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Abstract

This paper concerns the visual servoing with a
zooming camera. It presents a new visual servoing
approach which allows to position a camera, equipped
with a motorized zoom lens, with respect to an object
independently if the object is planar or not. Indeed,
planar objects are singular cases which cannot be han-
dled by previous intrinsics-free visual servoing. The
proposed method makes it possible to bring back a cam-
era to its reference position while zooming. The focal
length is initially controlled in order to keep the object
in the field of view of the camera during the servoing.
Then, the control of the focal length allows to solve the
singularity for planar objects.

1 Introduction

In order to achieve robotic tasks autonomously, it
is usually admitted that information provided by vi-
sion sensors is essential. Visual servoing is an effi-
cient method to control robots in unknown and dy-
namic environments. Typically, a robotic task consists
in positioning an eye-in-hand system with respect to
an observed object. Many methods have been pro-
posed in the last few years to perform this task [5] [7].
Among the different techniques developed, the most
used ones are based on the “teaching-by-showing” ap-
proach. This means that the camera is shown the
target view corresponding to a goal position of the
robot and a reference image is then stored. Starting
from another position, for which the target is in the
field of view of the camera, the robot is controlled in
order to reach the reference position. Obviously, this
approach can be used only if the camera has kept,
during the servoing, the same intrinsic parameters as
in the learning step. Indeed, if these internal parame-
ters change during the servoing or if the camera used
during the servoing is different from the one used at
the learning step, having an image that coincides with
the reference image does not imply that the robot
is brought back to the reference position. The con-
straining hypothesis of keeping invariable the camera
intrinsic parameters (which include the focal length)

limits the field of use of this visual servoing approach.
Indeed, the zoom mechanism can be used to have bet-
ter results in the visual control. Many studies [3] [1]
proved that zooming while servoing can have many
advantages since the precision of the positioning task
and the accuracy of the extraction of the primitives
are highly correlated with the resolution of the im-
age. Standard vision-based control techniques that
use the zoom mechanism during the servoing do not
permit the positioning of the robot independently on
the camera intrinsic parameters. Some of them need
to control the size of the target in the image [1] or
need partial information about the model of the tar-
get [12] in order to be able to control the focal length.
Others use the equivalence between the camera posi-
tioning and the zoom setting (which can be verified
under some conditions) in order to have at the con-
vergence an image that coincides with the reference
image without being back to reference position [6].
On the other hand, recent works [8] [9] have shown
that it is possible to position a camera (with eventu-
ally varying intrinsic parameters), with respect to a
non-planar object, given a reference image taken with
a completely different camera. Unfortunately, the pro-
posed methods do not work when the target is planar.
The aim of this paper is to eliminate the hypothesis
of non-planarity (which is very constraining) in or-
der to increase the versatility and enlarge the domain
of application of visual servoing techniques. First of
all, we will discuss why planar objects are particular
cases and why the method described in [9] does not
work with such objects. Then, a visual servoing con-
troller independent on the planarity of the target and
using a zooming camera is proposed. Furthermore,
we propose in this paper a simple focal length control
strategy that allows to keep the target in the field of
view of the camera during the servoing and recovers
at the convergence the focal length value of the refer-
ence image without having any previous information
about it. Experimental results using the new visual
servoing scheme are presented to demonstrate the effi-
ciency of the proposed method. The experiments are
done using a 3 degrees of freedom eye-in-hand system



with respect to a planar target and then to a non-
planar target. Despite the contribution of this paper
is mainly a theoretical development, the experiments
prove that the method can be used in practical appli-
cations.

2 Theoretical Background

2.1 Camera model

In this paper, we suppose that the absolute frame
coincides with the reference camera frame F∗. A 3D
point X is projected on a virtual plane parallel to the
plane (~x, ~y) to a point m∗:

m∗ = (x∗, y∗, 1) ∝
[

I3×3 03×1

]
X (1)

Suppose now that the current camera frame F is in a
different position. The 3D point X is projected to a
2D point m in the current camera frame:

m = (x, y, 1) ∝
[

R t
]
X (2)

where R is the rotation matrix and t the translation
vector between F and F∗. The information given by
a pinhole camera (which performs a perspective pro-
jection of 3D points) is not directly m but an image
point p = (u, v, 1):

p = Km (3)

where K is the camera internal parameter matrix:

K =




f s u0

0 rf v0

0 0 1


 (4)

f is the focal length in pixel, s represents the default
of orthogonality between the image frame axis, r is
the aspect ratio and (u0, v0) are the coordinates of
the principal point (in pixel).

2.2 Invariance to camera parameters

The vectors pi depend on the camera internal pa-
rameters. In order to control the robot regardless
to the camera used during the visual servoing, we
need information which is independent on these pa-
rameters. This is possible by using the projective
transformation proposed in [9]. Suppose that an ob-
ject composed by n points is observed by the cam-
era. These points are projected using equation (2) to
{m1,m2, . . . ,mn} in the current frame and the cor-
responding image points that can be obtained using
equation (3) are {p1,p2, . . . ,pn}. We define then two
matrices Sm and Sp as follows:

Sm =
1

n

n∑

i=1

mim
>

i and Sp =
1

n

n∑

i=1

pip
>

i

These positive symmetric matrices can be written us-
ing the Cholesky decomposition:

Sm = TmT>

m and Sp = Tp T>

p

where Tm and Tp are upper triangular matrices. The
two matrices are related by:

Tp = KTm (5)

Thus, it is possible to compute the invariant vectors
qi with the following projective transformation:

qi = T−1
p pi (6)

Note that the vectors qi are computed only from the
image coordinates. Using equations (5) and (6), we
can write:

qi = T−1
p pi = T−1

m K−1Kmi = T−1
m mi (7)

As a consequence, the vectors qi are independent on
the camera internal parameters. Similarly, from the
reference points {p∗

1,p
∗
2, . . . ,p

∗
n}, we can compute the

reference invariants vectors q∗

i . If q = q∗ then the
current camera frame F coincide with the reference
camera frame F∗.

2.3 Intrinsics-free visual servoing

The aim of visual servoing is to control a robot us-
ing images taken by an eye-in-hand camera in order to
bring the end-effector back to a reference position. In
the case of the intrinsics-free visual servoing [9], this
means that a vector q, which contains the informa-
tion of the current image, must converge to a vector
q∗, which contains the information of the reference
image. In the vector q, we have the coordinates of
the invariant points: q = (q1,q2, . . . ,qn). If we dif-
ferentiate the vector q, we obtain:

q̇ = Lqvc (8)

where Lq is the interaction matrix and vc is the cam-
era velocity. In order to make q converge to q∗, we
use the task function approach [10] which consists in
minimizing an error vector e:

e = L̂+
q (q − q∗) (9)

where L̂+
q is an estimation of the pseudo-inverse of Lq.

If we differentiate equation (9) and linearize around
the equilibrium point q = q∗, we obtain:

ė = L̂+
q Lqvc (10)

We can impose an exponential decrease of the task
function by choosing a control law as follows:

vc = −λe (11)



where λ is a positive scalar. Consequently, and using
equations (10) and (11), the closed-loop equation is:

ė = −λL̂+
q Lqe

It is well know from control theory [2] that if the ma-

trix L̂+
q Lq is definite positive then the task function e

converges to zero and so does the error q−q∗. Accord-
ing to [9], this visual servoing method is efficient when
the visual servoing is done with respect to non-planar
objects.

3 Problems with planar objects

Several problems have been observed with planar
objects. In fact, the visual servoing does not converge
to the reference position. We explain here the reasons
why this happens and we will propose in the next
section a solution for these problems. Suppose that
all the 3D points X i are on a plane. We have:

(
n∗> −d∗

)>
X i = 0

where n∗ = (a∗, b∗, c∗) is the normal vector to the
plane that contains the target and d∗ is the distance
between the plane and the center of projection. Con-
sequently, a vector mi in the current frame is related
to its homologous m∗

i in the reference frame by a ho-
mography H:

mi ∝ Hm∗

i (12)

where H = R + tn∗>/d∗. In the image space, the
current points are related to the reference points by a
homography G such that:

pi ∝ Gp∗

i (13)

Using equation (3), we have: G = KHK∗−1. This
particular relationship is valid only if all the points
are on the same plane.

3.1 Several solutions

One problem with planar targets is that it exists a
position F 6= F∗ such that qi = q∗

i . In fact, using
equation (3), the points of the reference image can be
written as follows: p∗

i = K∗m∗

i . Let pi be the points
of the image of the object taken in a position F . Using
equation (13), we can write: pi ∝ GK∗m∗

i . If G is an
upper triangular matrix, we have: pi ∝ K′m∗

i where
K′ = GK∗ is also an upper triangular matrix. Since
the vectors qi are camera-independent (see equation
(7)), we have qi = q∗

i despite F 6= F∗.

3.2 Particular cases

A solution for the previous problem is to make G

converge to I3×3. However, having G = I3×3 does
not imply H = I3×3 and KK∗−1 = I3×3. In fact, it

is possible to have : H = K−1K∗ 6= I3×3. There are
two solutions {R1, t1, n1} and {R2, t2, n2} verifying:

K−1K∗ = R1 + t1n
>

1 /d1 = R2 + t2n
>

2 /d2

Consequently, the visual servoing converges to the ref-
erence position only if n1 6= n∗ and n2 6= n∗. If
s = s∗ = 0 and r = r∗ the vector n1 = (0, 0, 1) is al-
ways a solution. This corresponds to the well known
fact that if the plane is perpendicular to the optic
axis of the camera in the reference position, zooming
and translating in the ~z direction are equivalent. The
visual servoing can not converge to the reference po-
sition in this case. In conclusion, it exists only one
particular case that can be easily avoided by learning
the reference image such that n∗ 6= n1 and n∗ 6= n2.

3.3 The interaction matrix is not full rank

Another problem with planar targets is that if all
the points are on the same plane then the interaction
matrix Lq in equation (8) is not a full rank matrix.
In this case, even if the task function e is null, we are
not sure to have q = q∗. It is possible to show that
the rank of the interaction matrix Lq is equal to 3.
In fact, the 1st column is null, the 2nd and the 3rd

column can be written as a linear combination of the
3 last columns. This matrix has the following form:

Lq =
[

0 αc6 −αc5 + βc4 c4 c5 c6

]
(14)

where c4, c5 and c6 are independent vectors, α =
a∗/d∗ and β = b∗/d∗. Consequently, 3 degrees of free-
dom remain undetermined. That is why, we need to
define new constraints for the servoing.

4 A unified control for planar and non-

planar targets

4.1 A Solution for the problems

In the previous section, we have shown that, in
order to be able to use this intrinsics-free method,
the camera parameters must converge to the values
they have in the reference image. This means that we
should have at the convergence: K = K∗. In general,
we do not have any information about the reference
parameters of the camera. However, we can use the
matrix Tp in order to make the matrix K converge
to K∗. When the servoing converges to the reference
position, we have R = I3×3 and t = 03×1. Thus, using
equation (2), we obtain: mi = m∗

i . Consequently, we
have Tm = T∗

m. Using equation (5), we can write:

TpT
∗−1
p = KK∗−1 (15)

The matrix Tp is an upper triangular matrix that can
be written under the following form:

Tp =




t11 t12 t13
0 t22 t23
0 0 1






We define a vector τ that contains the entries of the
matrix Tp: τ = (t11, t12, t13, t22, t23). Similarly, τ

∗

contains the entries of the matrix T∗
p. If τ = τ

∗, then
Tp = T∗

p and using (15) we have K = K∗. As a
conclusion, in order to bring back the camera to its
reference position, q must converge to q∗ and τ must
converge to τ

∗.

4.2 The robot control

We need a single control that takes in considera-
tion both cases: planar and non-planar target. The
proposed control uses the approach of primary and
secondary task [10]. The minimization of the task
function e is considered as a primary task and, under
the constraint of its realization, we will try to mini-
mize the vector τ − τ

∗. The new task function has
the following form:

ẽ = L̂+
q (q− q∗) + λt(I6×6 − L̂+

q L̂q)L̂
+
τ (τ − τ

∗) (16)

where λt is a positive scalar and L̂+
τ is an estimation of

the pseudo-inverse of the interaction matrix Lτ related
to the entries of the vector τ that verifies:

τ̇ = Lτvc (17)

If the target is non-planar, then L̂q is a full rank ma-

trix. Thus, the matrix I6×6 − L̂+
q L̂q is null, ẽ = e

and the control law is exactly the same as in equation
(11). On the contrary, the derivative of equation (16)
can be written locally (i.e. q ≈ q∗ and τ ≈ τ

∗) as:

˙̃e = L̂+
q q̇ + λt(I6×6 − L̂+

q L̂q)L̂
+
τ τ̇ (18)

If we replace q̇ and τ̇ using respectively equation (8)
and equation (17), we obtain:

˙̃e = L̂+
q Lqvc + λt(I6×6 − L̂+

q L̂q)L̂
+
τ Lτvc

= Wvc (19)

We can impose an exponential decrease of the task
function ẽ with ˙̃e = −λẽ where λ is a positive scalar.
The velocity of the camera vc is then :

vc = −λW−1ẽ (20)

4.3 A focal length control strategy

We control the focal length in order to have at the
convergence the same value as we had in the reference
image. When we differentiate (5), we obtain:

Ṫp = K̇Tm + KṪm

If we impose an exponential convergence of Tp to its

reference value : Ṫp = −λ
′

t(Tp − Tp
∗), where λ

′

t is a
positive scalar, we obtain:

K̇ = (Ṫp − KṪm)Tm
−1

= (−λ
′

t(Tp − Tp
∗) − KṪm)Tp

−1K (21)

where the matrix KṪm can be expressed using vc.
Since f = K(1, 1), the focal length control law is:

vf1 = K̇(1, 1) (22)

and K̇(1, 1) is computed from equation (21). Using
this control law, the focal length converges to its ref-
erence value without having any information about
it. We can also adopt a strategy for the control of the
zoom that makes it possible to keep all the points in
the field of view of the camera during the servoing.
The zoom is controlled in order to keep the nearest
point to the image borders in a given distance. The
distance δ between that nearest point and the border
is:

δ = mini(ui, vi, umax − ui, vmax − vi)

where umax and vmax are the image dimensions. We
control the zoom in order to have δ̇ = 0 when the
distance δ is under a given value δmin: ∂δ

∂t
|δ<δmin

≈ 0.
Using equation (4), we have, if δ = ui or δ = umax−ui:

∂δ

∂t
= ḟxi+fẋi+sẏi = 0 =⇒ vf2 =

−fẋi − sẏi

xi

(23)

if δ = vi or δ = vmax − vi, we have :

∂δ

∂t
= rḟyi + rfẏi = 0 =⇒ vf2 =

−fẏi

yi

(24)

Note that xi 6= 0 and yi 6= 0 since the point is close to
the image border. In order to have a focal velocity vf

verifying vf = vf1 when the points are far from the
image border and vf = vf2 when one of them is close
to a border, we use a weight function Φ continuous,
differentiable and verifying:

{
limδ→0 Φ(δ) = 0

Φ(δ) ≈ 1 when δmin ≤ δ

If we impose to the focal length velocity vf :

vf = Φ(δ)vf1 + (1 − Φ(δ))vf2 (25)

we obtain a control that makes it possible to recover
the reference focal length value with keeping all the
points in the field of view of the camera during the
servoing.

5 Experimental results

The visual servoing scheme proposed in this paper
has been tested on a 3 d.o.f. robot. It is a pan-tilt tur-
ret that can translate on a rail. The camera mounted
on this turret has a motorized zoom. The features
used here are corners obtained by the Harris detec-
tor [4] and tracked using the KLT algorithm [11]. In
the first experiment, we show that the new visual ser-
voing approach works even if the target is planar and
the camera is zooming. In the second experiment, we
show that the method works also when the target is
not planar.



5.1 Planar target

In the first experiment, the camera observes 7
coplanar points on a poster (see the red crosses in
Figure 1).

(a) (b) (c)

Figure 1: (a) Reference image, (b) Initial image, (c)
Points trajectory

After the reference image (Figure 1(a)) has been
learned and the depth distribution of the points has
been estimated, the robot is displaced to its initial
position (Figure 1(b)) and the zoom is changed.

100 200 300 400 500 600 700 800 900
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

iterations

v x (
m

/s
)

(a) Translation control

100 200 300 400 500 600 700 800 900
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

iterations

t x (
m

)

(b) Translation error

100 200 300 400 500 600 700 800 900
−1.5

−1

−0.5

0

0.5

1

iterations

ω
 (

de
g/

s)

ω
pan

ω
tilt

(c) Rotation control

100 200 300 400 500 600 700 800 900
−12

−10

−8

−6

−4

−2

0

2

4

6

8

iterations

pa
n/

til
t (

de
g)

pan
tilt

(d) Rotation error

100 200 300 400 500 600 700 800 900
−1

0

1

2

3

4

5

6

7

iterations

v f

(e) Focal length control
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Figure 2: Positioning with respect to a planar object.

The initial displacement is approximately 20 cm for

the translation, −10 deg for the pan and 6 deg for
the tilt. With this initial displacement, if we do not
zoom out, one point goes out of the field of view of
the camera, as shown with the dashed rectangle in
Figure 1(b). This is an illustrative case where a zoom
is necessary to have the whole target in the image.
The focal length changes then from 2758 pixels to
1671 pixels. Although a bad approximation of the
camera intrinsic parameters (f̂ = 600 pixels) is used,
the control law in this case is stable (Figures 2(a), (c)
and (e)) and the camera converges to the reference
position (Figures 2(b), (d) and (f)). This experiment
shows that the zoom control allows, firstly, to keep all
the points in the field of view of the camera during the
servoing (Figure 1(c)) and, secondly, f to converge to
f∗ (Figure 2(f)). The camera is back to its reference
position when all the entries of the vector τ (Figure
2(h)) converge to their reference values. The errors
in the invariant space (Figure 2(g)) converge also to
zero and the accuracy in the image is less than one
pixel. This experiment shows that the visual servoing
method described in this paper is efficient with planar
targets contrarily to the method proposed in [9].

5.2 Non-planar target

In the second experiment, the 7 points are on three
non coplanar posters (see Figure 3(a)).

(a) (b) (c)

Figure 3: (a) Reference image, (b) Initial image, (c)
Points trajectory

Again, the robot is displaced from its reference posi-
tion (Figure 1(a)) to its initial position (Figure 1(b)).
The displacement is approximately 20 cm for the
translation, −6 deg for the pan and 3.5 deg for the
tilt. One point goes out if we do not zoom out. That
is why the focal length changes from 2758 pixels to
1913 pixels in order to have the whole target in the
field of view of the camera. This experiment shows
that the control law is stable (Figures 4(a), (c) and
(e)) and the camera converges to the reference posi-
tion (Figures 4(b), (d) and (f)). At the convergence,
the error of translation is less than 1 mm and the error
of rotation is less than 0.05 deg. The zoom allows to
the camera to recover the reference value of the focal
length (Figure 4(f)). Figure 3(c) plots the trajectory
of the points in the image and shows that the points
go from their initial position to the final position and
remain in the field of view of the camera. The invari-
ant error converges to zero for all the points (Figure
4(g)) and all the entries of the vector τ converge to



their reference value (Figure 4(h)). The new visual
servoing scheme is then efficient with both planar and
non-planar objects.
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(c) Rotation control
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(e) Focal length control
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(f) Focal length error
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Figure 4: Positioning with respect to a non-planar
object while the camera is zooming.

6 Conclusion

In this paper, we have proposed an improvement
of visual servoing with varying focal length. The pro-
posed method makes it possible to position an eye-
in-hand zooming camera with respect to a planar or
a non-planar object given a reference image. At the
beginning, the zoom is used to have all the points in
the image. During the servoing, the points are kept
in the field of view of the camera by controlling the
focal length. At the convergence, the camera and the
focal length are back to their reference position.
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