP as the efficient influence function.

Lemma 3.4. Let Pt be a measure absolutely continuous with respect to P with Radon-
Nicodym density ft(x, y), (x, y) ∈ supp(P ) and such that

∫
y2dPt(x, y) < ∞. If ft con-

verges uniformly towards 1 as t→ 0+, then mt converges towards m in L2(P ) :

‖mt −m‖2
P :=

∫
(mt(x)−m(x))2dP (x, y) −−−→

t→0+
0.

Proof of Lemma 3.4. For t > 0 sufficiently small so that ft(x, y) > 1/2 for all (x, y) ∈
supp(P ), we have

‖mt‖2
P =

∫
m2

t (x)dP (x, y) 6 2
∫
m2

t (x)dPt(x, y) 6
∫
y2dPt(x, y) <∞,

guaranteeing that ‖mt −m‖P <∞ as t→ 0+. Moreover, remark that

‖mt −m‖2
P =

∫
(mt(x)−m(x))2(dPt − dP )(x, y) +

∫
(mt(x)−m(x))y (dPt − dP )(x, y)

6 ‖ft − 1‖∞
(
‖mt −m‖2

P + ‖mt −m‖P

√
EP [Y 2]

)

which concludes the proof.
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Asymptotically efficient estimators in the literature In [8], the authors consid-
ered a truncated version of ψ(P ) = EP [EP [Y |X]2]. To estimate ψ(P ), they first estimate
the regression function m by a kernel estimator and then use a one-step procedure to
improve the corresponding plug-in estimator. For a one-dimensional input X, an asymp-
totically efficient estimator of ψ(P ) that relies on a preliminary kernel estimator of the
input’s density was given in [5], while a simpler alternative approach based on ordered
statistics can be found in [15]. More recently, combining the approaches of [8] and mirror
transformations (see [3] and [18]), asymptotically efficient estimators of ψ(P ) are provided
in [7] for an input X of any dimension, under adequate regularity conditions.
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