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Abstract
Building on Whitney’s classical method of triangulating smooth manifolds, we show that every
compact d-dimensional smooth manifold admits a triangulation with dual graph of twin-width
at most dO(d). In particular, it follows that every compact 3-manifold has a triangulation with dual
graph of bounded twin-width. This is in sharp contrast to the case of treewidth, where for any
natural number n there exists a closed 3-manifold such that every triangulation thereof has dual
graph with treewidth at least n. To establish this result, we bound the twin-width of the incidence
graph of the d-skeleton of the second barycentric subdivision of the 2d-dimensional hypercubic
honeycomb. We also show that every compact, piecewise-linear (hence smooth) d-dimensional
manifold has triangulations where the dual graph has an arbitrarily large twin-width.
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1 Introduction

Structural graph parameters have become increasingly important in computational topology
in the past two decades. This is mainly due to the emergence of fixed-parameter tractable
(FPT) algorithms for problems on knots, links [12, 35, 36, 38] and 3-manifolds [14, 16, 17, 18,
19],1 most of which are known to be NP-hard in general. Although these FPT algorithms
may have exponential worst-case running time, on inputs with bounded treewidth they are
guaranteed to terminate in polynomial (or even in linear) time.2 In addition, some of these
algorithms have been implemented in software packages such as Regina, providing practical
tools for researchers in topology [11, 13].3

The success of the above algorithms naturally leads to the following question. Given
a 3-manifold M (resp. knot K), what is the smallest treewidth that the dual graph of
a triangulation of M (resp. a diagram of K) may have?4 Motivated by this challenge, in
recent years several results have been obtained that reveal quantitative connections between
topological invariants of knots and 3-manifolds, and width parameters associated with their
diagrams [21, 34] and triangulations [25, 26, 27, 28, 29, 39], respectively. It turns out that

1 Also see [2] for an FPT algorithm checking tightness of (weak) pseudomanifolds in arbitrary dimensions.
2 Here the term input refers either to a link diagram D, or to a 3-manifold triangulation T. In the first

case the treewidth means the treewidth of D considered as a 4-regular graph, in the second case it
means the treewidth of the dual graph Γ(T) of T. The running times are measured in terms of the size
of the input. The size of a link diagram is defined as the number of its crossings, and the size of a
3-manifold triangulation is the number of its tetrahedra. More definitions are given in Section 2.

3 See [3] for an implemented algorithm to effectively compute certain Khovanov homology groups of knots.
This algorithm is conjectured to be FPT in the cutwidth of the input knot diagram, cf. [3, Section 6].

4 For links and knots, this question was respectively asked in [36, Section 4] and [15, p. 2694].
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2 On the Twin-Width of Smooth Manifolds

topological properties of 3-manifolds may prohibit the existence of “thin” triangulations.5,6

At the same time, geometric or topological descriptions of 3-manifolds can also give strong
hints on how to triangulate them so that their dual graphs have constant pathwidth or
treewidth, or at least bounded in terms of a topological invariant of these 3-manifolds.7

In this work we establish similar results for another graph parameter called twin-width.8
Introduced in [10], this notion has been subject of growing interest and found many algorith-
mic applications in recent years.9 Namely, on classes of effectively10 bounded twin-width,
first-order properties can be decided efficiently11 [10] (also see [8] for improved running
times on specific problems definable in first-order logic), first-order queries can be enumer-
ated fast [23], and enhanced approximation algorithms can be designed for several graph
optimization problems [4]. Besides, classes of bounded twin-width are fairly general and
broad. They for instance include classes of bounded tree-width, and even its dense ana-
logue, clique-width, classes excluding a minor, proper permutation classes, d-dimensional
grid graphs [10], some classes of cubic expanders [9], segment intersection graphs without
biclique subgraphs of a fixed size [7], and modifications definable in first-order logic (called
first-order transductions) of all these classes [10]. We observe that the definition of twin-
width can readily be lifted to binary structures (i.e., edge-colored multigraphs).

Our first result shows that a compact d-dimensional smooth manifold always has a tri-
angulation with dual graph of twin-width bounded in terms of d.

▶ Theorem 1. Any compact d-dimensional smooth manifold admits a triangulation with
dual graph of twin-width at most dO(d).

Since every 3-manifold is smooth [40] (also see [37]), the following corollary is immediate.
We recall that tww(G) denotes the twin-width of a graph G, and Γ(T) denotes the dual
graph of a triangulation T.

▶ Corollary 2. There exists a universal constant C > 0 such that every compact 3-dimensional
manifold M admits a triangulation T with tww(Γ(T)) ⩽ C.

This is in sharp contrast to the case of treewidth, for which it is known that for every
n ∈ N there are infinitely many 3-manifolds where the smallest treewidth of the dual graph
of every triangulation is at least n [28, 29]. Complementing Theorem 1, we also show that
for any fixed d ⩾ 3, the d-dimensional triangulations of large twin-width are abundant
(Theorem 21). Moreover we show that any piecewise-linear (hence smooth) manifold of
dimension at least three admits triangulations with dual graph of arbitrarily large twin-
width.

▶ Theorem 3. Let d ⩾ 3 be an integer. For every compact d-dimensional piecewise-linear
manifold M and natural number n ∈ N, there is a triangulation T of M with tww(Γ(T)) ⩾ n.

5 In particular, for non-Haken 3-manifolds of large Heegaard genus [29] or Haken 3-manifolds with a “com-
plicated” JSJ decomposition [28], the dual graph of any triangulation must also have large treewidth.

6 For results where the treewidth of a knot diagram is bounded below by topological properties of the
underlying knot, see [21, 34].

7 This is case with Seifert fibered spaces [27] or hyperbolic 3-manifolds [26, 39].
8 We will denote by tww(G) the twin-width of a graph G.
9 For an introduction to twin-width and an overview of its applications, see [6] and the references therein.
10 A class has effectively bounded twin-width if it has bounded twin-width, and contraction sequences

of width O(1) (objects witnessing the twin-width upper bound) can be found in polynomial time;
see Section 2.1 for the definitions of contraction sequences and twin-width.

11 More precisely, there is a fixed-parameter tractable algorithm that, given a first-order sentence φ and
an n-vertex graph G with a contraction sequence of width d, decides if G satisfies φ in time f(φ, d) · n,
for some computable function f .
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▶ Remark 4. The assumption of d ⩾ 3 in Theorem 3 is essential. Indeed, the dual graph
of any triangulation of the genus-g surface Sg is, in particular, a graph that embeds into
Sg and such graphs are known to have twin-width bounded above by c(√g + 1) for some
universal constant c > 0 [31].12

Outline of the paper. In Section 2 we review the relevant notions from graph theory and
topology. In Section 3 we recall Whitney’s seminal work on triangulating smooth manifolds.
This is followed by a detailed proof of Theorem 1 in Section 4. Finally, in Section 5 we prove
the complementary results about triangulations with dual graph of large twin-width.

2 Preliminaries

Basic notation. For a finite set S we let |S| denote its cardinality, while for a real number
x we let |x| denote its absolute value. For a positive integer k ⩽ |S|, we let

(
S
k

)
denote the

set of k-element subsets of S. For a positive integer n, we let [n] denote the set of all positive
integers up to n, and for two real numbers a ⩽ b, we use [a, b] to denote the closed interval
{x ∈ R : a ⩽ x ⩽ b}. For a vector y = (y1, . . . , yd) ∈ Rd we use ∥y∥ to denote its Euclidean
norm, i.e, ∥y∥2 =

∑d
i=1 y2

i . However, if X is a (cubical or simplicial) complex, then ∥X∥
refers to its geometric realization.

2.1 Trigraphs, contraction sequences and twin-width
Following [10, Sections 3 and 4], in this section we review the graph-theoretic notions central
to our work and collect some basic, yet important facts about twin-width.

Trigraphs. A trigraph G is a triple G = (V, E, R), where V is a finite set of vertices, and
E, R ⊆

(
V
2
)

are two disjoint subsets of pairs of vertices called black edges and red edges,
respectively. We also refer to the sets of vertices, black edges and red edges of a given
trigraph G as V (G), E(G) and R(G), respectively. Any simple graph G = (V, E) may be
regarded as a trigraph (V, E, R) with R = ∅. For a vertex v ∈ V (G) the degree deg(v) of v is
the number of edges incident to it, i.e., deg(v) = |{e ∈ E ∪ R : v ∈ e}|. Additionally, the red
degree degR(v) of v is the number of red edges incident to it, i.e., degR(v) = |{e ∈ R : v ∈ e}|.
A trigraph G for which degR(G) = maxv∈V (G) degR(v) ⩽ b is called a b-trigraph. Given two
trigraphs G = (V, E, R) and G′ = (V ′, E′, R′), we say that G′ is a subtrigraph of G, if
V ′ ⊆ V , E′ ⊆ E ∩

(
V ′

2
)

and R′ ⊆ R∩
(

V ′

2
)
.13 In addition, if E′ = E ∩

(
V ′

2
)

and R′ = R∩
(

V ′

2
)
,

then we say that G′ is an induced subtrigraph of G. For a trigraph G and a subset S ⊆ V (G)
of its vertices, G − S denotes the induced subtrigraph of G with vertex set V (G) \ S.

Contraction sequences and twin-width. Let G = (V, E, R) be a trigraph and u, v ∈ V

be two arbitrary distinct vertices of G. We say that the trigraph G/u, v = (V ′, E′, R′) is
obtained from G by contracting u and v into a new vertex w if 1. V ′ = (V \ {u, v}) ∪ {w},
2. G − {u, v} = (G/u, v) − {w} and 3. for any x ∈ V ′ \ {w} = V \ {u, v} we have

{w, x} ∈ E′ if and only if {u, x} ∈ E and {v, x} ∈ E,
{w, x} /∈ E′ ∪ R′ if and only if {u, x} /∈ E ∪ R and {v, x} /∈ E ∪ R, and

12 This bound is sharp up to a constant multiplicative factor [31]. For g = 0, we know that planar graphs
have twin-width at most eight [24], and there are planar graphs with twin-width equal to seven [30].

13 As usual, subtrigraphs of graphs (those without any red edges) will also be called subgraphs.
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{w, x} ∈ R′ otherwise.

We call the trigraph G/u, v a contraction of G. A sequence S = (G1, . . . , Gm) of trigraphs
is a contraction sequence if Gi+1 is a contraction of Gi for every 1 ⩽ i ⩽ m − 1. Note that
|V (Gi+1)| = |V (Gi)|−1. We use the notation “S : G1 ⇝ Gm” to indicate that the trigraphs
G1 and Gm are initial and terminal entries of the contraction sequence S. The width w(S)
of a contraction sequence S = (G1, . . . , Gm) is defined as w(S) = max1⩽i⩽m degR(Gi), i.e.,
the largest red degree of any vertex of any trigraph in S. Now, the twin-width tww(G) of
a trigraph G is defined as the smallest width of any contraction sequence (G1, . . . , G|V (G)|)
with G1 = G and G|V (G)| = •, where • denotes the trigraph consisting of a single vertex.

Some properties of twin-width; grid graphs

We conclude this section by collecting some properties of twin-width that we will rely on
later. The first one states that twin-width is monotonic under taking induced subtrigraphs
and is a simple consequence of the definitions (cf. [10, Section 4.1]).

▶ Proposition 5. If H is an induced subtrigraph of a trigraph G, then tww(H) ⩽ tww(G).

Smallness. An infinite class G of graphs is small if there exists a constant c > 1 such that
for every n ∈ N the class G contains at most n!cn labeled graphs on n vertices. The next
theorem says that every graph class of bounded twin-width—i.e., for which there exists a
constant C > 0, such that tww(G) ⩽ C for every graph G in the class—is small.

▶ Theorem 6 ([9, Theorem 2.5]). Every graph class with bounded twin-width is small.

Now let s be a non-negative integer. The s-subdivision of G is the graph subds(G)
obtained from G by subdividing each edge in E(G) exactly s times. A simple counting
argument together with Theorem 6 yields the following:

▶ Proposition 7. For any fixed integers k ⩾ 4 and s ⩾ 0, the class subds(Gk) of s-
subdivisions of k-regular14 simple graphs is not small, hence has unbounded twin-width.

This proposition follows from the adaptation of an argument given in the first paragraph
of [22, Section 3]. For completeness, we spell out this proof below.

Proof of Proposition 7. Let Nk(m) be the number of labeled k-regular simple graphs on
m vertices. Note that if Nk(m) > 0, then km is even; which we now assume. It is known
(cf. [41, Section 6.4.1]) that, asymptotically

Nk(m) ∼ exp
(

1 − k2

4

)
(km)!

(km/2)! · 2km/2 · (k!)m
= Ω

(
(km/2)!
(k!)m

)
. (1)

Further, let N
(s)
k (n) be the number of n-vertex graphs in the class subds(Gk) of s-subdivisions

of k-regular simple graphs. If a graph G ∈ subds(Gk) has n vertices, then n = m + km
2 s,

where m is the number of vertices of G of degree k. Note that such a graph G can be
obtained by first choosing a k-regular labeled graph H on m vertices, then ordering the

14 A simple graph G = (V, E) is k-regular if every vertex v ∈ V has degree deg(v) = k.



É. Bonnet and K. Huszár 5

remaining n − m = kms/2 vertices arbitrarily and evenly distributing them to the edges of
H according to some fixed ordering of E(H). It follows that

N
(s)
k (n) ⩾

(
n

m

)
· Nk(m) · (n − m)! = n!Nk(m)

m!
(1)= n! · Ω

(
(km/2)!

m! · (k!)m

)
. (2)

Since k ⩾ 4, we have km/2 ⩾ 2m. This, together with (2m)! ⩾ 2m(m!)2 and (2) implies

N
(s)
k (n) ⩾ n! · Ω

(
m!

(2 · k!)m

)
. (3)

Recall that m = 2n/(2 + ks). In particular, m is proportional to n. Hence m!/(2 · k!)m

grows faster than cn for any fixed constant c > 1. Thus the graph class subds(Gk) is not
small. ◀

Grid graphs. The d-dimensional n-grid P d
n is the graph with vertex set V (P d

n) = [n]d,
and {u, v} ∈ E(P d

n) for two vertices u = (u1, . . . , ud) and v = (v1, . . . , vd) if and only if∑d
i=1 |ui − vi| = 1. The next result states that tww(P d

n) ⩽ 3d irrespective of the value of n.

▶ Theorem 8 (Theorem 4 in [10]). For every positive d and n, the d-dimensional n-grid P d
n

has twin-width at most 3d.

The d-dimensional n-grid with diagonals Dn,d is the graph with V (Dn,d) = [n]d, and
{u, v} ∈ E(Dn,d) for two vertices u = (u1, . . . , ud) and v = (v1, . . . , vd) if and only if
maxd

i=1 |ui − vi| ⩽ 1. Now, for a given trigraph G = (V, E, R) we set red(G) = (V, ∅, E ∪ R).
In words, red(G) is the trigraph obtained from G by replacing every black edge of G by a red
edge between the same vertices. With this notation red(Dn,d) is the d-dimensional red n-grid
with diagonals, i.e., red(Dn,d) = ([n]d, ∅, E(Dn,d)). Clearly, tww(Dn,d) ⩽ tww(red(Dn,d)).

▶ Theorem 9 (Lemma 4.4 in [10]). For every positive d and n, every subtrigraph of the
d-dimensional red n-grid with diagonals red(Dn,d) has twin-width at most 2(3d − 1).

2.2 Background in topology

For general background in (combinatorial and differential) topology we refer to [42].

2.2.1 Simplicial and cubical complexes

Abstract simplicial complexes. Given a finite ground set S, an abstract simplicial complex
(or simplicial complex, for short) X over S is a downward closed subset of the power set 2S,
i.e., F ∈ X and F ′ ⊂ F imply F ′ ∈ X. Any element of X is called a face or simplex of X, and
for σ ∈ X the dimension of σ is defined as dim σ = |σ| − 1. The dimension of X, denoted
by dimX, is then the maximum dimension of a face of X. If dimX = d, we also say that X

is a simplicial d-complex. For 0 ⩽ i ⩽ dimX, we let X(i) = {σ ∈ X : dim σ = i} denote the
set of i-dimensional faces (or i-faces, or i-simplices) of X. The i-skeleton Xi =

⋃i
j=0 X(j) of

X is the union of all faces of X up to dimension i. Note that any simple graph G = (V, E)
can be regarded as a 1-dimensional simplicial complex XG with XG(0) = {{v} : v ∈ V } and
XG(1) = E. For 0 ⩽ i ⩽ 3 the i-simplices of a simplicial complex X are respectively called
the vertices, edges, triangles, and tetrahedra of X.
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Geometric realization of simplicial complexes. Every abstract simplicial complex X may
be realized geometrically as follows. To each abstract i-simplex σ = {v0, v1, . . . , vi} ∈ X

we associate a geometric i-simplex ∥σ∥ = [v0, v1, . . . , vi] ⊂ Ri defined as the convex hull of
i + 1 affinely independent points in Ri. We equip ∥σ∥ with the subspace topology inherited
from Ri. Next, we consider the disjoint union

⊔
σ∈X ∥σ∥ of these geometric simplices, and

perform identifications along their faces that reflect their relationship in X. The resulting
space ∥X∥, equipped with the quotient topology, is called the geometric realization of X, see
Figure 1. The geometric realization of a simplicial complex is unique up to homeomorphism.

▶ Theorem 10 (folklore; cf. [42, Theorem 3.15]). Let ∥X∥ be the geometric realization of
a d-dimensional simplicial complex X. Then there exists an embedding (i.e., a continuous,
injective map) f : ∥X∥ → R2d+1. Furthermore, f can be chosen to be simplex-wise linear.

▶ Remark 11. Theorem 10 generalizes the well-known fact that every graph admits a straight-
line embedding in R3.

Cubical complexes. Analogous to simplicial complexes, a cubical complex X over a ground
set S is a set system X ⊂ 2S that consists of “cubes” instead of simplices. The terminology
is the same as in the simplicial case. The only difference is that a geometric i-cube is
a topological space homeomorphic to [0, 1]i, where [0, 1] denotes the closed unit interval.

Cubical or simplicial complexes in this paper will typically be defined geometrically, and
as such they will naturally come with a geometric realization.

(a) Geometric i-simplices (i = 0, 1, 2, 3). (b) Geometric realization of a simplicial 3-complex.

(c) Geometric i-cubes (i = 0, 1, 2, 3). (d) Geometric realization of a cubical 3-complex.

Figure 1 The geometric perspective on simplicial and cubical complexes.

The hypercubic honeycomb. Let n and d be positive integers and consider the d-dimen-
sional cube [1, n]d ⊂ Rd. The d-dimensional hypercubic honeycomb Hd,n is a cubical d-
complex that decomposes [1, n]d into (n − 1)d geometric cubes. The properties of this
familiar object play an important role in this work, so we describe it for completeness. We
define Hd,n geometrically, in a bottom-up fashion. First, the vertex set Hd,n(0) consists of
precisely those points in [1, n]d, which have only integral coordinates. Next, a 1-cube (i.e.,
an edge) is attached along its endpoints to vertices u = (u1, . . . , ud) and v = (v1, . . . , vd) in
Hd,n(0) if and only if

∑d
i=1 |ui − vi| = 1. Thus the 1-skeleton Hd,n

1 is just the d-dimensional
grid graph P d

n encountered in the end of Section 2.1. Finally, the higher dimensional skeleta
of Hd,n are induced by its 1-skeleton: for each subcomplex Y ⊂ Hd,n

i isomorphic to the
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boundary of a (i + 1)-cube, we attach an (i + 1)-cube to Hd,n
i along Y. In words, starting

from the 1-skeleton Hd,n
1 , whenever we have the possibility to attach a cube of dimension

at least two (because its boundary is already present), we attach it. See, e.g., Figure 2.

Figure 2 Constructing the complex H2,5. Its 1-skeleton H2,5
1 is isomorphic to the grid P 2

5 .

Pure complexes and their dual graphs. A (cubical or simplicial) complex X is pure if
every face of X is contained in a face of dimension dimX. It follows that, for every i with
0 ⩽ i ⩽ dimX, the i-skeleton Xi of a pure complex X is also pure. Examples of pure
complexes include nonempty graphs without isolated vertices, or triangulations of manifolds
(see Section 2.2.3). Given a pure complex X, the dual graph Γ(Xi) = (V, E) of its i-skeleton
is defined as the graph, where the vertex set V corresponds to the set X(i) of i-faces, and
{σ, τ} ∈ E if and only if σ and τ share an (i − 1)-dimensional face in X, see Figure 3.

τ1
τ2

τ3τ4

τ5

τ6

(a) A pure simplicial 2-complex X formed
by six triangles τ1, τ2, τ3, τ4, τ5, and τ6,
four of which meet along a single edge.

τ1 τ2

τ3τ4

τ5

τ6

(b) The dual graph Γ(X2) of X2. As τ6
shares no edge with any other triangle in
X, its corresponding vertex is isolated.

Figure 3 Example of a pure simplicial 2-complex and its dual graph.

2.2.2 Barycentric subdivisions
Given a (cubical or simplicial) complex X, its barycentric subdivision is a simplicial complex
X′ defined abstractly as follows. For the ground set S′ of X′ we have S′ = X. A (k + 1)-tuple
{σ0, . . . , σk} ⊂ S′ forms a k-simplex of X′ if and only if σi ⊂ σj for every 0 ⩽ i < j ⩽ k. We
denote the 2nd (resp. ℓth) iterated barycentric subdivision of a complex X by X′′ (resp. X(ℓ)).
See Figures 4 and 5 for examples. The following are simple consequences of the definitions.

▶ Observation 12. For any 0 ⩽ l ⩽ k, the k-simplex has
(

k
l

)
l-faces.

▶ Observation 13. The barycentric subdivision of the k-simplex contains k! k-simplices.

▶ Observation 14. The barycentric subdivision of the k-cube contains 2kk! k-simplices.
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{a, b}{a} {b}

{c}

{b, c}{a, c}

{a, b, c}

{{a}} {{a, b}} {{b}}

{{c}}

{{b, c}}{{a, c}}

{{a, b, c}}{{a}, {a, b, c}}

{{c}, {b, c}, {a, b, c}}

(a) A triangle presented as a simplicial complex (left) and its barycentric subdivision (right).

{a, b}{a} {b}

{c}

{b, c}{a, d} {a, b, c, d}

{{a}} {{a, b}} {{b}}

{d} {c, d} {{c}}

{{b, c}}{{a, d}}

{{a, b, c, d}}

{{d}} {{c, d}}

{{c}, {b, c}}{{d}, {a, d}, {a, b, c, d}}

(b) A square presented as a cubical complex (left) and its barycentric subdivision (right).

Figure 4 The effect of barycentric subdivision on a triangle and on a square.

(a) H2,4 (b) (H2,4)′ (c) (H2,4)′′

Figure 5 The effect of two barycentric subdivisions on the 2-dimensional hypercubic honeycomb.

2.2.3 Manifolds and their triangulations
Manifolds—the main objects of interest in this paper—can be regarded as higher dimensional
analogs of surfaces. A d-dimensional topological manifold with boundary (or d-manifold, for
short) is a topological space15 M, where every point has an open neighborhood homeomor-
phic to Rd, or to the closed upper half-space {(x1, . . . , xd) ∈ Rd : x1 ⩾ 0}. The points of M
that do not have a neighborhood homeomorphic to Rd constitute the boundary ∂M of M.
If a manifold M satisfies ∂M = ∅, then M is called a closed manifold.

In this paper M always denotes a compact manifold.

Smooth manifolds. The main result of this paper (Theorem 1) applies for manifolds that
have an additional property, namely smoothness. As we will not need to work with the
actual definition of smoothness, but merely rely on it, we only give a brief definition here.

15 As a topological space a manifold is required to be second countable [42, p. 2] and Hausdorff [42, p.
87].
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For more background on smooth manifolds, we refer to [42, Chapter 5] and [32].
Given a connected and open subset U ⊂ M and a homeomorphism φ : U → φ(U) onto an

open subset of Rd, the pair (U, φ) is called a chart. Given two charts (Uα, φα) and (Uβ , φβ)
with Uα ∩ Uβ ̸= ∅, the map τα,β : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) defined via τα,β = φβ ◦ φ−1

α

is called a transition map. A smooth structure on a topological manifold M with ∂M = ∅ is
a collection A = {(Uα, φα) : α ∈ A} of charts that satisfies the following three properties.
1. The sets Uα cover M, that is

⋃
α∈A Uα = M.

2. For any α, β ∈ A with Uα ∩ Uβ ̸= ∅, the transition map τα,β is smooth.16

3. The collection A is maximal in the sense that if (U, φ) is a chart and for every α ∈ A

with U ∩ Uα ̸= ∅ the transition maps φ ◦ φ−1
α and φα ◦ φ−1 are smooth, then (U, φ) ∈ A.

A topological manifold together with a smooth structure is called a smooth manifold. By
an appropriate modification of property 2 above, the definition extends to manifolds with
non-empty boundary as well. We refer to [42, Section 5.1.1] for details.

Triangulations. Let M be a compact topological d-manifold. A simplicial complex T whose
geometric realization ∥T∥ is homeomorphic to M is called a triangulation of M. It follows
that T is a pure simplicial complex of dimension d (see Section 2.2.1). For d ⩽ 3, every
topological d-manifold admits a triangulation [40, 43], however, for d > 3 this is generally not
true (see [37] for an overview). Smooth manifolds can nevertheless always be triangulated,
irrespective of their dimension, e.g., by work of Whitney [46, Chapter IV.B] (cf. Section 3).

Given a d-dimensional triangulation T, recall that its dual graph Γ(T) is the graph with
vertices corresponding to the d-simplices of T, and edges to the face gluings, i.e, those (d−1)-
simplices of T that are contained in precisely two d-simplices. Note that deg(v) ⩽ d + 1 for
any vertex v of Γ(T). The proof of the following proposition is left to the reader.

▶ Proposition 15. Let T be a triangulation of a d-manifold M and U be a collection of
d-simplices of T that define a submanifold of M. Then Γ(U) is an induced subgraph of Γ(T).

3 Whitney’s method

A seminal result of Whitney states that a smooth d-dimensional manifold M always admits
a smooth embedding into a 2d-dimensional Euclidean space.

▶ Theorem 16 (strong Whitney embedding theorem [45, Theorem 5], cf. [32, Theorem 6.19]).
For d > 0, every smooth d-manifold admits a smooth embedding into R2d.

An important consequence of Theorem 16 is that smooth manifolds can be triangulated.

▶ Theorem 17 (triangulation theorem [46, Chapter IV.B], cf. [5, Theorem 1.1]). Every compact,
smooth d-manifold M embedded in some Euclidean space Rm admits a triangulation.

Next, we give a very brief and high-level overview of Whitney’s method of triangulating
smooth manifolds based on [46, Chapter IV.B] sufficient for our purposes. To the interested
reader we also recommend [5], where Whitney’s method is recast in a computational setting.

16 See [42, p. 185] for a discussion of (smooth) maps of manifolds.
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Triangulating smooth manifolds. Let M be a compact smooth d-manifold. By Theorem 16
there exists a smooth embedding ι : M → R2d. Given such an embedding, we choose a
sufficiently fine (with respect to ι) hypercubic honeycomb decomposition of R2d, denoted by
L0. Next, we pass to the first barycentric subdivision L of L0. (Geometrically, L is obtained
from L0 by subdividing each k-dimensional hypercube of L0 into (2k)!! simplices.) By slightly
perturbing the vertices of L we obtain a triangulation L∗ of R2d, which is combinatorially
isomorphic to L, but is in general position with respect to ι(M) ⊂ R2d. Now, by the work
of Whitney, L∗ induces a triangulation T of M, where, importantly, T is a subcomplex of
the d-skeleton of the barycentric subdivision (L∗)′ of L∗.

See Figure 6 for an illustration of this procedure for d = 1.

(a) The triangulation L and
the image ι(M) (blue). The
red points indicate the ver-
tices of L contained by ι(M).

(b) The perturbed triangula-
tion L∗, which in general po-
sition with respect to ι(M).

(c) The resulting triangula-
tion T of M (dark green). T
is a subcomplex of (L∗)′.

Figure 6 Illustration of Whitney’s method of triangulating ambient submanifolds (d = 1).

Similar to Proposition 15, the next proposition is a direct consequence of the definitions.

▶ Proposition 18. For any Whitney triangulation17 T of a compact smooth d-manifold M,
we have that the dual graph Γ(T) is an induced subgraph of Γ(((H2d,n)′′)d).

4 The proof of Theorem 1

In this section we prove our main result, i.e., every compact smooth d-manifold M has
twin-width tww(M) ⩽ dO(d). To streamline the notation, we let Gd,n = Γ(((H2d,n)′′)d), i.e.,
Gd,n denotes the dual graph of the d-skeleton18 of the second barycentric subdivision of the
hybercubic honeycomb H2d,n. The result is based on the following property of Gd,n.

▶ Theorem 19. For the twin-width of the dual graph Gd,n = Γ(((H2d,n)′′)d) of the d-skeleton
of the second barycentric subdivision of the hypercubic honeycomb H2d,n we have

tww(Gd,n) ⩽ dO(d).

Before proving Theorem 19, we show how it implies Theorem 1.

Proof of Theorem 1. Let M be a compact, smooth d-dimensional manifold. Consider
a Whitney triangulation T of M. By Proposition 18, Γ(T) is an induced subgraph of Gd,n

and by Theorem 19, tww(Gd,n) ⩽ dO(d). Hence, since twin-width is monotone under taking
induced subtrigraphs (Proposition 5), we obtain tww(Γ(T))) ⩽ tww(Gd,n) ⩽ dO(d). ◀

17 Recall that a triangulation T of a compact smooth manifold M is called a Whitney triangulation, if T
is obtained via Whitney’s method discussed in Section 3.

18 Recall that the dual graph Γ(X) of a pure k-dimensional complex X has vertices corresponding to the
k-faces of X and two vertices are connected if and only if their corresponding k-faces share a (k−1)-face.
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To complete the proof of Theorem 1, it remains to show Theorem 19.

Proof of Theorem 19. We establish the theorem by exhibiting a dO(d)-contraction sequence
S : Gd,n ⇝ •. We will obtain S by concatenating two contraction sequences S1 : Gd,n ⇝
G∗

d,n and S2 : G∗
d,n ⇝ •, referred to as the first and the second epoch, where G∗

d,n is an
appropriate subtrigraph of red(Dn,2d), the 2d-dimensional red n-grid with diagonals. In the
following we regard H2d,n and its subdivisions mainly as abstract complexes, but we will
also take advantage of their geometric nature.

Preparations. Consider the (2d + 1)-coloring C : H2d,n → {0, . . . , 2d}, where we color the
cubes of H2d,n by their dimension, that is, for c ∈ H2d,n we set C(c) = dim(c) (Figure 7a).

The coloring C induces a (2d + 1)-coloring C′′ : (H2d,n)′′ → {0, . . . , 2d} of the simplices
of the second barycentric subdivision (H2d,n)′′ as follows. The vertices of the first barycen-
tric subdivision (H2d,n)′ are in one-to-one correspondence with the cubes in H2d,n, hence
C induces a coloring C′

0 : (H2d,n)′(0) → {0, . . . , 2d} via C′
0(vc) = C(c), where vc denotes

the vertex of (H2d,n)′ corresponding to the cube c ∈ H2d,n (Figure 7b). Geometrically,
vc is in the barycenter of the cube c. When we pass to the second barycentric subdivi-
sion, the vertices of (H2d,n)′ become vertices of (H2d,n)′′, thus there is a natural inclusion
ι : (H2d,n)′(0) → (H2d,n)′′(0). Let V = im(ι) ⊂ (H2d,n)′′(0) be the image of (H2d,n)′(0)
under this inclusion ι. We color the elements of V identically to C′

0, that is, we consider
the coloring C′′

V : V → {0, . . . , 2d} defined as C′′
V(v) = C′

0(ι−1(v)), see Figure 7c. Now, pick
a simplex σ ∈ (H2d,n)′′ and note that

⋃
v∈V st(v) = (H2d,n)′′, i.e., the closed stars of the

vertices v ∈ V cover (H2d,n)′′. Let Vσ = {v ∈ V : σ ∈ st(v)}. We now define C′′(σ) as

C′′(σ) = min{C′′
V(v) : v ∈ Vσ}. (4)

In words, C′′(σ) is defined as the smallest dimension of any cube c ∈ H2d,n such that σ

belongs to the closed star of the vertex ι(vc) in (H2d,n)′′, where vc is the vertex of (H2d,n)′

corresponding to c. We refer to Figure 7d for an example.

The first epoch. We start the description of the first epoch S1 : Gd,n ⇝ G∗
d,n by consid-

ering the restriction C′′
d : (H2d,n)′′(d) → {0, . . . , 2d} of the coloring C′′ to the d-simplices

of (H2d,n)′′, see Figure 7e. Note that for each i ∈ {0, . . . , 2d}, the i-colored d-simplices
of (H2d,n)′′ form a family Fi = {Fi,c : c ∈ H2d,n(i)} of pairwise-disjoint connected sub-
complexes of the d-skeleton of (H2d,n)′′, where Fi,c denotes the subcomplex induced by the
i-colored d-simplices of (H2d,n)′′ belonging to the closed star of the vertex ι(vc), where vc

is the vertex of (H2d,n)′ corresponding to the i-cube c in H2d,n (Figure 7e). We also let
F =

⋃2d
i=0 Fi.

Since Gd,n is defined as the dual graph of the d-skeleton of (H2d,n)′′, the nodes of Gd,n

are in one-to-one correspondence with the d-simplices of (H2d,n)′′. Let γ : (H2d,n)′′(d) →
V (Gd,n) denote the bijection realizing this correspondence. Henceforth, by a slight abuse of
notation, we also consider C′′

d to be a (2d + 1)-coloring of V (Gd,n) via C′′
d(v) = C′′

d(γ−1(v)).
Let Ci,c denote the subtrigraph of Gd,n induced by the nodes {γ(σ) : σ ∈ Fi,c}. Note that
C′′

d assigns the color i to all nodes of Ci,c. The first epoch S1 : Gd,n ⇝ G∗
d,n is merely the

contraction sequence, where we contract each Ci,c (where 0 ⩽ i ⩽ 2d and c is running over
H2d,n) to a single node, in any order, obtaining a trigraph G∗

d,n (Figure 7f).

The second epoch. S2 : G∗
d,n ⇝ • is defined as an optimal contraction sequence of the tri-

graph G∗
d,n to a single vertex. Since G∗

d,n is a subtrigraph of red(Dn,2d), the 2d-dimensional
red n-grid with diagonals, by Theorem 9 the width of S2 is at most 2(32d − 1).
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(a) The coloring C of the cubes
of H2d,n by their dimension.

(b) The complex (H2d,n)′ with
its vertices colored by C′

0.
(c) The complex (H2d,n)′′ with
its vertices in V colored by C′′

V.

(d) The coloring C′′ near the up-
per left corner of (H2d,n)′′. The
four larger disks represent ver-
tices that belong to V.

(e) The coloring C′′ restricted
to the d-simplices of (H2d,n)′′.
The color classes correspond to
the families F0, F1 and F2.

(f) The trigraph G∗
d,n obtained

from Gd,n by contracting each
subtrigraph Ci,c to a single
node. All edges in G∗

d,n are red.

Figure 7 (a)–(c) Illustrations of the cubical complex H2d,n for d = 1 and n = 4, and of its
first and second barycentric subdivisions (which are simplicial complexes) displaying the colorings
described in the proof of Theorem 19. (d)–(f) Three essential steps in the proof of Theorem 19.
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Bounding the width of the first epoch. We now give a rough estimate to show that the
first epoch S1 : Gd,n ⇝ G∗

d,n is a dO(d)-contraction sequence. The estimate is based on
Claim 20 below, which follows from elementary properties of the hypercubic honeycomb
and barycentric subdivisions.

▷ Claim 20. For any color i ∈ {0, . . . , 2d} and cube c ∈ H2d,n, the subcomplex Fi,c of H2d,n

(resp. the subtrigraph Ci,c of Gd,n) defined above
1. has less than h1(d) = 4d((2d)!)2(2d

d

)
d-simplices (resp. nodes), and

2. less than h2(d) = 9d incident subcomplexes Fi′,c′ ∈ F (resp. adjacent subtrigraphs Ci′,c′).

Indeed, these two facts imply that by sequentially contracting each Ci,c into a single
node, the maximum red degree remains bounded by O(h1(d)3h2(d)) throughout the first
epoch.

Proof of Claim 20. To bound the number of d-simplices in Fi,c, note that
Fi,c is covered by an appropriate translate of a 2d-dimensional cube of H2d,
the barycentric subdivision of a 2d-cube contains 22d(2d)! 2d-simplices (Observation 14),
the barycentric subdivision of a 2d-simplex contains (2d)! 2d-simplices (Observation 13),
a 2d-simplex has

(2d
d

)
faces of dimension d (Observation 12).

Multiplying these numbers, we obtain the first part of the claim.
To bound the number of subcomplexes Fi′,c′ ∈ F incident to Fi,c, observe that the inci-

dences between these subcomplexes reflect those between the handles in the canonical handle
decomposition of H2d,n induced by its cubical structure. Thus, the number of subcomplexes
in F incident to Fi,c equals 32d − 1 if i ∈ {0, 2d} and 3i + 32d−i − 2 otherwise. Both of these
numbers are less than 9d, so the second part of the claim also holds. ◁

The width of S is the maximum of the widths of S1 and S2, hence tww(Gd,n) ⩽
dO(d). ◀

5 Triangulations with dual graph of arbitrary large twin-width

In Section 4 we showed that every compact, smooth d-manifold admits a triangulation with
dual graph of twin-width at most dO(d). In this section we prove complementary results,
showing that triangulations with dual graphs of large twin width are abundant. We shed
light on this fact in two ways. First, we show that for any fixed dimension d ⩾ 3, the
class of (d + 1)-regular graphs that can be dual graphs of triangulated d-manifolds is not
small. Second, we show that the d-dimensional ball admits triangulations with a dual graph
of arbitrarily large twin-width, which extends to every piecewise-linear (hence smooth) d-
manifold. Both of these results rely on counting arguments, and thus are not constructive.

5.1 The class of dual graphs of triangulations is not small
Let us fix an integer d ⩾ 3. Following [20], we let Md(n) denote the number of colored19

triangulations of closed orientable d-dimensional manifolds consisting of n d-simplices labeled

19 We refer to [20, Section 2.1] for the precise definitions. Since colored triangulations form a subfamily of
uncolored triangulations (those considered in this paper), any lower bound on Md(n) is automatically
a lower bound on the number of uncolored d-dimensional labeled triangulations with n simplices.
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from 1 to n. We assume for convenience that n is even. By [20, Theorem 1.1] we have20

n! · nn/(2d) ⪯ Md(n). (5)

Now, any (d+1)-regular graph G with n vertices can be the dual graph of at most d!n(d+1)/2

different d-dimensional triangulations. Indeed, if G is the dual graph of some d-dimensional
triangulation, then each of the n(d + 1)/2 edges of G corresponds to a face gluing, i.e., an
identification of two (d − 1)-dimensional simplices via a simplicial isomorphism, of which
there are d! many.21 Hence by (5), for the number Γd(n) of (d + 1)-regular graphs on n

labeled vertices that are dual graphs of some d-dimensional triangulations, we have

n! · nn/(2d)

d!n(d+1)/2 ⪯ Γd(n). (6)

As the left-hand side of (6) grows super-exponentially in n, the next theorem directly follows.

▶ Theorem 21. For every d ⩾ 3, the class of (d + 1)-regular graphs that are dual graphs
of triangulations of d-manifolds is not small. In particular, there are graphs with arbitrarily
large twin-width in this class.

5.2 Complicated triangulations of the d-dimensional ball
In this section we show Theorem 3, according to which every piecewise-linear (PL) d-manifold
(d ⩾ 3) admits triangulations with a dual graph of arbitrary large twin-width. To show the
existence of such triangulations for every PL-manifold, we rely on the monotonicity of twin-
width with respect to taking induced subtrigraphs (Proposition 5), the fact that the class
of d-subdivisions of (d + 1)-regular graphs is not small (Proposition 7) together with the
following classical result from the theory of PL-manifolds.

▶ Theorem 22 ([1, Corollary 1]). Any triangulation of the boundary of a compact piecewise-
linear (PL) manifold can be extended to a triangulation of the whole manifold.

We first show that already the d-dimensional ball Bd = {x ∈ Rd : ∥x∥ ⩽ 1} admits
triangulations with dual graph of arbitrary large twin-width. More precisely, we prove:

▶ Theorem 23. For every m ∈ N there is a triangulation Tm of the d-dimensional ball Bd,
such that tww(Γ(Tm)) ⩾ m and ∂Tm = ∂∆d, the boundary of the standard d-simplex ∆d.

Proof. Let Gm be a d-subdivision of a (d + 1)-regular graph G such that tww(Gm) ⩾ m.
The existence of such a graph is guaranteed by Proposition 7. Let N be a d-manifold
homeomorphic to a closed regular neighborhood of a straight-line embedding of G in Rd.
Informally, N can be seen as a d-dimensional thickening of the graph G.

Construct an abstract triangulation of N as follows. Take a d-simplex σv for each node
v of G, and fix a one-to-one correspondence between the d + 1 facets of σv and the d + 1
arcs incident to v in G. For every arc {u, v} ∈ E(G), take a simplicial d-prism P{u,v} =
σ{u,v} × [0, 1], where σ{u,v} is a (d−1)-simplex, and attach P{u,v} to the simplices σu and σv

by identifying σ{u,v}×{0} (resp. σ{u,v}×{1}) with the facet of σu (resp. σv) that corresponds
to the arc {u, v}. Now triangulate each prism P{u,v} with a minimal triangulation consisting
of d d-simplices stacked onto each other, see Example 25 below.

Let TN denote the resulting triangulation of N.

20 Here “⪯” denotes a comparison where exponential factors are ignored: more precisely, f(n) ⪯ g(n)
means that there exists some constant K > 0, such that for n large enough, we have f(n) ⩽ Kng(n).

21 This is because a simplicial isomorphism between two (d − 1)-simplices σ and τ is determined by
a perfect matching between the d vertices of σ and the d vertices of τ .
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▷ Claim 24. For the dual graph of the triangulation TN we have Γ(TN) = Gm.

Proof. The claim follows immediately from the facts that the dual graph of the constructed
triangulation of the simplicial d-prism is merely a path of length d, and Gm is the d-
subdivision of the (d + 1)-regular graph G on which the triangulation TN is modeled. ◁

Pick a sufficiently large ℓ ∈ N such that the ℓth iterated barycentric subdivision T
(ℓ)
N of

TN embeds linearly in Rd and fix a simplex-wise linear embedding E : ∥T(ℓ)
N ∥ → Rd. Consider

a large geometric d-simplex Σ ⊂ Rd that contains the image im(E) of E in its interior. Now
Σ◦ = Σ \ int(im(E)) is a PL manifold22 with triangulated boundary, so by Theorem 22 this
boundary triangulation can be extended to a triangulation TΣ◦ of the entire manifold Σ◦.
The boundary of TΣ◦ has two connected components: ∂1TΣ◦

∼= ∂(T(ℓ)
N ) and ∂2TΣ◦

∼= ∂∆d.
Let Q be a d-manifold homeomorphic to ∂TN × [0, 1]. Take a triangulation TQ of Q, such

that for the two boundary components we have ∂1TQ
∼= ∂TN and ∂2TQ

∼= ∂(T(ℓ)
N ). One way

to construct such a triangulation is as follows. First, consider the decomposition PQ of Q
into simplicial d-prisms induced by the product structure ∂TN × [0, 1]. That is, PQ consists
of d-prisms Pσ

∼= σ × [0, 1], one for each (d − 1)-simplex σ of ∂TN, glued together along their
vertical boundary prisms the same way as the simplices of ∂TN. The boundary ∂PQ of PQ

has two connected components: ∂1PQ and ∂2PQ, each combinatorially isomorphic to ∂TN.
Next, pass to the ℓth iterated barycentric subdivision of ∂2PQ. This operation turns each
prism Pσ of PQ into a polyhedral cell Rσ. These cells form a polyhedral decomposition RQ of
Q, where ∂1RQ

∼= ∂TN and ∂2RQ
∼= (∂TN)(ℓ) = ∂(T(ℓ)

N ). Triangulate Rσ as follows. Consider
an order c1 ≺ c2 ≺ · · · of the vertical cells23 of Rσ, where ci ≺ cj implies dim(ci) ⩽ dim(cj).
Place a new vertex vi in the barycenter of ci and, iterating over the vertical cells in the above
order, triangulate ci by coning from vi over its (already triangulated) boundary ∂ci. It is
clear that the resulting triangulation of Rσ is symmetric with respect to the symmetries
of its base simplex σ. Applying this procedure for each polyhedral cell Rσ of RQ yields
a triangulation TQ of Q with the desired properties.

Now the triangulation Tm of Bd is obtained by gluing together TN, TQ and TΣ◦ via the
identity maps along the isomorphic boundary-pairs ∂TN

∼= ∂1TQ and ∂2TQ
∼= ∂1TΣ◦ .

To conclude, note that the d-simplicies of TN triangulate a submanifold of ∥Tm∥, hence by
Proposition 15 the graph Γ(TN) is an induced subgraph of Γ(Tm). By Claim 24, Γ(TN) = Gm

and by the initial assumption tww(Gm) ⩾ m, hence by Proposition 5, Γ(Tm) ⩾ m as
well. ◀

Proof of Theorem 3. Let M be an arbitrary PL-manifold possibly with non-empty bound-
ary and T◦ be a simplicial triangulation of M. Consider a triangulation Tm of the d-ball with
tww(Γ(Tm)) ⩾ m as in Theorem 23. Let ∆ be a d-simplex of T◦ that is disjoint from ∂M (if
T◦ does not contain such a simplex, just replace T◦ with its second barycentric subdivision).
Since T◦ is simplicial, ∆ is embedded in T◦ and is topologically a d-ball. Now replace ∆
with Tm by first removing ∆ from T◦, thereby creating a boundary component isomorphic to
∂∆, then gluing ∂Tm to this new boundary component via a simplicial isomorphism. (Note
that this is possible since ∂Tm

∼= ∂∆.) Let T denote the resulting triangulation of M. By
Propositions 5 and 15, it follows that tww(Γ(T)) ⩾ tww(Γ(Tm)) ⩾ m. ◀

22 It is folklore that every codimension zero submanifold of a Euclidean space is a PL manifold, see, e.g.,
[33, p. 118] or [44, Remark 1.1.10].

23 These are precisely those cells that are not contained in the boundary of RQ.
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▶ Example 25 (triangulating simplicial d-prisms). Let σ be a (d − 1)-simplex with vertices
{v1, . . . , vd}, and let Pσ = σ × [0, 1] be its associated simplicial d-prism. Note that for the
vertex set of Pσ we have Pσ(0) = {(v1, 0), . . . , (vd, 0), (v1, 1), . . . , (vd, 1)}. A triangulation
of Pσ with d-simplices {σ1, . . . , σd} can be obtained as follows. We define σi iteratively,
through their vertex sets. First, set σ1 = {(v1, 0), . . . , (vd, 0), (v1, 1)}. Next, for 2 ⩽ i ⩽ d

the vertex set of σi is simply obtained from that of σi−1 by replacing (vi, 0) with (vi, 1).

(v1, 0) (v2, 0)

(v1, 1) (v2, 1)

σ1

σ2

(v1, 0)

(v2, 0)(v3, 0)

(v2, 1)(v3, 1)

(v1, 1)

Figure 8 The considered triangulations of the simplicial d-prism for d = 2 and d = 3.
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