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Abstract

In this paper we propose a new approach for visual-
servoing with respect to a set of 3D straight lines.
The main difference with respect to previous ap-
proaches is that the new scheme can be used with
a zooming camera or even if the reference image has
been learned with a different camera. The zoom is
particularly useful in order to keep the visual features
in the camera field of view and/or to bound their size
in the image reducing the influence of noise on fea-
tures extraction. Experiments with a zooming camera
have validated the vision-based control law.

1 Introduction

Visual servoing is a flexible technique to position an
eye-in-hand camera with respect to an object for
manipulation or inspection. Most of vision-based
approaches [4] consider interest points as available
visual features of the observed objects. On the
other hand, man-made environments and objects of-
ten have richer geometrical primitives like for exam-
ple straight lines. It is therefore of great interest to
study how it is possible to position an eye-in-hand
camera with respect to a set of straight lines. Only
few works have extended the vision-based control to
straight lines as for example [1, 2, 9] in the case of
a single camera and [3] in the case of stereo vision.
In this paper, we focus on vision-based robot control
using a single camera mounted on the end-effector.
When a 3D model of the scene is not available,
eye-in-hand visual servoing techniques are based on
a “teaching-by-showing” approach. With this ap-
proach, the robot is moved to a goal position (i.e.
the reference position) and the camera is shown a
set of 3D lines (i.e. the reference view). After the
camera has been moved, any of the visual servoing
schemes proposed in [1, 2, 9] can be used to reposition
the camera with respect to the set of lines. For all
schemes if the visual features currently observed in
the image coincide with the features extracted from
the reference image, the camera is back to the refer-
ence position with respect to the object. Whatever is
the visual servoing method used to achieve the task,

that will be true if and only if the camera intrin-
sic parameters at the convergence are the same pa-
rameters of the camera used for learning. Indeed, if
the camera used during the servoing is different from
the camera used to learn the reference image (or the
camera intrinsic parameters have changed) the po-
sition of the camera with respect to the object will
be completely different from the reference position.
The objective of this paper is to extend the basic
concepts of the visual servoing scheme proposed in
[6] using points as visual features, to the positioning
of an eye-in-hand camera with respect to a set of 3D
straight lines. In [6], the versatility of the teaching-
by-showing technique has been extended to the case
when different cameras are used for learning the ref-
erence image and for servoing. Indeed, intrinsic pa-
rameters may significantly vary during the life of the
vision system and/or they can be changed intention-
ally when using zooming cameras. If so, with current
visual servoing techniques the reference image must
be shown again. In some applications, learning again
the reference image could be very difficult. On the
other hand, the visual servoing technique proposed
in [6] allows us to learn the reference image once and
for all. In [6] three non collinear points are selected
in order to build a change of projective coordinates.
This change of projective coordinates defines a new
projective space which is invariant to camera intrin-
sic parameters. However, applying the theory de-
veloped in [6] is not straightforward since straight
lines and points are not dual in the 3D space. While
three non collinear points always define an unique
plane, this is not true when we consider any three
non-parallel straight lines in the 3D space. As a con-
sequence, a different change of projective coordinates
must be defined in the case of straight lines. In this
paper, we show how to build the invariant space and
we propose a control law based on the task function
approach [8]. The visual servoing scheme proposed
in this paper is called intrinsics-free since it does not
depend on camera internal parameters. Thus, con-
trarily to previous approaches not only we do not
suppose that the camera is calibrated but also we can
suppose that the camera intrinsic parameters are not
fixed and the camera can zoom during the servoing.



2 Theoretical background

Let C be the center and π the plane of projection. A
3D point is projected to the point with homogeneous
coordinates m = (x, y, 1) (see Figure 1(a)).
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(a) Projection of a point
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(b) Projection of a line

Figure 1: Projection of 3D features onto a plane.

A pinhole camera perform the perspective projection
of 3D geometric features. An image point with ho-
mogeneous coordinates p = (u, v, 1) measured in the
image is:

p = K m (1)

where K is a non-singular upper triangular matrix
containing the camera intrinsics parameters:

K =



f s u0

0 f r v0
0 0 1




where f is the focal length in pixels, s is the skew,
r is the aspect ratio, u0 and v0 are coordinates of
the principal point in pixels. A 3D line projects
onto plane π to a 2D line with coordinates h =
(cos(θ), sin(θ),−ρ) (see Figure 1(b)). A point m be-
longs to the straight line if and only if:

h>m = cos(θ) x+ sin(θ) y − ρ = 0 (2)

The same straight line measured in the image can
be represented by its homogeneous coordinates g =
(a, b, c). An image point p = (u, v, 1) belongs to the
line if and only if:

g>p = a u+ b v + c = 0 (3)

Plugging equation (1) into equation (3) we obtain:

g>K m = h>m = 0 (4)

This means that the homogeneous coordinates of the
straight line measured in the image are:

g = η K−>h (5)

where η 6= 0 is an arbitrary scalar factor. In order to
have an unique representation of the straight line in
the image, it is therefore necessary to normalize the
coordinates of g by fixing the scalar factor. Let us
suppose that it is possible to choose η such that:

η = α(K) β(h) (6)

We will show in Section 4 how it is possible to choose
a normalization which verify this hypothesis.

3 Invariance to camera parameters

In this section we show how it is possible to obtain
from the straight lines extracted in the image some
measures which are invariant to camera intrinsic pa-
rameters. Suppose that we extract n (with n > 3)
different lines from the image and that the lines are
not all parallel and not all coplanar in the 3D space.
Consider the following positive symmetric matrix:

Sg =
n∑

i=1

gig
>
i

using equations (5) and (6) , this matrix can be writ-
ten as:

Sg =
n∑

i=1

gig
>
i =

n∑

i=1

η2
i K

−>hih
>
i K−1

= α2(K)K−>

(
n∑

i=1

β2
i (hi)hih

>
i

)
K−1 (7)

Note that it is extremely important to suppose that
η can be written as in equation (6) in order to fac-
tor out from the sum the scalar depending only on
camera intrinsic parameters. Let Sh be the following
positive symmetric matrix which does not depend on
camera intrinsic parameters:

Sh =
n∑

i=1

β2
i (hi)hih

>
i =



σ1 σ2 σ4

σ2 σ3 σ5

σ4 σ5 σ6


 (8)

Let σ = (σ1, σ2, σ3, σ4, σ5, σ6) a (6× 1) vector given
in the Appendix containing the entries of Sh. The
matrix Sh can be factored, using a Cholesky decom-
position, as follows:

Sh = ThT
>
h (9)

where Th is the following lower triangular matrix:

Th =



τ1 0 0
τ2 τ3 0
τ4 τ5 τ6




Let τ = (τ1, τ2, τ3, τ4, τ5, τ6) be a (6× 1) vector con-
taining the entries of Th. The vector τ given in the
Appendix is a function of σ. If we factorize the ma-
trix Sg using the Cholesky decomposition we obtain:

Sg = TgT
>
g (10)

Then, from equations (7), (9) and (10) we obtain:

Tg = α(K)K−>Th (11)

The matrix Tg, measured from equation (10), can
be used to define a change of projective coordinates.
Consider the lines in the transformed space:

l = T−1
g g (12)



It is easy to prove that the line l is independent
on camera intrinsic parameters. Indeed, from equa-
tions (3) and (11) we obtain:

l = T−1
g g =

η

α(K)
T−>

h K>K−>h = β(h)T−>
h h

(13)
The expression of the scalar β(h) is obtained from
the normalization of the homogeneous coordinates g

of the straight line, as shown in the next section.

4 Normalization of the line coordinates

As already mentioned, it is extremely important to
normalize. From equation (3), we obtain the:



a
b
c


 = η




1
f
cos θ

1
fr

sin θ − s
f2r

cos θ

−ρ− v0

fr
sin θ + sv0−fru0

f2r
cos θ




(14)
The normalization of the homogeneous coordinates
can be obtained by fixing arbitrarily one of them
or by imposing one constraints. For example, by
setting ‖g‖ =

√
a2 + b2 + c2 = 1. Unfortunately,

using this constraint the scalar η can not be written

as in equation (6) since η =

√
(h>K−1K−>h)

−1
. A

first possible normalization is obtained by fixing one
of the coordinates to 1:

{
a = 1 if a 6= 0
b = 1 if a = 0

Thus, η can be decomposed as follows:
{

η = f 1
cos(θ) ⇒ α(K) = f, β(h) = 1

cos(θ) if a 6= 0

η = fr 1
sin(θ) ⇒ α(K) = fr, β(h) = 1

sin(θ) if a = 0

With this normalization one must be careful to check
if a = 0 (i.e. the straight line is parallel to the −→u
axis). In order to avoid the possible numerical insta-
bility one can choose to compute the matrix Sh by
using only lines which are not parallel to the −→u axis.
A second possible normalization can be obtained if
we can suppose that the skew is s = 0 and aspect ra-
tio is r = 1. Indeed, for most of commercial camera,
it is generally a very good approximation to suppose
that the retinal axes are orthogonal (s = 0) and that
the pixels are squares (r = 1). In that case, one
can normalize the homogeneous coordinates of the
straight line by setting a2 + b2 = 1. Thus, the scalar
factor is:

η = f ⇒ α(K) = f, β(h) = 1 (15)

For the sake of simplicity, we consider from now that
s = 0 and r = 1 and we use the normalization given
in equation (15). The experimental results given in
Section 6 show that it is a very good approximation
for the camera we have used.

5 Control of the 6 d.o.f. of the robot

Let t and R be respectively the translation and the
rotation between the reference camera frame F∗ and
the current camera frame F . Let r = θu be the
(3×1) vector containing the axis of rotation u and
the angle of rotation θ (0 ≤ θ < 2π). Then, ξ = (t, r)
is a (6×1) vector containing global coordinates of an
open subset S ⊂ R3 × SO(3). Suppose that a refer-
ence image of the scene, corresponding to the refer-
ence position ξ∗ = 0 has been stored in a previous
learning step. The control of the camera is achieved
by stacking all the reference lines in a (3n×1) vec-
tor s∗(ξ∗) = (l∗1, l

∗
2, · · · , l∗n). Similarly, the lines ob-

served in the current image are stacked in the (3n×1)
vector s(ξ) = (l1, l2, · · · , ln). If s(ξ) = s∗(ξ∗) then
ξ = ξ∗ and the camera is back to the reference posi-
tion whatever the camera intrinsic parameters. The
derivative of vector s is:

ṡ = L v (16)

where the (3n×6) matrix L is called the interaction
matrix and v = (ν,ω) the velocity of the camera.
The interaction matrix is obtained by stacking to-
gether all the (3×6) interaction matrices correspond-
ing to a single line:

L = (L1;L2; ...;Ln)

where l̇i = Li v. The derivative of the line li is:

l̇i =
β̇(hi)

β(hi)
li + β(hi)

dT−1
h

dt
hi + β(hi)T

−1
h ḣi (17)

From equation (15), we obtain β(hi) = 1 and conse-
quently β̇(hi) = 0. Note also that:

dT−1
h

dt
= −T−1

h

dTh

dt
T−1

h

thus equation (17) can be written as follows:

l̇i = T−1
h

(
ḣi −

dTh

dt
li

)

Since Th is a function of vector τ , we can write:

dTh(τ )

dt
li = F(li) τ̇

where li = (l1i, l2i, l3i):

F(li) =



l1i 0 0 0 0 0
0 l1i l2i 0 0 0
0 0 0 l1i l2i l3i




The vector τ is a function of σ, thus:

τ̇ = J σ̇



where J = ∂τ/∂σ is the Jacobian matrix. Instead
of computing directly the matrix J it is easier to
compute the inverse Jacobian J−1 = ∂σ/∂τ :

∂σ

∂τ
=




2 τ1 0 0 0 0 0

τ2 τ1 0 0 0 0

0 2 τ2 2 τ3 0 0 0

τ4 0 0 τ1 0 0

0 τ4 τ5 τ2 τ3 0

0 0 0 2 τ4 2 τ5 2 τ6




Thus, the Jacobian is obtained as J =
(
∂σ
∂τ

)−1
. The

derivative of vector σ is related to the derivative of
all lines hi (i = 1, 2, ..., n):

σ̇ =

n∑

i=1

∂σ

∂hi

ḣi (18)

The derivative of the homogeneous coordinates of a
line is related to the velocity of the camera by the
following relationship:

ḣ = H v

where, after setting sθ = sin(θ) and cθ = cos(θ):

H =




−γ cθ sθ,−γ s2θ, γ ρ sθ, ρ cθ sθ, ρ s2θ, sθ
γ c2θ, γ cθ sθ,−γ ρ cθ,−ρ c2θ,−ρ cθ sθ,−cθ
−κ cθ,−κ sθ, κ ρ,−(1 + ρ2) sθ, (1 + ρ2) cθ, 0




where, if π = (n1, n2, n3,−d) are the homogeneous
coordinates of one of the two planes defining the line
h in the 3D space, then γ = (n1 sθ − n2 cθ)/d and
κ = (n1 ρ cθ+n2 ρ sθ+n3)/d (see [2] for more details).
Thus, equation (18) can also be written as:

σ̇ = B v

where B =
∑n

i=1
∂σ
∂hi

Hi. Finally, the interaction ma-
trix relative to the straight line li is:

Li = T−1
h (Hi − Fi JB)

This matrix depends on the planes distribution π =
(π1,π2, ...,πn) (similarly to the interaction matrix
of the image-based visual servoing [2]) and on the
camera intrinsic parameters K(t) which can eventu-
ally vary during the servoing. In order to control
the camera, we can use the task function approach
[8] which has already been validated for the image-
based visual servoing in [2]. Consider the following
(6×1) task function:

e = L̂+(s− s∗) (19)

where L̂+ is the pseudo-inverse of an approximation
of L (since K and π are unknown only approxima-

tions K̂ and π̂ are used to compute the interaction

matrix). Despite we use only approximations K̂ and
π̂, the control law is stable as it will be shown by
the experimental results. We are currently working
to the analysis of the robustness domain as done in
[5] in the case of feature points. Differentiating equa-
tion (19) we obtain:

ė = Av (20)

where the (3n×6) matrix A is called the Jacobian of
the task. In order to control the movement of the
camera we can use the following control law:

v = −λe (21)

where λ is a positive scalar tuning the speed of the
convergence. Using this control law, the closed-loop
equation is:

ė = −λAe

It is well known from control theory [8] that if A > 0
then the task function e converge to zero. Thus,
if ‖s − s∗‖ is sufficiently small and the interaction
matrix L is full rank then e = 0 implies s = s∗.
The local asymptotic stability of the system can be
proved considering the linearized system:

ė = −λA(ξ∗)e

where A(ξ∗) = L̂+(ξ∗)L(ξ∗). The system is lo-
cally stable if A(ξ∗) > 0 since in that case A(ξ∗)
has eigenvalues with positive real part. However, to
prove the local asymptotic convergence of e to zero,
we need also to show that s − s∗ never belongs to
Ker(Ĵ+). This means that it exists a neighborhood

U of ξ∗ such that e = L̂+(ξ∗)(s − s∗) 6= 0, ∀ξ ∈ U
(i.e. e = 0 only if s(ξ) = s∗). Let us suppose that
s(ξ) 6= s∗ and therefore ξ 6= ξ∗ = 0. The Taylor
development of s(ξ) in a neighborhood of ξ∗ = 0 is:

s− s∗ = L(ξ∗) ξ +O2(ξ) (22)

Multiplying by ξT L̂+(ξ∗) (where ξT L̂+(ξ∗) 6= 0

since ξ 6= 0 and L̂+(ξ∗) is full rank) both sides of
equation (22) we obtain:

ξT L̂+(ξ∗)(s− s∗) = ξT L̂+(ξ∗)L(ξ∗)ξ +O3(ξ)

remember that if A = L̂+(ξ∗)L(ξ∗) > 0 then
ξTAξ ≥ 2σ‖ξ‖2, where σ > 0 is the minimum sin-
gular value of the positive definite matrix A + AT .
If L̂+(ξ∗)(s− s∗) = 0 then:

0 ≥ 2σ‖ξ‖2 +O3(ξ)

that means:
‖ξ‖2 ≤ |O3(ξ)|

which is impossible since, by definition of O3(ξ), it
exists a neighborhood of ξ∗ in which:

‖ξ‖2 > |O3(ξ)|
Therefore, e = L̂+(ξ∗)(s−s∗) 6= 0 in a neighborhood
of ξ∗ and the system is locally asymptotically stable.



6 Experimental results

The visual servoing scheme proposed in the paper has
been tested on the 3 d.o.f. system Argés at INRIA
Sophia-Antipolis. The Argés monocular system is an
experimental platform used to develop active vision
algorithms. The hardware is made of:

• a Computer controlled CCD Camera Acom1
with a f=5.9 to 47.2 mm zoom-lens, motor
iris, numerical auto-focus, white balance, plus
rs232C and video interface;

• a Pan-tilt turret, from RobotSoft, with resolu-
tion of 3.0 minutes of arcs, a 4 lbs capacity and a
speed up to 300 deg/sec, using constant current
bipolar motor drives, via a rs232C interface;

• a linear degree of freedom, from CharlyRobot,
with a resolution of 0.1 mm, using a slow screw
driven control;

6.1 Stationary zooming camera

To test whether the theory presented in the paper is
a reasonable approximation it is important to prove
the invariance of spaceQ to changes in camera intrin-
sic parameters. In this experiment, the focal length
of the stationary camera changes continuously ap-
proximatively from 2250 pixels to 1550 pixels. The
corresponding initial and final images are given in
Figure 2(a) and (b). For each image, 8 lines (cor-
responding to the 4 borders of the 2 rectangles) are
extracted. The first image (corresponding to the im-
age in Figure 2(a)) is chosen as the reference image.

(a) Initial Image (b) Final Image
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(d) Image 4

Figure 2: Experiment using a zooming camera.
The focal length changes continuously approxima-
tively from 2250 pixels to 1550 pixels.

We prove the invariance to camera intrinsic parame-
ters using the normalization of equation (15). A line
in the image has coordinates (cos(ψi), sin(ψi), νi).
Figure 2(c) shows that the global error (i.e. the
sum of the errors (ψi − ψ∗

i )
2 + (νi − ν∗i )

2 ∀i ∈
{1, 2, ..., 8}) in the image space increase while the
camera is zooming. When considering the coordi-
nates (cos(φi), sin(φi), µi) of the lines li in the invari-
ant space, we can observe in Figures 2(d) that the
global error (i.e. the sum of the errors (φi − φ∗i )

2 +
(µi − µ∗i )2 ∀i ∈ {1, 2, ..., 8}) in the invariant space is
not only close to zero but also practically constant.
This means that the model with three parameters
(i.e. s = 0 and r = 1) is a very good approximation
for our camera. Obviously, the error is not exactly
null because of noise in features extraction. This ex-
periment proves that even if the camera is zooming,
the error in the invariant space remain constant (ex-
cept for noise). Thus, one can control the camera
directly in the invariant space as it is shown in the
next experiment.

6.2 Intrinsics-free visual servoing

We consider the positioning task of the eye-in-hand
camera with respect to a set of 8 straight lines. The
reference image (see Figure 3(a)) is learned with a
focal length f∗ = 1364 pixels. Then, the camera
is moved to its initial position. The initial displace-
ment is tx = 140 mm for the linear degree of freedom,
rx = 3 degree and ry = 3 degrees. At the initial po-
sition, the camera zoom in and the focal length is
changed to f = 1671 pixels. The corresponding ini-
tial image is given in Figure 3(b). The focal length of
the camera is fixed during the servoing (in this exper-
iment, the camera does not zoom). However, it is dif-
ferent from the reference focal length. Thus, despite
the camera can be repositioned, the final image will
be different from the reference one. Finally, since the
camera parameters are unknown we use in the con-
trol law a very bad approximation of the focal length
f̂ = 700 and we suppose that the principal point is
in the center of the image. During the servoing, the
lines are tracked using the algorithm proposed in [7].
The control law is plotted in Figures 3(e) and (f).

Despite the camera internal parameters K̂ and the
plane distribution π̂ are not exactly known, the con-
trol law is stable and converges. The error in the
invariant space (Figure 3(b)) is zeroed (except for
noise) and the camera is back to the reference posi-
tion (i.e. the translational and rotational errors in
Figures 3(g) and (h) converge to zero with an accu-
racy of 1 mm and 0.1 degrees). While the straight
lines observed at the convergence are different from
the reference lines (i.e. the error in the image does
not converge to zero as shown in Figure 3(d)), the
final and reference lines measured in the invariant



space coincide (except for noise).

(a) Reference image (b) Initial image
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Figure 3: Intrinsics-free visual servoing.

7 Conclusion

The intrinsics-free visual servoing approach proposed
in the paper can be used to position a eye-in-hand
camera with respect to a set of 3D straight lines even
if the reference image has been learned with differ-
ent camera intrinsic parameters. The same approach
can be used with a zooming camera in order to en-
large the camera field of view and/or to bound the
size of the objects in the image. We are currently
improving the visual servoing approach with an ef-
fective strategy to control the zoom of the camera.
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Appendix

The entries of matrix Sh are the entries of vector σ:

σ1 =

n∑

i=1

β2
i (hi)h

2
1i σ2 =

n∑

i=1

β2
i (hi)h1i h2i

σ3 =

n∑

i=1

β2
i (hi)h

2
2i σ4 =

n∑

i=1

β2
i (hi)h1i h3i

σ5 =
n∑

i=1

β2
i (hi)h2i h3i σ6 =

n∑

i=1

β2
i (hi)h

2
3i

The vector τ is a function of σ:

τ1 =
√
σ1, τ2 =

1√
σ1

σ2, τ3 =
1√
σ1

√
σ1σ3 − σ2

2

τ4 =
1√
σ1

σ4, τ5 =
1√
σ1

√
(σ1σ5 − σ4σ2)2

σ1σ3 − σ2
2

τ6 =
1√
σ1

√
σ1σ6 − σ2

4 −
(σ1σ5 − σ4σ2)2

σ1σ3 − σ2
2

Conversely, σ can be written as a function of τ :

σ1 = τ2
1 , σ2 = τ1τ2 , σ3 = τ2

2 + τ2
3

σ4 = τ1τ4 , σ5 = τ2τ4 + τ3τ5 , σ6 = τ2
4 + τ2

5 + τ2
6
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