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Adaptive Learning for Hybrid Visual Odometry
Ziming Liu, Student Member, IEEE, Ezio Malis, Member, IEEE, and Philippe Martinet, Member, IEEE

Abstract—Hybrid visual odometry methods achieve state-of-
the-art performance by fusing both data-based deep learning net-
works and model-based localization approaches. However, these
methods also suffer from deep learning domain gap problems,
which leads to an accuracy drop of the hybrid visual odometry
approach when new type of data is considered. This paper is the
first to explore a practical solution to this problem. Indeed, the
deep learning network in the hybrid visual odometry predicts the
stereo disparity with fixed searching space. However, the disparity
distribution is unbalanced in stereo images acquired in different
environments. We propose an adaptive network structure to
overcome this problem. Secondly, the model-based localization
module has a robust performance by online optimizing the
camera pose in test data, which motivates us to introduce test-
time training machine learning method for improving the data-
based part of the hybrid visual odometry model.

Index Terms—Deep Learning for Visual Perception, Visual
Learning, Computer Vision for Transportation

I. INTRODUCTION & BACKGROUND

AMONG the many algorithms for visual odometry, hybrid
visual odometry method has proven to be a successful

solution for localization [1], [2], [3], [4]. For these hybrid
visual odometry methods, there are three main approaches:
dense direct odometry [3], sparse feature-based odometry [2]
and sparse direct odometry [4], [5]. Hybrid visual odometry
combines a deep neural network that predicts the depth map of
the environment, and a model-based pose estimation module
that computes the camera pose [3]. Usually, in hybrid visual
odometry, the model-based localization module can realize
robust performance by online optimization on test data. How-
ever, the data-based part suffers from the domain gap problem
on different test datasets. To fix the domain gap and achieve a
better result on a new test dataset, the data-based model usually
requires to be trained again. This introduces more training
costs and labor costs for data annotations.

Depth estimation networks in hybrid visual odometry can be
optimized with supervised or unsupervised methods [6], [7],
[8], [3]. These supervised networks are trained with L1 or L2
photometric loss on the ground truth depth maps. From the
network structure, they can be grouped into monocular and
stereo networks. Firstly, the monocular network is a typical
regression model. various state-of-the-art foundation networks
are explored for monocular depth estimation, including convo-
lution networks, transformer networks [9], [10], [11]. Besides
the network structure, the network initialization also performs
a critical role for a monocular network [12], because monocu-
lar networks are learning knowledge from the data. In contrast,
stereo networks are learning stereo matching relations, which
is more reliable for different data domains. Firstly, 2D CNN
networks, e.g. DispNet [13], are used to regress disparity
similar to monocular networks [8]. Secondly, two-stage 2D-
3D CNN networks have more robust and accurate performance

[6], [14]. GCNet [14] proposes the important soft argmin
method for disparity regression. It is widely used in the follow-
ing works [6], [9]. PSMNet [6] further modified 2D encoder
and 3D matching netwroks with pyramid convolution structure
and cascade disparity regression. CascadeStereo [15] predicts
disparity map from coarse to fine with cascaded PSMNet [6]
or GWCNet [16]. The next disparity searching space is initial-
ized by the last disparity prediction. Thirdly, recurrent stereo
networks [17], [18], [7] achieve better accuracy, especially on
the high-resolution image, but taking more computation costs.
RAFTStereo [17] first builds a recurrent network based on
RAFT optical flow network. Then CREStereo [18] improve
it to a cascaded recurrent network. IGEVStereo [7] combines
the typical two-stage stereo network with the recurrent stereo
network. Although the recurrent stereo network has high
accuracy, the computation cost is much higher. Overall, two-
stage stereo network has a better balance on accuracy and cost.

Currently, stereo networks build the stereo cost volume
and compute disparity regression in a pre-defined disparity
searching space [6], [15]. Although these stereo networks have
shown impressive performance, they suffer from a common
problem: the disparity distributions are different when acquir-
ing stereo images in different environments. The unbalanced
disparity distribution in test datasets has been discussed [19].
This problem makes the pre-defined disparity searching space
hard to learn the disparity fast and well. Some previous works
[15], [9] have shown the advantage of adaptive disparity
distribution center. To be efficient, a monocular sub-network
is introduced to predict the initialized disparity distribution
center for the stereo matching network.

Furthermore, the domain gap between training and test data
also affects the performance of data-based model. The domain
gap can be solved by re-training on the target dataset or
unsupervised domain adaption method which is a lower cost
solution. Motivated by the model-based localization module in
hybrid visual odometry, which predicts the camera pose with
online optimization. A new unsupervised domain adaption
method, visual odometry test-time training (TTT), is proposed.
It is an online optimization method on the test dataset.
Test-Time Training has been explored on computer vision
tasks [20], [21], [22], [23], [24], [25]. Previous methods can
be grouped into two types. Firstly, the networks with main
task and auxiliary self-supervised task are jointly optimized.
For example, the image rotation prediction auxiliary task is
jointly trained with the image classification task in [20]. A
contrastive learning task [21], image reconstruction by masked
autoencoder [22] are used as an auxiliary self-supervised
task of test-time training. Secondly, Some test-time training
methods do not change the training loss function, instead of
using regularization methods in the testing time. For example,
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Fig. 1. Left: Training of the pre-trained depths. At this stage, the stereo depth network is trained with both supervised main task and self-supervised auxiliary
task on the image & disparity pairs (xi,di). Right: Process of Test-Time Training for visual odometry. At this stage, there are three steps, firstly, the network
is initialized with pre-trained parameters, then, the self-supervised auxiliary task updates the network for one iteration to obtain new network parameters θ ∗.
Finally, the TTT network θ ∗ is composed of the traditional dense direct visual odometry module to output camera pose p̂i.

TENT [25] minimizes the entropy of output distribution at
the test stage. MEMO [23] minimizes the entropy of different
augmentations. SHOT [24] proposes information maximiza-
tion regulation for source-free adaption. For the first kind of
test-time training, self-supervised task is the most important
part.

Among depth estimation tasks, self-supervised methods
have already been explored well. The self-supervised depth
estimation is based on two types of loss functions, including
the self-supervised stereo matching loss (L1 loss between
warped stereo image and reference image [26]) and temporal
matching loss (L1 loss between warped temporal image and
reference image [8]). Monodepth [26] is one of the earliest
self-supervised depth estimation methods with stereo matching
loss. Similarly, SfmLearner [27] realizes the self-supervised
training with temporal matching loss. More recently, the
combination methods of stereo matching loss and temporal
warping loss are widely used [8].

The main contributions are shown as follows:
• A new disparity-adaptive stereo network with a learnable

monocular initialization branch is proposed. It aims to
solve the disparity domain gap of different images.

• Test-time training for hybrid visual odometry is proposed.
It aims to solve the domain gap between training and test
data.

This paper is organized as follows. Section I describes the
motivation, background and contributions. Section II shows
the proposed method. The experiment results are shown in
Section III. Finally, Section IV concludes this paper.

II. THE PROPOSED APPROACH

This paper introduces a novel approach called adaptive
hybrid visual odometry which is based on the hybrid visual
odometry [3]. There are two adaptive aspects: adaptive dis-
parity prediction with a new network structure and adaptive
optimization with test-time training.

Firstly, to address the disparity distribution imbalance prob-
lem in different data domains, a new depth network is pro-
posed, outlined in Section II-A, which is pre-trained on a still
image dataset using both supervised depth estimation and self-
supervised stereo matching tasks, as illustrated in Fig. 1 (Left).

Secondly, domain adaption for localization is explored on
the visual odometry dataset. Visual odometry test-time training
with single-time online optimization is used to replace the re-
training on the target dataset. Test-Time Training strategy can
generalize the pre-trained hybrid visual odometry model to a
new data domain in an unsupervised way, as depicted in Fig. 1
(Right). Additional details are provided in Section II-B.

A. Stereo network with adaptive disparity

This section presents the proposed stereo network with
adaptive disparity searching space.

1) Baseline stereo network: The new network is built on
a two-stage deep stereo matching framework [6], [28]. Two-
stage stereo networks are composed of four modules: feature
extraction network, 4D stereo cost volume, stereo matching
network, and disparity regression layer. Feature extraction
network is usually a shallow 2D convolution network that
shares the same parameter for left and right images. Stereo
cost volume is a 4D volume, with Channel × Disparity ×
Height ×Width size. It is built by concatenating the left
image and the shifted right image, which is generated by
the pre-defined adaptive disparity searching space, across the
feature channel. Stereo matching network is usually a 3D
auto-encoder. Finally, a disparity regression layer predicts
the logistic probability over a pre-defined adaptive disparity
searching space. Disparity map is predicted by the weighted
sum of the probability and the search space. The pre-defined
disparity search with a disparity range of 0−192 is commonly
used in most public datasets [29], [30], [31].

2) Adaptive disparity searching space: In this paper, a
new stereo-matching network is proposed. It generates an
adaptive disparity searching space S̃ computed by a monocular
depth prediction branch which can predict disparity map D̂,
as illustrated in Fig. 2.

Firstly, adaptive searching space S̃ is obtained with pre-
dicted initial disparity map D̂ and bidirectional shifts ±R, as
shown in Eq. 1.

S̃= [D̂−R, ..., D̂−1, D̂, D̂+1, ..., D̂+R] (1)

where D̂ is the center of disparity distribution.
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Fig. 2. Structure of stereo network with adaptive disparity. Disparity
searching space is shown in disparity dimension. The values of disparity
searching space are computed using a monocular predicted disparity map
(e.g. D̂(p) = 22 ) and bidirectional shifts (e.g. ± 2 ). p is the pixel position.

Finally, values of S̃ will be truncated into zero if they are
negative, because disparity map should be positive in this task.

In contrast, pre-defined disparity searching space S is gen-
erated as follows. It is fixed for any disparity distribution.

S= [D0,D0 +1, ...,D0 +2R],D0 = 0 (2)

With the disparity searching space, raw stereo cost volume is
obtained by concatenating left feature maps and warped right
feature maps. The warped right feature maps are computed
by warping right feature maps using disparity searching space
S̃ which is a set of disparity maps. For the final disparity
prediction, it is obtained by computing the weighted sum
of S̃ and weights ∈ [0,1] learned by matching network. The
weighted sum is computed in the disparity dimension.

Additionally, the feature extractor network in two-stage
stereo network is replaced with general and lightweight en-
coder networks, such as ResNet [32] and MobileNetv2 [33].
New encoders are more efficient and effective.

B. Visual odometry test-time training

Firstly, the basic test-time training method [34] is intro-
duced. Then, basic test-time training is applied for hybrid
visual odometry. Furthermore, a sequential test-time training
visual odometry is proposed.

1) Standard test-time training : Test-Time Training is a
machine learning method originally proposed for improving
the accuracy of the image recognition problem. The standard
Test-Time Training method has a self-supervised learning
task to help the main task [34]. The network parameters
θ = (θ1, ..,θK) of the K layers can be divided into three
groups: backbone network θb, main classification head θm,
and self-supervised head θs, respectively. By incorporating
the self-supervised learning task, the objective function to
be minimized during joint optimization over training samples
(x1,y1), ...(xn,yn) is as follows:

min
θ

n

∑
i=1

lc(xi,yi;θm,θb)+ ls(xi;θs,θb) (3)

This is a multi-task learning pipeline, the losses of the
two tasks are added together. The gradients of the backbone
network are updated according to both of them.

In the stage of Test-Time Training, a single test sample x is
used to minimize the self-supervised loss. The parameters of

the backbone network and the self-supervised head are updated
as follows.

min
θ

ls(x;θs,θb) (4)

Then, classification prediction ŷ is obtained from the input
x with the updated network parameters θ ∗ = (θ ∗

b ,θm). Test-
time training method claims that the minimization over θb or
both θb,θs is almost the same [34]. The difference only exists
when doing more than one gradient optimization.

2) Test-time training for visual odometry: In this paper,
test-time training for visual odometry is different from the
image recognition problem. The proposed method has two
stages.

The first stage is the depth pre-training. The pre-trained
depth network is formulated as θ = (θ1, ...,θn). In the pre-
training stage, the main task is the supervised disparity (depth)
prediction. In this work, there is a self-supervised stereo
matching loss using the same disparity prediction d̂i. Assuming
the image and disparity pairs xi,di, the optimization formula-
tion for this stage is as follows.

min
θ

n

∑
i=1

lm(xi, d̂i,di;θ)+ ls(xi, d̂i;θ) (5)

In test-time training for visual odometry, the main task
is the supervised depth estimation with the sparse ground
truth annotations. The self-supervised auxiliary task is self-
supervised stereo matching.

In detail, the loss functions of the main task and self-
supervised auxiliary task are shown as follows.

lm(xi, d̂i,di;θ) = |d̂i −di|
ls(xi, d̂i;θ) = |W (xR

i , d̂
L
i )− xL

i |
(6)

Where xL
i ,x

R
i refer to the left and the right of the calibrated

stereo images. d̂L
i is the predicted disparity map of the left

view. W () is a stereo image-warping operation.
The second stage is test-time training on the visual odometry

videos v = (x1, ...,xn). The pre-trained parameters θ of the
depth network are updated as the following formulation.

min
θ

ls(vi, d̂i;θ) (7)

For new each video frame vi, the updated network parameters
are denoted as θ ∗. The predicted disparity d̂i is obtained with
parameters θ ∗. Same as the standard TTT, one gradient step is
performed. According to the previous works [34], the single-
iteration update does not suffer the difference between the
minimization over θb,θs and the minimization over θb.

3) Sequential test-time training for visual odometry: Given
the nature of the visual odometry task, a Sequential Test-
Time Training (SeqTTT) strategy is proposed to produce better
depth prior. For a video sequence, frames within a local
video clip share similar information and belong to close data
domains. Drawing inspiration from this, the optimization of
frame t in each short video clip ci is initialized using the
parameters θt−1 of the previous frame t−1, rather than the pre-
trained depth network parameters θ . Only a short video clip
satisfies the theoretical guarantee of test-time training. Longer
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video clips can result in significant differences between the
optimization goals in Eq. 7 and in Eq. 5.

III. EXPERIMENTS

A. Details

For the visual odometry experiments, the depth network
is pre-trained on two still-image datasets: KITTI Depth 1

and SceneFlow 2, and evaluated on KITTI odometry 3 and
VKITTI2 4. The image of KITTI Depth is cropped into
256×800. The image of SceneFlow is cropped to a resolution
of 320× 512. The cropping is aligned with the bottom for
the vertical dimension and with the center for the horizontal
dimension. For the depth map, only pixels with depth values
in the range of [1,100] are considered. In the ablation studies
of test-time training, ResNet18 [32] and MobileNetv2 [33] are
used on the KITTI Depth and SceneFlow datasets separately.
AdamW optimizer with a learning rate of 5e-6 is used to
perform Test-Time Training, while the same optimizer with
a learning rate of 1e-3 is used in the pre-training stage.
Experiments are conducted using Nvidia A40 GPU.

Depth metrics: rel sqr: relative square root error on each
pixel. rmse log: logarithm root mean squared error. Depth
accuracy: The percent of correct predictions. The pixel errors
lower than {1.25,1.252,1.253} are defined as correct predic-
tions. stereo disparity metrics: EPE(all): every pixel error on
all pixels. EPE(occ): every pixel error on stereo occlusion area.
MACs: Multiply–Accumulate Operations. Odometry metrics:
terr,rerr: KITTI sequential translation and rotation error. RPE:
relative pose error. ATE: total absolute trajectory error.

B. Stereo network with adaptive disparity

In this part, state-of-the-art results on real-world bench-
marks are shown to demonstrate the advantage of the new
depth network. As shown in Tab. I, this network can achieve
state-of-the-art results on KITTI depth Eigen split bench-
mark. Firstly, these results suggest that the stereo-based depth
estimation has a significant advantage compared with the
monocular depth estimation networks. Secondly, the proposed
network shows higher accuracy compared with the state-of-
the-art stereo depth estimation methods. Fig. 3 shows the
advantages of this work over the previous, especially on the
details of roadside objects.

Then, there are more ablation studies on SceneFlow dataset
[31]. This dataset is a larger-scale simulation dataset, which
provides dense ground truth disparity labels (Fig. 4) and
stereo occlusion labels to measure the predicted disparity
maps. Meanwhile, the simulation dataset covers more complex
scenarios. The dense disparity quality can be directly measured
with every pixel error (EPE).

1www.cvlibs.net/datasets/kitti/eval depth.php?benchmark=depth prediction
2lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
3www.cvlibs.net/datasets/kitti/eval odometry.php
4europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-

vkitti-2/

Method
Depth Error Depth Accuracy (%)

rel sqr rmse log < 1.25 < 1.252 < 1.253

Monocular network
Adabins[9] 0.1900 0.0880 96.4 99.5 99.9
iDisc [10] 0.1450 0.0770 97.7 99.7 99.9

URCDC-Depth [11] 0.1420 0.0760 97.7 99.7 99.9
SwinV2MIM [12] 0.1390 0.0750 97.7 99.8 100.0

Stereo Network
PSMNet [6] 0.0447 0.040 99.6 99.9 100.0

CascadePSM [15] 0.0542 0.042 99.7 99.9 100.0
CascadeGWC [15] 0.0695 0.048 99.5 99.9 99.9

IGEVStereo [7] 0.0600 0.041 99.6 99.9 99.9
This work 0.0405 0.036 99.8 100.0 100.0

TABLE I
DEPTH ESTIMATION RESULTS EVALUATED ON KITTI DEPTH (EIGEN

SPLIT) STILL IMAGE DATASET.

This work IGEV-Stereo

PSMNet Cascade PSMNet

Cascade GWCNet Ground truth

Fig. 3. Comparison of state-of-the-art stereo depth estimation results.

Model Encoder EPE(all) EPE(occlusion) MACs Params
PSMNet PSMNet Encoder [6] 2.58 7.38 776.33G 4.06M
PSMNet ResNet18 [32] 2.26 6.96 966.55G 1.57M
PSMNet MobileNetv2 [32] 2.36 7.16 517.97G 0.74M

TABLE II
EXPERIMENT RESULTS OF USING PRE-TRAINED GENERAL

LIGHT-WEIGHTED NETWORK. ∗ DENOTES THAT PSMNET DOES NOT USE
THE DEFAULT CASCADED HEAD.

Searching Space Encoder EPE(all) EPE(occlusion)
Pre-defined MobileNetv2 2.36 7.16
AdaSearch MobileNetv2 1.97 4.81
Pre-defined ResNet18 2.26 6.96
AdaSearch ResNet18 1.86 4.63
Pre-defined PSMNet Encoder 2.58 7.38
AdaSearch PSMNet Encoder 1.99 4.68

TABLE III
EXPERIMENT RESULTS OF ADAPTIVE DISPARITY SEARCHING SPACE.

1) Advanced encoder : In the proposed depth network, the
impact of the feature encoder network is analyzed. As shown
in Tab. II, the results of PSMNet [6] are compared by using
PSMNet Encoder and the other foundational networks, e.g.
ResNet18 [32], MobileNetv2 [33], which are more efficient.
The results are positive using the general encoder networks
[32], [33] to replace the original feature encoder in the two-
stage stereo network [6].

2) Adaptive disparity searching space: We present an
experiment that compares the proposed adaptive disparity
searching space (AdaSearch) method with the previous pre-
defined disparity searching space method [6], [14]. AdaSearch
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Fig. 4. Visualization of the improvement with adaptive adaptive disparity searching space using ResNet encoder.

Test set Training set T-T-T
Depth Error Metrics Depth Accuracy Metric(%) Camera Pose Error Metric(lower)

abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253 terr(%) rerr
(deg/100m) RPEtran (m) RPErot (deg)

KITTIOdometry09
(Video)K-Odom 0-8 ✗ 0.1519 4.4338 6.6678 0.2760 89.34 93.64 95.87 2.53 1.06 0.034 0.048
(Image)SenceFlow ✓ 0.0877 1.1358 3.9558 0.1679 93.21 97.04 98.38 3.56 2.40 0.044 0.059
(Image)KITTIDepth ✓ 0.0669 0.4872 3.3448 0.1515 93.83 97.09 98.49 2.01 1.35 0.018 0.041

KITTIOdometry10
(Video)K-Odom 0-8 ✗ 0.2079 5.7366 6.7805 0.3607 85.17 90.23 93.29 2.65 1.46 0.024 0.050
(Image)SenceFlow ✓ 0.1550 3.8829 4.4014 0.2294 90.60 95.25 97.15 2.31 1.52 0.028 0.048
(Image)KITTIDepth ✓ 0.0768 0.5115 2.8574 0.1692 92.41 96.25 98.08 2.01 1.32 0.023 0.045

VKTTI2-20
(Video)VKTTI2- 1,2,6,18 ✗ 0.7648 84.2296 62.1419 0.6397 78.75 84.38 87.56 13.90 3.75 0.066 0.061
(Image)SceneFLow ✓ 0.1132 18.9506 37.9738 0.2465 91.14 94.72 96.56 8.62 2.16 0.061 0.046
(Image)KITTIDepth ✓ 0.1227 20.6927 43.7050 0.2590 90.35 94.14 96.16 9.63 2.94 0.063 0.054

TABLE IV
RESULTS OF TRAIN-FROM-SCRATCH AND TEST-TIME TRAINING ON THE KITTI VISUAL ODOMETRY DATASET.

is realized with a monocular network. The results presented
in Tab. III demonstrate that the AdaSearch method signifi-
cantly outperforms the default method. These findings suggest
that learning disparity knowledge from monocular features is
useful. In addition, errors of stereo occlusion regions become
much lower, which suggests that this method can improve the
stereo disparity of difficult occlusion regions. Fig. 4 also shows
the improvement using adaptive disparity searching space. It
can solve the stereo occlusion problem well.

C. Test-time training V.S. Training on the target dataset

In this experiment, hybrid dense direct visual odometry [3]
is used. Baseline models are trained on target datasets, KITTI
odometry or VKITTI2. Test-time training models are pre-
trained on KITTI depth image dataset or SceneFlow simulation
dataset. Then, they are tested on the same test dataset. Finally,
the test-time training method outperforms the baseline in terms
of both odometry and depth results, as indicated in Table IV.
This suggested that the test-time training method can achieve
a good performance and save training costs.

Moreover, the results of simulation dataset (SceneFlow) are
also better than the baseline approach. This suggests that the
proposed method is robust and generalized even with a large
data domain.

D. Ablation studies

Additionally, to show the impact of test-time training
method, the results of three cases (test with pre-training,
image-level test-time training, and sequential test-time train-
ing) are compared on the KITTI odometry dataset. Firstly, the
efficiency of the proposed method is analyzed. Secondly, there
are experiments to explore the domain gap between image
data and video data. Thirdly, the domain gap between the
simulation data and real-world data is explored. Then, a more

detailed experiment is performed to find the suitable number
of video frames for updating sequential test-time training.

Test-time training Train from scratch
Online-Optim 56.9ms/f x 1591frames ✗

Offline-Training ✗ 0.1s/i x 40000 iters
Total training cost 91s 4020s

Depth/frame 18.8ms 15.5ms
Pose/frame 22.8ms 26.3ms

Total inference/frame 108.2ms 52.1ms

TABLE V
INFERENCE TIME AND TRAINING TIME COST ON KITTI ODOMETRY SEQ09

ON NVIDIA A40 GPU. THE TIME IS MEASURED USING A TWO-STAGE
DEPTH ESTIMATION NETWORK WITH MOBILENETV2 ENCODER [28].

1) Inference time and training cost: The inference time
and training cost are analyzed here. Tab. V suggests that
online optimization with test-time training method increase
the inference time. However, with this strategy, the total
training cost on the whole video sequence can be significantly
decreased. Meanwhile, the competitive accuracy and error
results on depth and camera pose can be found in Tab. IV.

2) Domain gap between image data and video data: There
are experiments (Tab. VI) to evaluate test-time training on the
KITTI odometry 11 video sequences.

These results demonstrate that utilizing test-time training
(TTT) leads to better depth prior and better pose estima-
tion results than the baseline. Furthermore, sequential TTT
outperforms the standard image-level TTT. However, it is
noteworthy that some depth metrics do not consistently show
better results than image-level TTT, this maybe because the
depth is evaluated with sparse Lidar depth annotations.

3) Domain gap between the simulation data and real-world
data: Here, a popular simulation dataset, SceneFlow, is used
as the pre-training dataset. the results on KITTI odometry
11 video sequences are depicted in Tab. VII. The results
suggest that the sequential TTT strategy also performs best
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SeqID TTT
Depth Error Metrics(lower) Depth Accuracy Metric(%)(higher) Camera Pose Error Metric(lower)

abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253 terr(%) rerr
(deg/100m) RPEtran (m) RPErot (deg)

00
✗ 0.0753 0.4788 3.2412 0.1730 92.35 96.16 97.88 3.56 1.52 0.035 0.065

TTT 0.0752 0.4773 3.2346 0.1728 92.37 96.16 97.88 3.52 1.50 0.035 0.064
SeqTTT 0.0752 0.4826 3.2153 0.1723 92.41 96.18 97.89 3.32 1.39 0.035 0.064

01
✗ 0.0912 1.5150 6.1106 0.2118 92.19 95.82 97.60 10.12 1.83 0.217 0.123

TTT 0.0911 1.5124 6.1000 0.2117 92.23 95.83 97.60 10.09 1.81 0.217 0.122
SeqTTT 0.0901 1.4851 6.0236 0.2109 92.41 95.83 97.59 9.96 1.78 0.217 0.121

02
✗ 0.0580 0.3114 2.6845 0.1184 95.81 98.23 99.16 4.05 2.20 0.063 0.062

TTT 0.0578 0.3088 2.6755 0.1182 95.83 98.24 99.16 3.97 2.15 0.063 0.062
SeqTTT 0.0572 0.2982 2.6403 0.1177 95.88 98.24 99.16 3.57 1.93 0.062 0.060

03
✗ 4.51 3.70 0.037 0.050

TTT No label available 4.42 3.64 0.037 0.050
SeqTTT 3.96 3.32 0.035 0.048

04
✗ 0.0693 0.5052 3.6008 0.1342 94.89 98.00 98.92 3.50 3.95 0.049 0.069

TTT 0.0689 0.5000 3.5820 0.1338 94.94 98.00 98.92 3.37 3.88 0.048 0.068
SeqTTT 0.0669 0.4767 3.4986 0.1319 95.14 98.02 98.92 2.64 3.54 0.044 0.063

05
✗ 0.0834 0.6121 3.5515 0.1873 90.87 95.15 97.39 4.46 1.83 0.030 0.049

TTT 0.0833 0.6118 3.5463 0.1872 90.89 95.15 97.39 4.41 1.81 0.030 0.049
SeqTTT 0.0833 0.6284 3.5379 0.1870 90.95 95.16 97.39 4.20 1.72 0.029 0.048

06
✗ 0.1009 1.5527 5.8067 0.2198 90.35 95.18 97.29 4.26 2.20 0.035 0.041

TTT 0.1005 1.5412 5.7804 0.2195 90.42 95.18 97.29 4.17 2.16 0.035 0.041
SeqTTT 0.0988 1.4892 5.6525 0.2186 90.72 95.16 97.28 3.64 1.88 0.034 0.039

07
✗ 0.0746 0.4762 3.1128 0.1704 92.35 95.96 97.81 2.86 1.57 0.024 0.046

TTT 0.0747 0.4810 3.1108 0.1704 92.36 95.96 97.81 2.82 1.56 0.024 0.046
SeqTTT 0.0760 0.5245 3.1198 0.1708 92.36 95.96 97.81 2.53 1.46 0.023 0.045

08
✗ 0.0848 0.7652 4.0976 0.1988 91.22 95.25 97.18 3.25 1.54 0.034 0.045

TTT 0.0846 0.7602 4.0841 0.1985 91.25 95.26 97.19 3.21 1.51 0.034 0.045
SeqTTT 0.0847 0.7527 4.0368 0.1980 91.33 95.27 97.19 2.99 1.40 0.034 0.044

09
✗ 0.0675 0.5040 3.3834 0.1520 93.79 97.08 98.48 2.47 1.82 0.034 0.048

TTT 0.0673 0.5004 3.3751 0.1518 93.80 97.09 98.48 2.44 1.79 0.034 0.048
SeqTTT 0.0669 0.4872 3.3448 0.1515 93.83 97.09 98.49 2.01 1.35 0.018 0.041

10
✗ 0.0771 0.4422 2.8378 0.1682 92.33 96.26 98.10 2.27 2.00 0.023 0.048

TTT 0.0769 0.4414 2.8302 0.1680 92.35 96.27 98.11 2.24 1.97 0.023 0.048
SeqTTT 0.0768 0.5115 2.8574 0.1692 92.41 96.25 98.08 2.01 1.32 0.023 0.045

TABLE VI
TEST-TIME TRAINING RESULTS WITH THE DEPTH NETWORK PRE-TRAINED ON THE KITTI DEPTH DATASET, AND EVALUATED ON THE KITTI ODOMETRY

VIDEOS. THE DEPTH ANNOTATIONS OF THE LIDAR DATA OF SEQUENCE 03 ARE MISSED.

seqID TTT Depth Error Metrics Depth Accuracy Metric Camera Pose Error Metric

abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253 terr(%) rerr
(deg/100m) RPEtran (m) RPErot (deg)

00
✗ 0.1658 4.9154 5.2438 0.2397 90.55 95.27 97.03 4.01 1.59 0.041 0.067

TTT 0.1442 3.7824 4.7039 0.2211 91.23 95.70 97.36 3.94 1.57 0.040 0.067
SeqTTT 0.1185 2.1272 4.2252 0.2164 91.20 95.54 97.23 3.66 1.55 0.039 0.068

01
✗ 0.1569 3.6756 8.0197 0.2750 87.84 93.90 96.35 10.94 2.31 0.241 0.144

TTT 0.1433 3.1990 7.7684 0.2608 88.76 94.35 96.64 10.42 2.20 0.232 0.139
SeqTTT 0.1224 2.5743 7.3465 0.2404 90.47 95.01 96.96 10.20 2.08 0.227 0.132

02
✗ 0.0920 1.3181 3.8623 0.1566 93.97 97.49 98.63 3.82 1.94 0.060 0.061

TTT 0.0809 0.9311 3.5089 0.1413 94.63 97.88 98.91 3.70 1.87 0.059 0.060
SeqTTT 0.0750 0.6905 3.2939 0.1329 95.04 98.06 99.01 3.40 1.73 0.058 0.060

03
✗ 3.58 2.10 0.036 0.048

TTT No label available 3.63 2.03 0.036 0.047
SeqTTT 3.30 1.78 0.034 0.047

04
✗ 0.1095 1.4876 4.8488 0.1761 91.34 96.51 98.01 1.71 3.36 0.046 0.065

TTT 0.0982 1.1318 4.5293 0.1639 92.08 96.98 98.38 1.83 3.29 0.045 0.061
SeqTTT 0.0959 1.0378 4.4151 0.1628 92.67 96.96 98.29 1.36 2.94 0.042 0.056

05
✗ 0.1651 4.5391 5.4327 0.2477 89.53 94.56 96.69 2.93 1.06 0.033 0.045

TTT 0.1459 3.5851 4.9031 0.2294 90.18 94.98 97.01 2.87 1.04 0.033 0.045
SeqTTT 0.1185 1.9678 4.3023 0.2159 90.44 95.08 97.10 2.70 1.05 0.030 0.044

06
✗ 0.2011 6.4907 7.5232 0.2796 87.71 94.08 96.45 2.48 0.83 0.044 0.036

TTT 0.1777 5.2747 7.0128 0.2604 88.58 94.59 96.83 2.15 0.84 0.042 0.038
SeqTTT 0.1496 3.7575 6.4927 0.2453 89.56 94.97 96.96 1.95 0.99 0.039 0.042

07
✗ 0.2100 7.2782 5.5129 0.2589 89.83 94.66 96.69 3.12 1.37 0.029 0.045

TTT 0.1864 6.1665 4.9813 0.2396 90.60 95.12 97.04 3.02 1.40 0.028 0.045
SeqTTT 0.1532 4.1315 4.4043 0.2252 91.03 95.31 97.18 2.75 1.36 0.025 0.044

08
✗ 0.2156 6.9627 6.6160 0.2932 87.86 93.33 95.60 3.01 1.14 0.038 0.044

TTT 0.1875 5.6046 6.0142 0.2701 88.83 94.01 96.14 2.91 1.11 0.038 0.044
SeqTTT 0.1505 3.4666 5.2479 0.2429 89.68 94.57 96.57 2.62 1.02 0.036 0.043

09
✗ 0.1154 2.3646 4.7140 0.1976 91.96 96.36 97.90 3.82 2.41 0.046 0.060

TTT 0.0994 1.6901 4.2581 0.1789 92.73 96.82 98.23 3.67 2.36 0.045 0.059
SeqTTT 0.0878 1.1359 3.9569 0.1680 93.21 97.04 98.38 3.56 2.40 0.044 0.059

10
✗ 0.2542 9.6267 6.0670 0.2936 88.90 93.93 96.08 2.43 1.61 0.032 0.050

TTT 0.2185 7.8458 5.4104 0.2674 89.91 94.67 96.66 2.38 1.51 0.030 0.049
SeqTTT 0.1550 3.8829 4.4014 0.2294 90.60 95.25 97.15 2.31 1.52 0.028 0.048

TABLE VII
TEST-TIME TRAINING RESULTS WITH THE DEPTH NETWORK PRE-TRAINED ON SIMULATION DATASET, SCENEFLOW.
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Trained on KITTI depth, tested on seq: 09 frame ID: 1543

Baseline Image TTT Seq TTT
Trained on SceneFlow, tested on seq: 06 frame ID: 170

Baseline Image TTT Seq TTT

Fig. 5. The visualization corresponding to experiments in Tab. VI and Tab. VII.
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Fig. 6. a: The ablation for the length of the sequential test-time training. b,c: Comparison with other methods on KITTI sequence 09 and 10

with the simulation data pre-training. And these results are also
competitive compared with the results using the pre-training
of real-world data in Tab. VI. The visual improvement of the
depth map can be identified in Fig. 5.

4) Sequential test-time training for every N frames: To sup-
port the theory analysis of the sequential Test-Time Training,
i.e. the video clip should keep a short length, there are exper-
iments to compare the visual odometry results (accumulated
Absolute Trajectory Error) with different video clip lengths in
sequential Test-Time Training. As Fig. 6 suggests, the lowest
visual odometry ATE is obtained when seqT T T re-initializes
the model parameter every 50 frames in KITTI odometry
dataset. Re-initializing network parameters with a longer clip
(> 50 frames) is worse as shown in green line.

E. Comparison with state-of-the-art visual odometry methods
To show the advanced performance of the proposed method,

it is compared with previous state-of-the-art methods, in-
cluding traditional model-based, full deep learning, and hy-
brid methods, as shown in Table VIII. The proposed visual
odometry method achieves competitive results compared to
the previous. Notably, the proposed method is not trained on
the KITTI odometry dataset, while the previous deep hybrid
methods [3], [2], [1] are trained on the sequence 00-08 of this
dataset, and their results are re-scaled with ground truth labels.

Method seq.9 seq.10
terr rerr terr rerr

model-based methods
ORBSLAM2-stereo [35] 0.85 0.26 0.56 0.24
DSO-stereo [36] 41.04 14.47 1.34 0.42
VISO2 [37] 18.06 1.25 26.10 3.26
Deep learning methods
SfmLearner [27] 11.32 4.07 15.25 4.06
DepthVOfeat [38] 11.89 3.60 12.82 3.41
SC-SfmLearner [39] 7.64 2.19 10.74 4.58
F2FPE [40] 2.36 1.06 3.00 1.28
hybrid methods
UnOS [1] 5.21 1.80 5.20 2.18
DFVO [2] 2.07 0.23 2.06 0.36
HDVO [3] 1.97 0.71 1.89 0.56
This work 0.81 0.44 1.54 0.73

TABLE VIII
COMPARISON WITH THE PREVIOUS METHODS USING KITTI METRICS
terr,rerr ON SEQ 09, 10 OF KITTI ODOMETRY VIDEO SEQUENCES. WE

ONLY USE HUBER LOSS FOR IMPROVING ODOMETRY RESULTS, WITHOUT
OTHER AUGMENTATIONS, E.G. LOOP CLOSURE, AND OTHER GLOBAL

OPTIMIZATION.

Additionally, the results on KITTI video sequences 09 and
10 are visualized and compared in Fig. 6 b,c. The proposed
method achieves the best trajectory predictions without extra
training on the target dataset and loop closure etc.
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IV. CONCLUSION

This paper explores the domain gap problem in hybrid
visual odometry methods. The disparity gap of different
images is solved by a new stereo network with adaptive
disparity. The domain gap across different datasets is solved
by the sequential test-time training on hybrid visual odometry.
There are significant improvements in the accuracy of depth
estimation and visual odometry. And state-of-the-art results
can be achieved without re-training on the new dataset. Future
investigations will focus on improving the efficiency of this
test-time training method in hybrid SLAM system.
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