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Abstract— In this paper we present an analysis of 3D line
projections for central catadioptric cameras from a projective
perspective. Most algorithms consider the projection of lines as
general conics in the image plane with five degrees of freedom.
However, in the calibrated case, only two parameters are needed
to represent lines. We describe methods to obtain fast extraction
and estimation algorithms. We then explain how classical edge-
tracking algorithms can be adapted to these sensors. To this
avail, we introduce two parametric equations for lines in central
catadioptric images. We then propose a minimal representation
for the euclidean transformation in the structure from motion
problem and introduce possible metrics between a point and
a central catadioptric line. These metrics are evaluated on
simulated data. The structure from motion algorithm, from the
line extraction process to the tracking and the reconstruction is
tested on a real sequence.

I. INTRODUCTION

Panoramic cameras capture a wide field of view that can
benefit many robotic applications. Central catadioptric cameras
are the specific sensors composed of a mirror and a camera
which preserve a single viewpoint [1]. This is a desirable
property as it means results from projective geometry can be
used directly when the sensor is calibrated. Geyer [2] and
Barreto [3] developed a unified projection model for these
sensors through the projection of points on the sphere. It has
since been used regularly to develop generic algorithms.

In the past, lines have been used extensively with panoramic
cameras for the motion estimation and localisation of mobile
robots [4], [5] but generally ([6] being an exception) under the
assumption that the lines were radially projected in the device.
This of course limits the use of the sensor to environments
with sufficient vertical lines and imposes the sensor to be in a
vertical position. In this article we aim at generalising the use
of lines. Work has been done previously for line extraction
[7], [8], [9]. Our contribution is to generalise the approach
to all central catadioptric sensors from a projective geome-
try perspective which leads, as we will see, to simple and
efficient algorithms. To our knowledge, current line tracking
for omnidirectional vision has only been done using quadric
approaches such as in [10] or vanishing points [6]. We will
see how we can use a parametric approach instead using the
minimal amount of parameters.

Structure from motion from lines has been thoroughly
studied in the past [11]. More recently, [12] and [13] analyse
the non-linear structure from motion equations. In the context
of non-linear minimisation, it is desirable to parametrise

the problem using the minimum amount of parameters: the
minimisation is faster, less subject to noise and consistency
constraints can be directly imposed (eg. a rotation matrix
must stay a rotation matrix after minimisation). In [13], the
authors introduce an orthonormal representation for Plücker
coordinates to minimise only the 4 parameters representing
a line. They give references to possible methods to obtain a
minimal representation of the transformation but do not give
specific details. In this article, we put forth the group structure
of the line motion matrix [14] that enables the use of Lie
algebras for a minimal parametrisation. We detail the specific
case of calibrated cameras that applies to central catadioptric
sensors. Different point-line distances are proposed.

We will call omni-lines the projection of 3D lines in the
image plane (or the normalised plane according to context) to
emphasise that they are conics [15] with only two degrees of
freedom in the calibrated case.

We will start by reintroducing a slightly modified version
of the unified model of Geyer and Barreto. We will then
show how the projection model can be re-written to use the
properties from projective geometry which leads to a linear
estimation of the omni-lines and an efficient algorithm for
their extraction using hough transforms. The following section
details how to obtain equations for line-tracking. This enables
in turn automatic structure from motion. In the last section,
we apply the described algorithms for the motion estimation
of a mobile robot in a situation where point or template-based
approaches generally fail.

II. UNIFIED PROJECTION MODEL

For sake of completeness, we present here the steps for
the projection of 3D points to the image plane for central
catadioptric sensors (see [2], [3], [16] for more details):

1) world points in the mirror frame are projected onto
the unit sphere S2, (X )Fm

−→ (X s)Fm
= X

‖X‖ =
(Xs, Ys, Zs)

2) the points are then changed to a new reference frame
centered in Cp = (0, 0, ξ), (X s)Fm

−→(X s)Fp
=

(Xs, Ys, Zs − ξ)
3) we then project the point onto the normalised plane,

m = (x, y, 1) = ( Xs

Zs−ξ , Ys

Zs−ξ , 1) = �(X s)
4) the final projection involves a generalized camera pro-

jection matrix K: p = (u, v, 1) = Km



The function � is bijective and

�
−1(m) =


−ξ−

√
1+(1−ξ2)(x2+y2)

x2+y2+1 x
−ξ−

√
1+(1−ξ2)(x2+y2)

x2+y2+1 y
−ξ−

√
1+(1−ξ2)(x2+y2)

x2+y2+1 + ξ

 (1)

III. OMNI-LINES AS PROJECTION OF PLANES

A 3D line projected in a monocular imaging device can be
parametrised by the normal noted n (n ∈ S2) formed by the
line and the center of projection (Fig. 1).

Equation (1) relates a point on the normalised plane
to a point X s on the sphere or projectively to the ray
through the mirror center and X s. Thus, by multiplying by

x2+y2+1

−ξ−
√

1+(1−ξ2)(x2+y2)
�= 0, we obtain the projective equality:

�
−1(m) ∼

 x
y

f(x, y)


f(x, y) = 1 + ξ x2+y2+1

−ξ−
√

1+(1−ξ2)(x2+y2)

(2)

Equation (2) is valid for any central catadioptric device (it
is also valid for an approximation of a non-central projective
model). The special case f(x, y) = 1 corresponds to the
classic perspective projection. When the sensor is calibrated
the values for f(x, y) can be pre-calculated and stored in a
look-up table to improve the efficiency of the lifting of the
points. The relation between m and p is linear and not very
costly to compute (in particular if r = 1 and s = 0 which is
often the case with modern cameras).

A point p on an omni-line of parameter n verifies:

n�

 x
y

f(x, y)

 = 0 (3)

A. Line estimation

If we write (3) for n points, we obtain:
x1 y1 f(x1, y1)
x2 y2 f(x2, y2)
...

...
...

xn yn f(xn, yn)

n = An = 0 (4)

If we consider the singular value decomposition of A, A =
USV� and order the eigenvalues of S in decreasing order,
the normalisation of the third column of V will correspond to
the least squares solution to (4). This is an alternative to the
method suggested by Barreto [8]. It has the advantage of also
being valid for hyperbolic mirrors.

B. Line extraction with the classic Hough transform

Let Φ be the colatitude and Θ the azimuthal angle, the
normal can be written in spherical coordinates as: nx = sin Φ cos Θ

ny = sin Φ sin Θ
nz = cos Φ

if we assume that nz �= 1 (ie. Φ �= 0[π]) and note z = f(x, y),
from (3) we obtain:

Φ = atan
(

x cos(Θ) + y sin(Θ)
z

)
(5)

This result was proposed previously in [9]. We discuss a
way to adapt the line extraction to the non-uniform pixel
resolution in Section III-D. It may also be noted that values
for atan cannot be pre-calculate (because the input space R is
not bounded). To improve the efficiency, a Hough space can
be built using directly tan(Φ) with for example a “linked-list”
to represent the Hough space (see [17] for details of different
structures related to Hough parameter spaces).

C. Line extraction with the randomized Hough transform

The Randomized Hough transform (RHT) [17] has proved
to be an efficient and robust alternative to classic Hough. It
shares convergence mapping with RANSAC, meaning that we
estimate the n parameters of the curve function (n = 2 for a
line) by randomly extracting n values.

For estimating the parameters of a line, the authors in
[17] extend the (ρ, θ) parametrisation from Duda and Hart.
A natural and more efficient parametrisation can be obtained
by directly estimating the normal: the omni-line joining two
points m1 and m2 has for normal n (�−1(m) ∈ S2):

n = �
−1(m1) × �

−1(m2) (6)

By imposing for example nz ≥ 0, we obtain a 2-
dimensional buffer in (nx, ny).

D. Voting in the Hough space

The solid angle subtended by the surface represented by
a pixel can be used to take into account the non-uniform
resolution. A pixel p is bounded by (u − 0.5, v − 0.5),
(u + 0.5, v − 0.5), (u − 0.5, v + 0.5) and (u + 0.5, v + 0.5).
The corresponding surface on the unit sphere is then bounded
by (Φmin,Φmax) and (Θmin,Θmax) (obtained through the
lifting of the points) and corresponds to the following solid
angle s (measured in steradians sr):

s =
∫ Θmax

Θmin

∫ Φmax

Φmin

sin(Φ)dΘdΦ (7)

= −(Θmax − Θmin)(cos(Φmax) − cos(Φmin)) (8)

The precision of the normal estimate will be inversely
proportional to the subtended solid angle so 1/s can be used in
the classic Hough voting scheme. (In the randomized case, we
assumed that on average the surface subtended by two pixels
was the same.)

IV. LINE TRACKING

Tracking a line L between two views can be done using
classic edge-tracking approaches [18] [19] in the following
steps:

1) obtain n points on L uniformly distributed in the image,
2) for each point calculate the normal to the edge,



3) search (within pre-defined bounds) along the direction
given by the normal to the curve for edge points
with same normals (using pre-calculated convolution
kernels),

4) robustly extract the equation of the new line from the
edge points.

For 3) the preferred method is the Bresenham algorithm [20]
For 4), M-estimators are often chosen to extract the parameters
but in presence of a lot of noise, a RANSAC is a good
alternative (this is relatively fast as the model is simple to
fit using (6) and the size of the data is small.

We will now derive a parametric equation for omni-lines
and calculate the normal in a given point. We will see that
using a conic parametric function leads to singularities (but
gives information on the nature of the conic). We will then
propose a non-singular parametric function.

A. Conic parametric function

Equation (6) can be re-written to obtain a quadric form in
the normalised plane [21][15]: m�Ωmm with:

Ωm =

n2
x(1 − ξ2) − n2

zξ
2 nxny(1 − ξ2) nxnz

nxny(1 − ξ2) n2
y(1 − ξ2) − n2

zξ
2 nynz

nxnz nynz n2
z

 (9)

det(Ω̂m) = ξ4n4
z(n

2
x + n2

y + n2
z) = (ξnz)4. For Ω̂m to

be a proper conic, we will from now on assume that ξ �= 0
(non-planar/perspective mirror) and nz �= 0.

The nature of the conic depends on the number of intersec-
tions with the line at infinity ie. the sign of ∆ = 1− ξ2 − n2

z

(we removed n2
zξ

2 > 0). ∆ > 0 corresponds to a hyperbola,
∆ = 0 to a parabola and ∆ < 0 to an ellipse.

From the Joachimsthal equations, we obtain the four focal
points (2 real and 2 complex) [22]. The two real values are:

f1 =

 nx

ny

nz +
√

1 − ξ2

 f2 =

 nx

ny

nz −
√

1 − ξ2

 (10)

(We can note that f2 is at infinity if the conic is a parabola.)
If we now center the conic in f1 and rotate it (if nz �= 1) by
an angle Θ, we obtain (∆ ≥ −1):

Ω′
m =

 ∆ 0
√

(1 − n2
z)(1 − ξ2)

0 −ξ2n2
z 0√

(1 − n2
z)(1 − ξ2) 0 1


(11)

Let x = ρ cos(θ) and y = ρ sin(θ), the polar equation of
the omni-line centered in f1, valid for nz �= 0 and ξ �= 0, is:

ρ =
1

ξnz − √
(1 − n2

z)(1 − ξ2) cos(θ − Θ)
(12)

For nz = 0, the conic is a straight line that goes through
the origin and is parameterised by (ρ,Θ).

When nz → 0, we get closer to a degenerate conic as f1 →
0. This means we will not be able to represent and sample
curves when nz → 0 using the angle θ.

B. Unified non-singular parametric function

Let B = {X s = (Xs, Ys, ξ)|X s ∈ S2}. B is the natural
boundary between the two sheets of S2 covering P

2 through
the unified projection.

Let C be the arc of the great circle corresponding to L and
parametrised by n. n can be seen as an axis of rotation for
the points of C on the sphere (Fig. 1). Let w be one of these
points (n�w = 0). C can be parametrised with an angle θ
without a singularity using Rodrigues’ formula:

w(θ) = e[n]×θw (13)

We do not obtain a singularity because a finite 3D line spans
an angle strictly inferior to π.

w(θ) is a point on the sphere so its projection m(θ) (defined
for m(θ) /∈ B) on the normalised plane is simply:

m(θ) =
1

wz(θ) − ξ

[
wx(θ)
wy(θ)

]
(14)

C. Curve sampling

Let s be the arc length of the parametric curve (14) between
two points m(θ1) and m(θ2) with θ2 > θ1. We will make the
assumption that we have a similarity between the normalised
plane and the image plane (ie. r ≈ 1 and s ≈ 0). (In other
words a uniform sampling in the normalised plane corresponds
to a uniform sampling in the image plane.)

If we wish to sample the curve in n values (to guarantee
constant time), the increment arc length is δs = s

n with s =∫ θ2

θ1
ds. If we wish to obtain values separated by p pixels, the

increment is δs = p
γ .

In the general case, the calculation of arc lengths for conics
involve elliptic integrals of the second kind, so we cannot
obtain a simple formulation for s. We may note that in the
case of a paraboloid mirror, the conic is simply a circle which
can be uniformly sampled by an angular increment. However
we loose this property with the non-singular representation.

For an approximate calculation of s, we may use the
differential form of the curve length and a small increment
for θ:

ds =
√

dx′2 + dy′2dθ (15)

with :


dx′ = w′

x(θ)(wz(θ)−ξ)−wxw′
z(θ)

(wz(θ)−ξ)2

dy′ = w′
y(θ)(wz(θ)−ξ)−wyw′

z(θ)

(wz(θ)−ξ)2

w′(θ) = e[n]×θ[n]×w

(16)

D. Normal to an omni-line

The angle φ of the normal in m(θ) is simply:

φ =
{

atan (−dx′
dy′ ) if dy′ �= 0

π
2 if dy′ = 0

(17)

V. STRUCTURE FROM MOTION

Points and templates are generally chosen for motion es-
timation in robotic application because they offer robust and
accurate results. However in cases of low-textured environ-
ments, lines can play a key role to improve estimates and
provide a partial 3D reconstruction.



In real-time robotic applications, iterative approaches are
generally preferred to batch algorithms as they are often faster.
However in the case of lines that have been automatically
extracted, the motion and 3D line estimates are generally not
well constrained and sensitive to the 3D position of the lines.
On the other hand, the minimisation is not computationally
expensive which encourages a two step approach: 1) bundle
adjustment 2) global filtering (eg. Extended Kalman Filter)
when the covariance enables confidence to be put into the
line and motion estimates. In this article, we focus on bundle
adjustment.

A. Line representation

We will represent 3D lines by the following Plücker coordi-
nates: L� ∼ [

n� v� ]
. Plücker coordinates are defined up

to a scale factor. We choose to normalise the first component to
simplify the equations on the sphere. n is defined as previously
in the article and v is the direction of the 3D line. In order
to obtain a valid line representation, the constraint n�v = 0
must be imposed.

B. Minimal representation of Plücker coordinates

We will use the method proposed by Bartoli and Sturm [13]
to obtain a minimal representation (4 parameters) of Plücker
coordinates through an orthonormal representation.

Let QR be the orthogonal/upper triangular decomposition.
To briefly summarise, Plücker coordinates can be decomposed
as:

[
n v

]
3×2

QR
= U3×3

 σ1

σ2


3×2

,W =
1

‖σ‖
[

σ1 −σ2

σ2 σ1

]
(18)

with (U,W) ∈ SO(3) × SO(2). Let xL contain the 3+1
parameters representing the matrices, we can recover the
Plücker coordinates through (with ui the i−th column of U):

L(U(xL),W(xL))� → [
u�

1
w21
w11

u�
2

]
(19)

C. Line motion matrix

In [14], the authors define the 6 × 6 matrices that act on
Plücker coordinates in projective, affine and Euclidean spaces.
We can prove that we have in fact a group homomorphism
between the transformation groups and the line motion matrix
spaces for the matrix product. This result is important as it
indicates that we can obtain a minimal representation through
the associated Lie algebras and recover the transformations
directly. We will detail the Euclidean case which is of interest
for this study.

For calibrated central catadioptric cameras, the transforma-
tion between 3D lines in two views can be represented by a
rotation matrix R ∈ SO(3) and a translation t ∈ R

3 by:

T =
[

R [t]×R
0 R

]
(20)

We will call LE(3) the group formed of matrices of the
previous type and le(3) its associated Lie algebra. Let Ai, with

i ∈ {1, 2, ..., 6}, be a basis of le(3). Any matrix A ∈ le(3)
can be written as a linear combination of the matrices Ai.

Let the (3 × 1) vectors bx = (1, 0, 0), by = (0, 1, 0) and
bz = (0, 0, 1) be the natural orthonormal basis of R

3. The
Ai matrices are of dimension (6 × 6). The generators for the
translation are:

A1 =
[
0 [bx]×
0 0

]
,A2 =

[
0 [by]×
0 0

]
,A3 =

[
0 [bz]×
0 0

]
(21)

The generators for the rotation are:

A4 =
[
[bx]× 0

0 [bx]×

]
,A5 =

[
[by]× 0

0 [by]×

]
,A6 =

[
[bz]× 0

0 [bz]×

]
(22)

The exponential map links the Lie algebra to the Lie Group.
T can be locally parameterized as:

T(xT ) = exp

(
6∑

i=1

xiAi

)
(23)

Thanks to the group homomorphism we can recover the
euclidean transformation Te directly from xT through the 6
generators Bi of SE(3):

Te(xT ) =
[

R t
0 1

]
= exp

(
6∑

i=1

xiBi

)
D. Distance functions

Several distance functions between a point X s and a line
parametrised by n can be considered in the case of the sphere:

dA = X�
s n

dR = arccos(
√

1 − (X�
s n)2)

dr = de(�(X⊥
s ), �(X s))

X⊥
s = X s−(X�

s n)n√
1−(X�

s n)2

(24)

X⊥
s is the closest point to the line defined by n from X s

(Fig. 1). dA is an algebraic distance. dR is the distance on
the sphere (Riemann distance) between X⊥

s and X s. dr is the
distance between X s and X⊥

s reprojected onto the normalised
image plane. It corresponds to the standard distance between
a point and a line in the perspective case if nz = 0.

E. Global cost function

Let P be the projection matrix for the 3D lines P =[
I3×3 03×3

]
Let X ij

s and be Yij
s be the two endpoints of the j-th lines

in the i-th view. The cost function can be written as:

cij(xi
T ,xj

L) =
(
d.(X ij

s ,xi
T , xj

L)
)2

+
(
d.(Yij

s ,xi
T ,xj

L)
)2

(25)
Let T̂ be an approximation of the real transformation and

(Û, Ŵ) an approximation of the line parameters. In the case
of the algebraic distance, for example, the problem is to find
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X⊥
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Fig. 1. Closest point to a great circle on the sphere

the incremental transformations T(xT ), U(xL) and W(xL)
such that the following value is minimised:

dA(X s,xT ,xL) = X�
s PT̂T(xT )L(ÛU(xL),ŴW(xL))

(26)
The global cost function is then for m views and l lines

(with XT and XL the list of the parameters and x1
T = 0) :

F (XT ,XL) =
1
2

m∑
i=1

l∑
j=1

‖cij(xi
T ,xj

L)‖2 (27)

The equation has 6(m − 1) + 4l unknowns. Each line in a
given view adds 2 constraints. Therefore the minimal number
of lines needed to constrain the system can be deduced from
(if we consider that each line is visible in each view):

l ≥ 6(m − 1)
2m − 4

(28)

VI. EXPERIMENTAL RESULTS

A. Simulated data

Our experimental setup consists of a parabolic mirror (ξ =
1) with a generalised focal length of γ = 270 (this value was
chosen from a real camera). Lines were randomly generated at
a distance of the camera between 0 and 8 m. The images were
spaced by a random transformation with a translation between
[0; 10] cm and a rotation between [0;π/2] rad to simulate
an incremental motion. We added Gaussian noise to the end-
points of each line projected in the image. The given values
are the mean over 40 trials. The aim of these experiments was
to assess the quality of the distances on the sphere. We also
wanted to answer the questions: is it better to have a lot of
lines with few images or a lot of images with few lines ? (ie.
the trade-off between frame rate and the processing time taken
for the line extraction and tracking)

Figure 2 shows the effect of errors in the image on the
estimation of the translation for 10 lines seen in 15 images
(the rotation gave similar results). The reprojection distance dr

gave a far better accuracy than the Riemann dR and algebraic
dA distances with similar results.
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Fig. 2. Translation error for different distances when varying the added noise
on the line end-points
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varying the number of images

Figure 3 shows the effect of the number of lines over the
quality of the estimation for a fixed noise of 2 pixels and 10
images (only dr is shown, the other distances gave similar
results). The number of lines has a strong influence over the
accuracy of the estimates. Figure 4 assesses the improvement
in accuracy as the amount of images increases for 3 lines and a
fixed noise of 2 pixels. The number of images only improves
the estimates slightly. For robotic applications, these results
indicate that it might be preferable to estimate and track as
many lines as possible rather than obtain many images (with
for example a high frame rate). (This was coherent with (28).)

B. Real data

1) Technical details: The RHT was used for the line
extraction. In the case of non-perspective omnidirectional
sensors, the large field of view and the relative low resolution
means that we obtain strong gradient responses typically
around the mirror border. To improve the omni-line extraction,
the voting scheme used a measure of confidence based on
the expected gradient direction (from (3) and (16)) and the
observed gradient direction in the image.

For the tracking, after a search along the normals, the omni-
line parameters were extracted with RANSAC followed by a
least-square minimisation (4).

To avoid omni-lines “jumping” between two potential lines,
we only considered lines with relatively few outliers (∼ 40%)
and with “enough” supporting points.

2) Experiment: The validation was done on a sequence of
35 images where point or template-based approaches gave



unsatisfying results. The sensor used is a parabolic mirror
with a telecentric lens and a perspective camera of resolution
1280×10241. The motion was constrained in a plane by only
estimating 1 rotation and 2 translation parameters in the Lie
algebra. The initial values given were the identity for the trans-
formations and the cross product between n and a point X s for
the second component of the Plücker coordinates. The initial
pixel reprojection error was of 36.3 pixels. After minimisation
of the cost function with the Levenberg-Marquardt algorithm,
it was reduced to 0.86 pixels.

Figure 5 shows the first and last image of the corridor
sequence (the images were flipped to ease the comparison with
the 3D model). No new lines were added during the tracking.
Not all lines could be tracked through the entire sequence.
Figure 6 shows two views of the reconstructed scene with the
robot motion. Without being entirely satisfying, the results are
sufficiently accurate (∼ 5 cm over 1 m) to use in combination
with, for example, odometry.

Fig. 5. First and last image of the corridor sequence
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Fig. 6. Two views of the 3D reconstruction of the scene with the robot
motion depicted by the green line with circles

VII. CONCLUSION

In this article we have presented algorithms for automatic
structure from motion from lines for central catadioptric sen-
sors. We focused on important aspects for robotic applications
such as robustness and minimal parametrisation. From our
experimental and simulation results, we do not believe lines
constrain the motion sufficiently to be used alone. They
can however provide additional robustness to mapping and
navigational tasks in low-textured man-made environments.

1the toolbox used for the calibration is available as open-source software
on the author’s website

This work has implications in visual servoing from lines. In
[23], the authors base their study on the assumption that omni-
lines would be extracted and tracked as conics. As we have
seen, the tracking can be done through the parametrisation
of lines by their normals in a given view. This indicates that
there is no formal difference between the central catadioptric
case and the perspective case when using projective properties.
Through the Plücker coordinates, the results of studies such
as [24] can be applied as such.
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