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Abstract— This work proposes a new vision-based framework
to control a robot within model-free large-scale scenes, where
the desired pose has never been attained beforehand. Thus, the
desired image is not available. It is important to remark that
existing visual servoing techniques cannot be applied in this
context. The rigid, unknown scene (i.e. the metric model is also
not available) is represented as a collection of planar regions,
which may leave the field-of-view continuously as the robot moves
toward its distant goal. Hence, a novel approach to detect new
planes that enter the field-of-view, which is robust to large camera
calibration errors, is then deployed here. In fact, it is well-known
that representing the scene as composed by planes, the estimation
processes are improved in terms of accuracy, stability, and rate
of convergence. This Extended 3D vision-based control technique
is also based on an efficient second-order method for plane-based
tracking and pose reconstruction. The framework is validated by
using simulated data with artificially created scenes as well as
with real images, and accurate navigation tasks are shown.

I. INTRODUCTION

The use of visual information to control dynamic systems
in closed loop has been widely deployed during the last
decade. Indeed, several vision-based controllers have been
proposed by the robotics community. In any case however,
the control objective of visual servoing systems is to drive
the robot from an initial pose to a reference (desired) pose,
by using appropriate information extracted from image data.
Generally, those systems are designed such that the initial
pose is considered to be in a neighborhood of the desired
one. The present work is different from the previous ones in
many aspects. First of all, it is focused on the control of a
single camera over large-scale scenes where the desired pose
has never been attained by the robot before (see Fig. 1). Thus,
the desired image to be acquired is not available. In addition,
it is dealt here with unknown scenes, i.e. the metric model
of the scene is also not available a priori. Hence, it is not
possible to render the desired image. Nevertheless, a model-
free pose-based visual servoing can be envisaged in this case.
There exist various visual servoing strategies where the control
error is defined in the Cartesian space. As for the case of
model-based approaches, the reader is referred to e.g. [1].
Concerning the model-free schemes, for example the methods
proposed in [2], [3] and [4], the authors use the current and
the desired images in order to recover the epipolar geometry
that relates those images. Indeed, the translation and rotation
motions can be derived from such information. However,
besides the need of the desired image, the strategy proposed
in [2] may not be the most adequate one when the scene is
planar since the required essential matrix is degenerate. In

contrast, the approach devised here copes with planar scenes
indistinguishably from other scenes. With respect to [3], also
besides the need of the desired image, the authors assume
that sufficient information is available in the images so that
the homography at the infinity can be recovered, which is not
a trivial issue. The visual servoing approach proposed here is
more related to the work accomplished in [4] and [5], where an
unknown, unstructured scene is considered as well. However,
the former work requires the desired image and, albeit in
the latter one there is no need of the desired image, it also
relies on a non-planar scene. In fact, it is well-known that
representing the scene as composed by planes, the estimation
processes are improved in terms of accuracy, stability, and
rate of convergence [6]. In this case, the number of planes
to be considered in the entire scene can be viewed as a
trade-off between accuracy and computational load. Hence, the
unknown scene is represented in this work as a collection of
planar regions, which may leave the field-of-view continuously
as the robot moves toward its distant goal. Thus, complex
strategies to deal with the visibility constraints are not required
at all. In fact, the unknown desired image may not have
anything in common with the initial one, but the desired
Cartesian path may still be followed accordingly. The proposed
Extended 3D (E-3D) vision-based control framework relies
mainly on two key techniques: on a novel approach to detect
new planes in the image as the robot evolves, so that the known
planes may leave the field-of-view; and on an efficient second-
order method for plane-based tracking and pose reconstruction.
In addition, the proposed approach is based on a hybrid
strategy that combines image features and image templates,
so that the sensitivity of pose-based techniques with respect
to image measurement errors is drastically minimized. The
proposed approach is also different from other vision-based
SLAM techniques, whose majority of works do not control
the robot. For example, the scheme conceived in [7], besides
not controlling the camera, it assumes that small image patches
are observations of planar regions, and whose normal vector is
initially assigned to a “best guess” orientation. With respect to
the plane detection algorithm used here, besides its robustness
against large camera calibration errors, a closed-form solution
to determine the normal vector is presented. In addition, the
necessary and sufficient conditions to allow for identifying
new planes that enter the image are also provided. Results for
navigation tasks are shown and very small Cartesian errors
were obtained. Also, experimental results in different scenarios
demonstrate the robustness characteristics of the method.
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Fig. 1. The objective of the approach: to perform a vision-based navigation
task over an extensive scene, considered as piecewise planar, where neither
the desired image (corresponding to the desired pose) nor the scene model
are available.

The remainder of this work is arranged as follows. Section II
reviews some basic theoretical aspects, as well as it introduces
the proposed long-term navigation framework. The vision
aspects involved in the strategy is presented in the Section
III, while the control aspects are developed in Section IV.
The results are then shown and discussed in the Section V.
Finally, the conclusions are presented in the Section VI, and
some references are given for further details.

II. MODELING

Let F be the camera frame whose origin O coincides with
its center of projection C. Suppose that F is displaced with
respect to another frame F ′ (which is not necessarily the initial
frame F0, nor the desired frame to be aligned F∗) in the
Euclidean space by R ∈ SO(3) and t = [tx, ty, tz]T ∈ �3,
respectively the rotation matrix and the translation vector.
Consider the angle-axis representation of the rotation matrix.
By using the matrix exponential, R = exp([r]×), where r =
uθ is the vector containing the angle of rotation θ ∈ [0, 2π),
and the axis of rotation u ∈ �3 : ‖u‖ = 1. The notation [r]×
represents the skew symmetric matrix associated to vector r.
Hence, the camera pose can be defined with respect to frame
F ′ by a (6 × 1)-vector ξ =

[
tT , rT

]T
, containing the global

coordinates of an open subset of �3 × SO(3).

A. Camera Model

Consider the pinhole camera model. In this case, a 3D point
with homogeneous coordinates Pi =

[
Xi, Yi, Zi, 1

]T
defined

with respect to frame F , i = 1, 2, . . . , n, is projected onto
the image space I ⊂ �2 as a point with pixels homogeneous
coordinates pi ∈ �2 through

pi = [ui, vi, 1]T ∝ K
[

I3 0
]
Pi, (1)

where K ∈ �3×3 is an upper triangular matrix that gathers
the camera intrinsic parameters

K =


 αu s u0

0 αv v0

0 0 1


 , (2)

with focal lengths αu, αv > 0 in pixel dimensions, principal
point p0 = [u0, v0, 1]T in pixels, and skew s. Correspondingly,

the same point Pi ∈ �
3 is projected onto the image space

I ′ ⊂ �2 associated to F ′ as

p′
i = [u′

i, v
′
i, 1]T ∝ K

[
R t

]
Pi. (3)

Then, from the general rigid-body equation of motion along
with (1) and (3), it is possible to obtain the fundamental
relation that links the projection of Pi onto both images:

p′
i ∝ KRK−1pi +

1
Zi

Kt. (4)

B. Plane-based Two-view Geometry

Consider the normal vector description of a plane π =[
nT ,−d

]T ∈ �
4 : ‖n‖ = 1, d > 0. Let π (resp. π′) be

defined with respect to frame F (resp. F ′). If a 3D point Pi

lies on such planar surface then

nT Pi = nT Zi K−1pi = d, (5)

and hence

1
Z i

=
nT K−1pi

d
. (6)

By plugging (6) into (4), a projective mapping G ∈ PL(2) :
�

2 �→ �
2 (also referred to as the projective homography)

defined up to a non-zero scale factor is achieved:

p′
i ∝ Gpi. (7)

In addition, it can be noticed that G encompasses an Euclidean
homography H ∈ �3×3 for the case of internally calibrated
cameras. That is, for normalized homogeneous coordinates
mi = K−1 pi, Eq. (7) becomes

m′
i ∝ R + d−1 t nT︸ ︷︷ ︸

H

mi. (8)

As a remark, it is well-known that the same expressions are
obtained, independently if the object is planar or not, if the
camera undergoes a pure rotation motion (i.e. ∀R ∈ SO(3)
but t = 0) since depth information is completely lost.

C. Navigation Formulation

Visual servoing systems are usually designed such that the
desired frame to be attained F∗ is aligned with the absolute
frame Fw. Indeed, the aim is to promote adequate motions
such that F → F∗. On effect, this leads then to be ξ∗ = 0 and
the control objective to drive ξ → 0 as t → ∞. However, since
the purpose in this work is to navigate the robotic platform
(see Fig. 1), the absolute frame is then set to coincide with
the initial frame, i.e. F0 = Fw and thus ξ0 = 0. Hence, the
current and desired poses are here defined w.r.t. F0, what leads
to a desired ξ∗ =

[
t∗T , r∗T

]T
and the control objective to be

ξ → ξ∗ as t → ∞. (9)

In fact, after the proper specification of the navigation task,
a change of coordinate system back to the usual one can
obviously be made. Also, as already stated, the proposed
framework is based on the representation of the scene as a



collection of planar regions. It is well-known that such con-
straint allows for implementing much more stable and accurate
pose reconstruction algorithms [6]. Indeed, the core of the
proposed navigation framework is basically given as follows.
Provided K and a set of planes {π}, the control objective
(9) can be perfectly achieved by regulating a Cartesian-based
error function (track a Cartesian-based path) constructed from
images:

e = e
(I, {π},K, ξ∗, t

)
, ∀t ∈ [0, T ]. (10)

The control aspects are further discussed in Section IV. From
such definition of the error function, let us present an overview
of the proposed method to perform vision-based control tasks
over large-scale unknown scenes, for some sufficiently small
ε > 0:

Algorithm 1. The E-3D visual servoing framework.
1: define plane π0 in the first image I0

2: repeat
3: apply control law
4: track known planes and recover pose
5: if conditions in the Proposition 3.1 are verified then
6: by using

˘
K, bR,bt¯

, identify new planes that enter I
7: end if
8: until ‖e‖ < ε

The procedures stated from line 4 to 6 of the Algorithm 1
are further detailed in the next section.

III. PLANES DETECTION AND TRACKING

A. Pose Reconstruction from Multiple Planes

This subsection intends to present how multiple planes
are tracked in the image space, as well as how the camera
pose is recovered. Both tasks are treated as belonging to
a single block since the rigidity of the scene is taken into
consideration to achieve superior tracking performance, and to
provide more accurate pose estimates. However, due to paper
length restrictions, only an overview of the scheme will be
described here. The reader is referred to [8] for more details.

Consider that at least one planar object is observed in the
image, and that a reference template corresponding to a given
frame F ′ has been selected. How to cluster those planar
regions in the image will be described in the next subsections.
Also, in order to perform the mapping between the projective
and the Euclidean spaces, the camera is supposed to be
calibrated. By using such efficient second-order minimization
technique, every template is then optimally tracked in the
image space. It is an efficient algorithm since only first
image derivatives are used, and the Hessians are not explicitly
computed. Indeed, its two main advantages are the high
convergence rate and the avoidance of local minima. Then,
after finding the optimal homography Hj (i.e., the solution of
the optimization problem), its decomposition into Rj and tj

for every template is performed. The rigidity constraint of the
scene is thus imposed a posteriori. That is, the relative pose
between two frames F ′ and F must be the same for all planes
to yield the pose estimate

{
R̂, t̂

}
.

B. Detection of New Planes

Since the known planes will eventually get out of the image
during a long-term navigation, one must identify new planes
that enter the field-of-view (and track them optimally over
the sequence). In this subsection, the method used to detect
planar regions in a pair of images is presented. The interest
in finding planar regions in images is not new, and a number
of different approaches have been proposed by the computer
vision community. However, the majority of the approaches
in the literature relies on a preliminary step of 3D scene
reconstruction (i.e. the depth map is required, as in e.g. [9]).
Those methods are in general too time-consuming, or demand
several images to converge, or they rely on scene assumptions
(e.g. structured scenes [10], perpendicularity assumptions),
or even on heuristic searches. In order to circumvent those
constraints, the used algorithm is based on an efficient voting
procedure directly from the solution of a linear system, which
is derived from the following. Equation (4) along with (6)
allow for rewriting the fundamental equation that links the
projection of the same 3D point onto I and I ′ as

p′
i ∝ G∞pi + ep n̄T K−1pi, (11)

where G∞ = KRK−1 is the homography at the infinity,
ep = Kt is the epipole in the second view, and n̄ = n/d is
the normal vector scaled by the distance to F . Then, triplet
of corresponding interest points (e.g. Harris) are managed in
order to form linear systems whose solutions are used in
a progressive Hough-like transform, and in order to respect
the real-time constraints. A template is formed by means
of the convex hull of the clustered points. In addition, it
is well-known that the Hough Transform (and its variants)
is one of the most important robust techniques in computer
vision [11]. As it will be shown, even if the set of camera
parameters

{
K,R, t

}
are miscalibrated, i.e. only an estimated

set
{
K̂, R̂, t̂

}
is provided, and even if there also exist mis-

matched corresponding points (outliers), it is still possible to
cluster planar regions in the image (see next subsection for the
necessary and sufficient conditions). This robustness property
is an attractive characteristic of the approach since it is able
to tolerate large errors in its inputs. Furthermore, besides the
explicit clustering of planar regions, there is no “best guess”
initialization regarding the normal vector of the plane (e.g.
[7], where the authors assume that small image patches are
observations of planar regions and whose vector, after such
initialization, is refined based on a gradient descent technique).
In the next subsection, a closed-form solution to determine the
equations of the new clustered planes will be presented.

C. Determination of the Equations of the New Planes

To this point, a set of new planes {πj} (resp. {π′
j}) are

segmented in the image I (resp. I ′), and their corresponding
homographies {Gj} are found robustly and optimally. In
addition, the relative pose between F ′ and F is also provided,
which must be the same ∀π projected onto I if the scene
is rigid. However, in order to include them in the pose
reconstruction algorithm, it is needed to determine each nj

in the 3D space. On effect, manipulating Eqs. (7) and (8)
H = αK−1 GK, the following expression is obtained:



tdj
nT

j = αj K−1 Gj K − R. (12)

Multiplying both members of (12) by the transpose of the
reconstructed scaled translation vector tT

dj
= tT/dj , a closed-

form solution for determining the normal vector w.r.t. F of
each segmented πj is achieved:

nT
j =

(
tT
dj

tdj

)−1
tT
dj

(
αj K−1 Gj K − R

)
. (13)

Given that svd(H) = [σ1, σ2, σ3]T are the singular values of
H in decreasing order, σ1 ≥ σ2 ≥ σ3 > 0, and that such
homography can be normalized by the median singular value
[12], it is possible to use the facts that x = sgn(x) |x|, ∀x ∈ �,
det(H) =

∏3
i=1 λi(H), and that σi are the square-roots of

λ(HT H), so that the scale factor αj ∈ � is given as

αj =
sgn(det(Hj))

σ2(Hj)
, (14)

where sgn(·) denotes the signum function.
Proposition 3.1 (Normal Vector Determination): The nec-

essary and sufficient conditions for the normal vector deter-
mination (13) are such that:

• t 
= 0 so that (tT
dj

tdj
)−1 = d2

j (tT t)−1 exists. Obviously,
dj > 0, ∀j, so that all the planes are in front of the
camera;

• |det(G) | > 0, so that the plane is not in a degenerate
configuration (i.e. projected as a line), and α 
= 0.

The last condition of the Proposition 3.1 is due to
det(H/α) = 1

det(K) det(G) det(K) = det(G), if the second
condition holds. It is also important to remark that the last
condition can then be used as a measure of degeneracy, and
that explains why the projective homography G was not
parameterized here as a member of the SL(3) (the Special
Linear group). The SL(3) is the group of (3 × 3) matrices
that has the determinant equal to 1.

IV. CONTROL ASPECTS

Let the robot be controlled in velocity v =
[
υT,ωT

]T ∈
�

q, respectively the linear and angular velocities, with q ≤ 6
dofs. As already stated, the rigidity assumption of the scene is
imposed so that the relative displacement between F ′ and F
are the same for all tracked planes, which is performed directly
in the Euclidean space. In addition, since a known plane
can leave the field-of-view without destabilizing the system
(since it is possible to detect and reconstruct new planes), a
pose-based visual servoing technique is the appropriate choice
for the task. Hence, the error vector is constructed from the
knowledge of the current and desired poses (extracted from
0Tc and 0T∗, respectively), and then expressed both with
respect to F∗ (to conform to the usual absolute frame). Thus,
the control error (10) is here defined as

e =
[
eT

υ , eT
ω

]T=
[∗tT

c , ∗rT
c

]T=
[
tT ,uTθ

]T ∈ �q, (15)

denoting the error in translation and in the rotation respec-
tively. Considering a positioning task, the derivative of (15)
yields

ė = L(ξ)W(ξ) v, (16)

with the interaction matrix

L(ξ) =
[

I3 −[eυ]×
0 Lω

]
. (17)

The Lω is the interaction matrix related to the parametrization
of the rotation: d(uθ)

dt = Lω ω. By using the Rodrigues’
formula for expressing the rotation matrix, it can be shown
that

Lω = I3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2×, (18)

where the function sinc(·) is the so-called sine cardinal or
sampling function. Also, it can be noticed that

det(Lω) = sinc−2(θ/2), (19)

whose singularities are for θ = 2kπ, ∀k ∈ �+, and hence the
largest possible domain: θ ∈ [0, 2π). In addition, the upper-
block triangular matrix W(ξ) ∈ �6×6 in (16) represents the
transformation

W(ξ) =
[

I3 [∗tc]×
0 I3

] [ ∗Rc 0
0 ∗Rc

]
=

[ ∗Rc [∗tc]×∗Rc

0 ∗Rc

]
,

(20)
since the control input v is defined in camera frame Fc and
the error is expressed in F∗. With respect to the control law,
if it is imposed an exponential decrease for the error

ė = −λv e, λv > 0, (21)

then its substitution into (16) by using (15) permits to achieve

v = −λv W−1(ξ)L−1(ξ) e (22)

= −λv

[
cR∗ −cR∗ [∗tc]×
0 cR∗

] [
I3 [∗tc]×L−1

ω

0 L−1
ω

]
e. (23)

Such an expression can be further simplified. Given that
[u]k×u = 0, ∀k > 0, it yields L−1

ω eω = eω, ∀eω , with

L−1
ω = I3 +

θ

2
sinc2

(θ

2

)
[u]× + (1 − sinc(θ)) [u]2×, (24)

and the final control law is achieved as

v = −λv

[
cR∗ 0
0 cR∗

]
e. (25)

As a remark, the control law (25), besides the full decou-
pling of translational and rotational motions (it has a block di-
agonal matrix), it promotes a straight-line path linking

−−→OO∗ in
Cartesian space since ṫ = ∗Rc υ = −λv

∗Rc
cR∗ t = −λvt.



V. RESULTS

In this section, the results obtained with the E-3D visual
servoing technique are shown and discussed. Concerning the
image features (used by the plane detection algorithm), the
Harris detector was applied in this work. Then, all the detected
templates (corresponding to the convex hull of the clustered
points) are used by the pose recovery technique, which also
tracks them simultaneously during navigation. With respect to
the method for detecting new planes, various pairs of images
were used for testing purposes and some results can be seen in
Fig. 2, which agree with the expectations: detected planes are
actual planes. Due to real-time requirements, only a portion of
the entire plane is clustered and tracked. Nevertheless, a region
growing process based on the plane equations could be used to
partition the entire plane. Furthermore, since the true camera
calibration parameters (both intrinsic and extrinsic ones) were
not available, it was used for all tested pairs of images:
αu = αv = 500 pixels with principal point as the middle
of the image, as well as R = I3 and t = [−0.1, 0,−1]T m
for the rotation and translation motions, respectively. Albeit
these parameters are not the true ones, the actual planes were
detected. Therefore, the robustness properties of the approach
was thus also verified.
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Fig. 2. Some results obtained by using the plane detection algorithm, where
the detected planar regions are surrounded by red lines. Due to real-time
requirements, only a portion of the planes is clustered and tracked.

In order to have a ground truth for the proposed vision-
based control technique, a textured scene was constructed: its
base is composed of four planes disposed in pyramidal form,
but cut by another plane on its top. Onto each one of the five
plans, a different texture was applied (see Fig. 3). With respect
to the navigation task, the control gain was set to λv = 0.5
and a closed, arbitrary Cartesian trajectory was specified and
afterwards subdivided into 10 elementary positioning tasks. It
is shown in Fig. 4 the obtained images at the convergence for
some of tasks, where the detected planar regions for recovering
the pose are superposed. A remark is valuable here: one
may notice that the known plane (shown in the first image)
leaves the field-of-view but the entire navigation task could be

100 200 300 400 500 600

100

200

300

400

500

600

Fig. 3. Image of the artificially created, textured, piecewise planar scene.

completed accordingly, since new planes have been identified.
In addition, when such plane reenters the image it is newly
determined. An elementary task is said to be completed here
when the translational error drops below a certain precision (it
was set when ‖eυ‖ < 0.1mm). Notice that in this case where
the desired image is not available, existing model-free visual
servoing techniques cannot be applied. As for the evolution
of the task, both the exponential decrease of the norm of the
control error for some of the specified tasks, as well as the
computed control signals can also be seen in Fig. 4. The true
errors obtained in the pose recovery process along the entire
task are depicted in Fig. 5, since the real ground truth is
known. One can observe that when the image loses resolution
(i.e. the camera moves away from the object), the precision of
the reconstruction also decreases and vice-versa. Nevertheless,
one important result comes from performing the closed-loop
trajectory (which has a displacement of ≈3.3m): errors smaller
than 0.1mm in translation and than 0.01◦ in rotation were
obtained after the camera comes back to the same pose at the
beginning (compare first and last images of the Fig. 4). Such
result demonstrates the precision achieved by the framework.

Another important result from the approach is that the scene
can be reconstructed in 3D space (up to a scale factor). Such
result is shown in Fig. 6 for different views of the scene.
It pictures that the E-3D visual servoing approach can be
also used as a Plane-based Structure from Controlled Motion
technique, improving the stability, the accuracy and the rate
of convergence of Structure From Motion methods.

VI. CONCLUSIONS

This work proposes a new visual servoing approach for
large-scale scenes, where the desired image to be acquired
(corresponding to the desired pose) is not available before-
hand. In addition, it was dealt here with unknown scenes,
which are represented as a collection of planar regions. By
taking that into consideration, an accurate real-time pose
reconstruction is deployed. As the robot evolves, since the
known planes will eventually get out of the field-of-view, new
planes in the scene are detected and then used by the pose
recovery algorithm. Hence, distant goals may be specified.
Navigation tasks were performed and only negligible Cartesian
errors were obtained. In addition, it is shown that the proposed
vision-based control scheme can be used as a Plane-based
Structure from Controlled Motion technique as well.
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Fig. 4. A plane is initialized in the first image. For each elementary task
shown, the norm of the error and the control signals (in [cm/s] and [deg/s])
vs. number of iterations are drawn. At the right, the corresponding obtained
images at the convergence, which are superposed by the detected planar
regions (in blue), are shown. Observe that a plane leaves the field-of-view
(3th and 4th images) but when it reenters it is newly identified (5th image).
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Fig. 5. Errors in the pose recovery (position [m] and attitude [deg],
respectively) vs. number of iterations along the entire navigation task.

Fig. 6. The desired poses, the performed trajectory, and the 3D reconstructed
scene as seen from different viewpoints (first row: the scene with the used
planes only and, at the bottom, the scene after performing a region growing).
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