

Spectroscopy of Sm^{3+}, Y^{3+} -codoped CaF_2 crystals for visible lasers

Jonathan Demaimay, Pavel Loiko, Abdelmjid Benayad, Patrice Camy, Alain

Braud

► To cite this version:

Jonathan Demaimay, Pavel Loiko, Abdelmjid Benayad, Patrice Camy, Alain Braud. Spectroscopy of $\mathrm{Sm}^{3+}, \mathrm{Y}^{3+}$ -codoped CaF_2 crystals for visible lasers. OPTIQUE Normandie 2024, La Société Française d'Optique, Jul 2024, Rouen, France. hal-04654923

HAL Id: hal-04654923 https://hal.science/hal-04654923v1

Submitted on 20 Jul2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Spectroscopy of Sm³⁺,Y³⁺-codoped CaF₂ crystals for visible lasers

Jonathan Demaimay^{*}, Pavel Loiko, Abdelmjid Benayad, Patrice Camy and Alain Braud

Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard Maréchal Juin, 14050 Caen, France

*jonathan.demaimay231@ensicaen.fr

Résumé

A series of $\text{Sm}^{3+}, \text{Y}^{3+}$ -codoped CaF_2 crystals was grown by the Bridgman method and their spectroscopic properties were studied. The addition of "buffer" Y^{3+} ions breaks the Sm^{3+} clusters and enhances the emission intensity in the visible by an order of magnitude. $\text{Sm}^{3+}, \text{Y}^{3+}: \text{CaF}_2$ is a promising candidate for the development of orange lasers.

MOTS-CLEFS: *calcium fluoride; samarium ions; optical spectroscopy; luminescence.*

1. INTRODUCTION

 CaF_2 is an attractive host matrix for doping with rare-earth ions as it combines good thermal properties, low phonon energy and strong ion clustering at low to moderate doping levels leading to inhomogeneous spectral broadening. The ion clustering, however, may lead to a strong luminescence quenching due to the greatly enhanced energy-transfer processes such as cross-relaxation. This can be prevented by codoping of CaF_2 crystals with optically passive ("buffer") ions such as Y^{3+} , Gd^{3+} or Lu^{3+} , which efficiently enter rare-earth clusters, modify their composition, and prevent excessive luminescence quenching of active centers [1], Fig. 1(a). Trivalent samarium ions (Sm³⁺) feature multicolor emissions in the visible and they are of interest for orange and red lasers [2]. In the present work, we report on the growth and spectroscopy of Sm³⁺, Y³⁺-codoped CaF₂ crystals.

2. CRYSTAL GROWTH

Single-crystals of CaF₂ codoped with Sm³⁺ (0.5 - 2 at.%) and Y³⁺ (up to 10 at.%) were grown using the Bridgman-Stockbarger method under Ar + CF₄ atmosphere. The starting reagents were CaF₂, YF₃ and SmF₃ (purity: 4N). They were mixed, heated above the melting point (1418 °C) and homogenized for 4 h. The crystal growth was achieved by vertical translation of the crucible in a temperature gradient of 30-40 °C/cm. After completing the growth, the crystals were cooled to room temperature during 48 h. The as-grown crystals (Φ 8 mm, length: 30 mm) were transparent, free of cracks and inclusions and colorless, Fig. 1(b). Under UV lamp illumination, they exhibited orange luminescence whose intensity was enhanced for crystals codoped with Y³⁺. The Raman spectra of Sm:CaF₂ contain one band at 314 cm⁻¹ (T_{2g} symmetry) which is notably broadened upon Y³⁺ addition.

Figure 1: Sm³⁺, Y³⁺-codoped CaF₂ crystals: (a) a scheme indicating the role of "buffer" Y³⁺ ions in breaking Sm³⁺ ion clusters; (b) photographs of as-grown 1 at.% Sm: and 1 at.% Sm, 3 at.% Y:CaF₂ crystals taken in natural light and under UV illumination.

3. OPTICAL SPECTROSCOPY

The absorption spectra of Sm³⁺ ions in CaF₂ crystals with and without Y³⁺ in the UV-visible spectral ranges are shown in Fig. 2(a). The spectra reveal a strong inhomogeneous spectral line broadening (a "glassy-like" behavior) and for the ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{13/2}$ transition in the blue, the maximum absorption cross-section σ_{abs} is 0.15×10^{-20} cm² at 464 nm and the corresponding absorption bandwidth is ~8 nm. This band is suitable for pumping Sm-lasers with blue GaN-based laser diodes.

The luminescence spectra of Sm:CaF₂ and Sm,Y:CaF₂ crystals are shown on Fig. 2(b). The observed emissions are related to transitions from the metastable state ${}^{4}G_{5/2}$ to the lower-lying ${}^{6}H_{J}$ (J = 5/2 - 11/2) manifolds. The emission in the orange, around 600 nm (the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transition) dominates in the spectra. The luminescence from Sm:CaF₂ is relatively weak and the spectra are structured. On the contrary, for crystals codoped with Sm³⁺ and Y³⁺, the luminescence intensity increases by a factor of 40 (for 10 at.% Y³⁺) and the spectral bands become less structured. The study of luminescence dynamics from the ${}^{4}G_{5/2}$ Sm³⁺ state also reveals a great difference between crystals singly doped with Sm³⁺ and codoped with Sm³⁺, Y³⁺, Fig. 2(c). For Sm:CaF₂, the luminescence decay curve presents a very fast component followed by a slow decay with a lifetime of ~8.4 ms. For Sm,Y:CaF₂ crystals, the luminescence quenching is much less pronounced and the average decay times are shorter, about 4.6 to 5.2 ms.

Figure 2: Effect of Y^{3+} codoping on the absorption and emission properties of Sm^{3+} -doped CaF_2 crystals: (a) absorption spectra in the UV-visible; (b) luminescence spectra in the visible; (c) luminescence decay curves from the ${}^4G_{5/2} Sm^{3+}$ metastable state, $<\tau_{lum}>$ - mean luminescence lifetime.

The observed spectral behavior can be explained as following. In Sm:CaF₂ crystals, the majority of active ions form Sm-clusters and the ${}^{4}G_{5/2}$ Sm³⁺ state is almost completely quenched by multiple cross-relaxation processes with adjacent ions. The observed weak luminescence with a long lifetime is due to the residual isolated Sm³⁺ ions. In Sm³⁺,Y³⁺-codoped crystals, the "buffer" Y³⁺ cations enter the rare-earth clusters (Sm-Y) and prevent self-quenching of Sm³⁺ luminescence, contributing to enhanced emission intensity, broadened emission profiles and a different decay time.

4. CONCLUSION

 CaF_2 crystals co-doped with Sm^{3+} and Y^{3+} ions are attractive for visible (orange and red) lasers as they offer broad absorption bands in the blue accessible by commercial GaN-based laser diodes, broad and intense emissions in the visible and a relatively long luminescence lifetime. The codoping with "buffer" Y^{3+} ions enables the reduction of Sm^{3+} luminescence quenching by modifying the composition of rare-earth clusters.

Références

[1] D. Serrano, A. Braud, J. L. Doualan, P. Camy, and R. Moncorgé, " Pr^{3+} cluster management in CaF₂ by codoping with Lu³⁺ or Yb³⁺ for visible lasers and quantum down-converters," J. Opt. Soc. Am. B 29, 1854-1862 (2012).

[2] D.T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, "Spectroscopy and laser operation of Sm^{3+} -doped lithium lutetium tetrafluoride (LiLuF₄) and strontium hexaaluminate (SrAl₁₂O₁₉)," Opt. Express 23, 21118-21127 (2015).