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Visual servoing based on an analytical homography decomposition

Manuel Vargas and Ezio Malis

Abstract— This paper presents a new vision-based control
method for positioning a camera with respect to an unknown
planar object. Standard methods use non-linear state observers
based on homography decomposition. In the general case, there
are two possible solutions to the decomposition problem. Thus,
some additional “a priori” information must be used. In this
paper, we propose to use an analytical decomposition of the
homography matrix in order to define a new control objective
that allows to discard the false solution without any “a priori”
information. The stability of the control law has been proved.

I. INTRODUCTION

Visual servoing can be stated as a non-linear output
regulation problem [2]. The output is the image acquired
by a camera mounted on a dynamic system. The state of
the camera is thus accessible via a non-linear map. For this
reason, positioning tasks have been defined using the so-
called teach-by-showing technique [2]. The camera is moved
to a reference position and the corresponding reference image
is stored. Then, starting from a different camera position the
control objective is to move the camera such that the current
image will coincide to the reference one. In this paper, we
suppose that the observed object is a plane in the Cartesian
space. One solution to the control problem is to build a non-
linear observer of the state. This can be done using several
output measurements. The problem is that, when considering
real-time applications, we should process as few observations
as possible. In [3], [4], [6], [5] the authors have built a
non-linear state observer using additional information (the
normal to the plane, vanishing points, ...). In this case only
the current and the reference observations are needed. In
this paper, we intend to perform vision-based control without
knowing any a priori information. To do this we need more
observations. This can be done by moving the camera. If
we move the camera and the state is not observable we
may have some problems. For this reason, we propose in
this paper a different approach. We define a new control
objective in order to move the camera by keeping a bounded
error and in order to obtain the necessary information for the
state observer. The paper is organized as follows: Section II
gives the theoretical background. Section III describes the
proposed homography-based control strategy and its stability
conditions are established in Section IV. Section V describes
how to achieve the camera positioning task by switching
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control law. The control laws have been validated with
simulation results in Section VI.

II. THEORETICAL BACKGROUND

A. Notation and description of the vision system

We assume that the absolute frame coincides with the
reference camera frameF∗. We suppose that the observed
object is planar and composed by a set ofn 3D points,Pi =
(Xi, Yi, Zi) (see Figure 1). The normal and the distance to
the plane in the reference frame will be denoted withn∗

and d∗. A calibrated camera measures the reference image
homogeneous coordinatesm∗

i = (x∗
i , y

∗
i , 1) of the perspec-

tive projection of the 3D points:m∗
i = (Xi/Zi, Yi/Zi, 1).

The displacement between the reference and current camera
frameF is represented by the rotation matrixR and trans-
lation vectort. The current image homogeneous coordinates
mi = (xi, yi, 1) are given again by the perspective projection
of the 3D points in the current camera frame:mi ∝ RPi+t.
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Fig. 1. Desired and current camera frames and involved notation.

B. Vision-based control

We consider the control of the following nonlinear system:

ẋ = g(x,v) (1)

y = h(x,µ) (2)

where x ∈ SE(3) is the state (i.e. the camera pose),y is
the output of the camera andv is the control input (i.e.
the camera velocity). The output of the camera depends on
the state and on some parametersµ (e.g. the normal of
the plane,...). Letx∗ be the reference state of the camera.
Without loss of generality one can choosex∗ = e, wheree
is the identity element ofSE(3). Then, the reference output is



y∗ = h(x∗,µ). If we suppose that the camera displacement
is not too big, we can choose a state vectorx = (t, r),
wherer = tan( θ

2 )u is the chosen rotation parameterization
(u andθ are the axis and angle of rotation, respectively). The
rotation matrix can be written as a function of the vectorr

as follows:

R = I +
2

1 + ‖r‖2

(
[r]× + [r]2×

)
(3)

where the notation[r]× means for the skew-symmetric
matrix of a vectorr. The derivative of the state vectorx
is:

ẋ =

[
ṫ

ṙ

]
=

[
I −[t]×
0 Jω

] [
υ

ω

]
(4)

where:
Jω =

1

2

(
I − [r]× + r r⊤

)
(5)

and v = (υ,ω) is our input vector containing the velocity
of translationυ and the velocity of rotationω (see [9]).

C. Homography-based state observer with full information

In [6] a new class of visual servoing methods has been
proposed. It is based on the estimation of a (3×3) homog-
raphy matrixH. This matrix transforms the reference image
coordinates of a point into the corresponding coordinates in
the current image up to a scale factor:

m = αh Hm∗

This homography matrix can be written as a function of the
state of the camera:

H = γ (R +
t

d∗
n∗⊤) (6)

where the normalization scale factorγ is chosen in such
a way that the determinant of matrixH is unitary (i.e.
det(H) = 1): γ = −3

√
1 + n∗⊤R⊤t/d∗. An efficient real-

time algorithm for estimating the homography from raw
images has been proposed in [7]. Once the homography has
been estimated, we can extractR, t/d∗ andn∗ [1]:

H =⇒ {R, t/d∗, n∗}

Note that the translation is estimated up to a positive scalar
factor. Without loosing generality, we can supposed∗ = 1
and include this factor in the translation vector. On the
other hand, we will usen = n∗ for a simpler notation.
In [1], the homography is decomposed using a numerical
method (involving Singular Value Decomposition). In the
general case, there exist 4 solutions, two of them being the
”opposites” of the others:

Rtna = {Ra, ta,na} ; Rtna− = {Ra,−ta,−na} (7)

Rtnb = {Rb, tb,nb} ; Rtnb− = {Rb,−tb,−nb} (8)

These can be reduced to only two solutions applying the
constraint that all the reference points must be visible from
the camera (visibility constraint). Without loss of generality,
we will assume along the development that the two solutions
verifying this constraint areRtna andRtnb and that, among

them, Rtna is the ”true” solution. In practice, in order to
determine which one is the good solution, we generally
use an approximation of the normaln∗. Thus, having an
approximated parameter vectorµ̂ we build a non-linear state
observer:

x̂ = ϕ(y(x),y∗, µ̂)

III. A MODIFIED CONTROL OBJECTIVE

A control law based on the Cartesian error in position and
orientation is being developed. The error between the current
and desired camera poses is obtained from the homography
decomposition. Without any a priory knowledge about the
true normal to the plane, we are not able to discard one of
the two possible solutions as a false one. On the other hand,
contrarily to [1], we have found an analytic solution for the
homography decomposition problem. The analytic solution
has the great advantage of providing a deeper understanding
of the decomposition problem. For instance, it allows to
obtain the relations between the possible solutions of the
problem [9]:

tb =
‖ta‖

ρ
Ra

(
2na + R⊤

a ta

)
(9)

nb =
1

ρ

(
‖ta‖

2
2na +

2

‖ta‖
R⊤

a ta

)
(10)

rb =

[
(2 − n⊤

a ta) I + ta n⊤
a + na t⊤a

]
ra + (na× ta)

2 + n⊤
a ta + r⊤a (na× ta)

(11)
In these relations the sub-indexesa andb can be exchanged.
The coefficientsρ andν are:

ρ = ‖2ne + R⊤
e te‖ =

√
‖te‖2 + 2 ν > 1

ν = 2 (n⊤
e R⊤

e te + 1) > 0 ; e = {a, b}

It will be shown that a control law based on theaverage of
these two solutionscan be used, such that the system will
converge in such a way that it is always possible to discard
the false solution. Once the true solution has been identified,
the camera can be controlled using only this solution.

A. Camera control

The task function [10] to be minimized will be defined as
a translation and an orientation error:

e =

[
et

er

]
=

[
tm

rm

]

Being tm and rm the translation and orientation means,
respectively, computed as follows:

tm =
ta + tb

2
(12)

rm ⇐= Rm = Ra (R⊤
a Rb)

1/2 (13)

The rotation matrix,Rm, average ofRa and Rb, com-
puted in such way is defined as theRiemmanian mean of
two rotations(for more details, see [8]).



According to the relations between the true and false
solutions,rm can be obtained as:

rm =
ra + rh + ra × rh

1 − r⊤a rh
(14)

whererh describes a required intermediary rotation, related
to the true solution by means of:

rh =
ρ −

(
2 + n⊤

a t∗a
)

‖na × t∗a‖
2

(na × t∗a) (15)

wheret∗a = R⊤
a ta (derivation is detailed in [9]). We compute

the input control action from the defined task error:

v =

[
υ

ω

]
= −λ e (16)

whereλ is a positive scalar, tuning the closed-loop conver-
gence rate. The derivative of the task error is related to the
velocity screw, according to some interaction matrixL to be
determined:

ė = Lv

Giving the following closed-loop system:

ė = −λLe (17)

We are now interested in the computation and properties of
the interaction matrixL. We will identify the components of
this matrix as: [

ėt

ėr

]
=

[
L11 L12

L21 L22

] [
υ

ω

]

L11 = ∂et

∂ta
L12 = − ∂et

∂ta
[ta]× + ∂et

∂ra
Jω

L21 = ∂er

∂ta
L22 = −∂er

∂ta
[ta]× + ∂er

∂ra
Jω

(18)

Next, we present a very short description providing the
expressions of these sub-matrices.

B. Computation ofL11

The translation error has been defined in equation (12) as
the average of the two solutions for the translation vector.
L11 is then:

L11 =
∂et

∂ta
=

1

2

(
∂tb

∂ta
+ I

)

¿From (9), the expression of this matrix can be found:

L11 =
1

2

h

2µ1n
′

a
t
⊤

a
+ µ1tat

⊤

a
− 4µ2n

′

a
n
′

a

⊤
− 2µ2tan

′

a

⊤
+ µ3I

i

(19)
wheren′

a = Rana and the scalarsµi are:

µ1 =
1

ρ‖ta‖
− µ2 ; µ2 =

‖ta‖

ρ3
; µ3 =

‖ta‖

ρ
+ 1

(20)

C. Computation ofL12

For the computation ofL12, the Jacobian∂et

∂ra
is needed

(see (18)):
∂et

∂ra
=

1

2

∂tb

∂ra

Starting from this and after many cumbersome manipula-
tions, we conclude that this matrix can be written as [9]:

L12 = −[et]× (21)

D. Computation ofL21

Regarding to the interaction sub-matrix:

L21 =
∂er

∂ta

a rather involved expression has been obtained for it, and no
equivalent closed form has been found yet. Nevertheless, we
will see afterwards that we do not need to care about this
matrix, whatever its form and complexity.

E. Computation ofL22

We consider here as a starting point the time derivative of
er, which can be written as:

ėr = ṙm =
∂rm

∂rh
ṙh +

∂rm

∂ra
ṙa (22)

Developing this expression, and matching it with the follow-
ing one:

ṙm = L21 υ + L22 ω

L22 can be written as:

L22 =
∂rm

∂ra
Jω

Using relations (14) and (5) and after some reductions (see
again [9]), we get:

L22 =
1 + ‖rm‖2

4

(
I + R⊤

m

)
(23)

IV. STABILITY ANALYSIS

In this section, the stability of the control law presented
in the previous section is studied. First, the stability of the
translation error,et, is considered.

A. Stability in the translation erroret

In order to prove the convergence ofet to zero, the
following Lyapunov function candidate is proposed:

Vt =
1

2
e⊤t et

Its time derivative is:

V̇t =
d‖et‖

dt
= e⊤t ėt

The expression oḟet in terms of the components of the
interaction matrix is:

ėt = L11 υ + L12 ω

Using the form (21) forL12 and replacing the control inputs
υ andω using (16):

ėt = −λL11 et − λL12 er = −λL11 et + λ [et]× er

giving
V̇t = −λ e⊤t L11 et

As L11 is not, in general, a symmetric matrix, it is convenient
to write the previous expression as:

V̇t = −λ e⊤t S11 et (24)



beingS11 the symmetric part of matrixL11:

S11 =
L11 + L⊤

11

2

Then, the convergence ofet depends only on the positiveness
of matrix S11. Given the structure of matrixL11 (19), the
eigenvalues of its symmetric part can be easily computed,
being:

λ1 =
ρ + ‖ta‖

2 ρ
> 0

λ2 =
‖ta‖ + 1

2 ρ
+

1

2
+

t⊤a Rana

2 ρ ‖ta‖
> λ3

λ3 =
‖ta‖ − 1

2 ρ
+

1

2
+

t⊤a Rana

2 ρ ‖ta‖
≥ 0

The condition for the first eigenvalue is clear as we know that
ρ is positive. The second eigenvalue is greater than the third
one, as their difference isλ2 − λ3 = 1

ρ > 0. Finally, it can
be proved that the third eigenvalue is always non-negative
and it only becomes null in a particular configuration [9],
namely

R⊤
a ta

‖ta‖
= −na (25)

The geometric interpretation of this condition is shown in
the left drawing of Figure 2. In this figure, we can see that

na π

ta

F∗

F

na π

ta

tb

F∗

Fa

Fb

Fig. 2. Geometric configuration in whichL11 becomes singular.

ta, if expressed in the same frame asna, that is, frame
F∗, is parallel to the latter. According to relation (25), the
only possible configuration should be the one depicted in the
figure, that is, the current frame between the desired frame
and the object plane, so the translation vector points in the
opposite direction tona. However, it is easy to see that the
other configuration, when the current frame is behind the
desired frame is also possible. The reason is very simple,
if we make notice of the peculiar relation existing between
Rtna and Rtnb in the configuration described by (25). In
this particular case, (9)-(11) become:

tb = −ta ; nb = −na ; rb = ra (26)

This situation is depicted in the right-most drawing of
Figure 2, where the ”true” and ”false” solutions are shown.
During our developments, we have been assuming thatRtna

corresponds to the true solution, andRtnb to the false
one. However, in practice we assume there is no way of
distinguishing between them. This means that,Rtnb can be
the true solution, instead ofRtna. When this happens, we
are in the situation when the real solution for the current
frame is behind the desired one. Then we need to generalize
the geometric configuration (25) by this new one:

R⊤
a ta

‖ta‖
= ±na (27)

One further consideration, derived from the relations (26),
is that one of the two solutionsRtna, Rtnb will not verify
the visibility constraint in this configuration, as the normals
are pointing in opposite directions. Resuming our study
of V̇t (24) and according to the previous paragraphs, we
can state thaṫVt is always non-positive and it is null only
at the equilibrium point,et = 0. The reason is that the
only eigenvalue ofS11 that can be zero,λ3, only becomes
effectively zero when the relation (27) holds. We know that
in this configurationtb = −ta, what implies that the mean,
and hence the translation error, are null. As a conclusion
for et, it always converges to the equilibrium pointet = 0,
that coincides with the geometric configuration (27).

1) ‖ta‖ never increases using the mean-based control
law:

We need to complete the previous analysis to make sure
that, during the convergence ofet, the current camera frame
does not go away, at the risk of losing visibility of the object.
Recalling the expression:

ṫa = υ − [ta]× ω

we analyze if the time derivative of the norm ofta can be
positive:

Vta
=

1

2
‖ta‖

2 =⇒ V̇ta
= t⊤a ṫa = t⊤a υ

Using our mean-based control lawυ = −λ et:

V̇ta
= −λ t⊤a tm = −

λ

2
t⊤a (ta + tb) (28)

¿From relation (9) we can writetb as the product of a matrix
andta:

tb = Mta ; M =
1

ρ

(
2

‖ta‖
Ra na t⊤a + ‖ta‖ I

)

Using this expression in (28), we can write:

V̇ta
= −

λ

2
t⊤a Ata ; A = I + M

where the symmetric part of matrixA, denoted bySA, can
be introduced:

V̇ta
= −

λ

2
t⊤a SA ta

Computing the eigenvalues of matrixSA, we find out that
they are exactly double of the eigenvalues of matrixS11, for
which we concluded they were always positive, except at
the equilibrium point,et = 0, whereλ3 = 0. This confirms



that ‖ta‖ is always non-increasing using the proposed
mean-based control law.

B. Stability in the orientation errorer

We define the following Lyapunov function candidate:

Vr =
1

2
e⊤r er

being its time derivative:

V̇r =
d‖er‖

dt
= e⊤r ėr

The expression for the derivative ofer is:

ėr = L21 υ + L22 ω = −λL21 et − λL22 er

Considering thatet always converges to zero, as we have just
seen, the first addend goes to zero. This is why the particular
form of L21 does not matter, as said before. Regarding to
the second addend, the positiveness of matrixL22 has to be
proved. Even being simple, we can avoid it if we do not
considerL22 alone, but as part of the product:

L22 er = L22 rm

ReplacingL22 using (23) and considering that, asrm is in
the direction of the rotation axis ofRm, it does not change
under this rotation:Rm rm = rm, this product reduces to:

L22 rm =
1 + ‖rm‖2

2
rm

Thus, we obtain:

d‖er‖

dt
→ −λe⊤r L22 er = −λ

1 + ‖rm‖2

2
e⊤r er

Since this is always non-positive, the conclusion forer is
that it always converges toer = 0, that is,Ra = Rb = I.

C. Conclusions on the stability of the mean-based control

At this point, the conclusion for the stability of the com-
plete position-based control scheme is that global asymptotic
stability can be achieved using the mean of the true and
the false solutions. The only limitation is due to the use
of tan(θm/2) in rm, that may produce saturation as the
mean angleθm goes to±π. Finally, it must be noticed that
the achieved equilibrium point,e = 0, is not the desired
configuration in which the current camera frame coincides
with the desired one:

e = 0 ;

[
ta

ra

]
= 0

Instead, it corresponds to a line in the Cartesian space defined
by:

R⊤
a ta

‖ta‖
= ±na ; Ra = I (29)

e = 0 ⇒

[
ta

‖ta‖

ra

]
=

[
±na

0

]

That is, the current camera frame is properly oriented accord-
ing to the reference frame, but the translation error always

converges reaching a configuration parallel to the reference-
plane normal. This will be overcome using a switching
control law as we will see in the next section.

V. SWITCHING CONTROL LAW

As it has been shown in the previous sections, the mean-
based control law always takes the system to an equilibrium
where:

tb = −ta ; nb = −na ; Rb = Ra = I

This is not completely satisfactory, asta can be different
from zero, as would be required. Now, we want to improve
this control law so the desired equilibrium:

[
ta

ra

]
= 0 =⇒

{
ta = tb = 0

Ra = Rb = I
(30)

is reached (as we know that the normtb is always equal
to the norm ofta, both solutions must have simultaneously
null translation). As said before, in practice we choose two
solutions that verify the visibility constraint at the beginning
and use their average for controlling the system, until it
converges to a particular configuration in the Cartesian space
(29). During this convergence the true normalna does not
change, since the object does not move and the reference
frame,F∗, is also motionless. On the other hand, the false
normal, nb, will change from its original direction until it
becomes opposite tona. During this continuous evolution, it
is clear that, at some point,nb no longer verifies the visibility
constraint. This means that the control based on the average
of the two solutions drives the current frame in such a way
that it is always possible to detect the false solution, among
the two that verified the visibility constraint at the beginning.
Then, it could be possible to control the system from this
instant on, using just the true solution, that takes the system
to the desired equilibrium (30). According to this, a switching
control strategy can be proposed, in such a way that when
one of the two solutions comes out to be a false one, we
start making a smooth transition from the mean control to
the control using only the true solution. A smooth transition
is preferred to immediately discarding the false solution,in
order to avoid any abrupt changes in the evolution of the
control signals. Then, we can replace the average control
law (12)-(13) by a weighted-average control law:





tm =

αa ta + αb tb

2
rm ⇐= Rm = Ra (R⊤

a Rb)
αb
2

The weighting coefficientsαa andαb can be defined accord-
ing to an exponentially decreasing time-function:

f(t) = e−λf (t−t⊥) (31)

beingαa = 2−f(t) andαb = f(t). The proposed switching
strategy can also be replaced by a more complex one [11],
[12].



VI. SIMULATION RESULTS

A. Mean-based control

We have validated the proposed control laws with the
simulation depicted in Figure 3. The initial orientation error
is 36 degrees and the scalarλ used in the control law (16)
is chosenλ = 1. We can notice in the figure that, as
expected,ta does not converge to zero. In particular, as in
the experimentna = [0, 0, 1]⊤, we can see that only the third
component ofta is different from zero at the equilibrium.
At the convergence we obtainnb = −na so we know which
is the true solution. Thus, we can switch the control law in
order to achieve the positioning task.
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Fig. 3. Simulation experiment using the mean of true and false solutions.

B. Switching control

The second simulation shows the performance of the
switching control strategy (see Figure 4). In particular, the
control system starts switching at the 14th iteration sincethe
visibility constraint allows to find which is the true normal
even before the convergence of the mean-based control law.
The chosen value for the switching-rate parameter isλf =
0.25. It has been implemented as a discrete-time switching,
as (t − t⊥) in (31) has been replaced by(k − k⊥), being
k the current iteration number andk⊥ the iteration number
when the false solution was detected. As expected, it can
be seen that the system converges to the equilibrium (the
rotation and translation errors go to zero) where the desired
camera pose is reached.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new method for the
vision-based control of a camera observing a planar object.
The task of positioning the camera with respect to the plane
cannot be achieved without any additional information due
to the existence of two possible solutions in the homography
decomposition problem. Taking advantage of a new analytic
formulation for this decomposition problem, we have been

able to prove the stability of a control law which moves
the camera so that it enables to find the true solution of
the homography decomposition problem. Then, a switching
control law has been proposed to accomplish the positioning
task. Future work will be focused on the study of the effects
of camera calibration errors on the proposed vision-based
control.
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Fig. 4. Simulation experiment using switching control.
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