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CRITICAL DIMENSIONS FOR POLYHARMONIC OPERATORS:
THE PUCCI-SERRIN CONJECTURE FOR SOLUTIONS OF
BOUNDED ENERGY

FREDERIC ROBERT

ABSTRACT. We prove a Pucci-Serrin conjecture on critical dimensions under
a uniform bound on the energy. The method is based on the analysis of the
Green’s function of polyharmonic operators with ”almost” Hardy potential

1. INTRODUCTION

Let B be the uniiball of R™ and let k& € N be such that n > 2k > 2. Consider
A € R and u € C?*(B) such that

ARy — A = |u|> ~2u in B (1)
u=0u=..=0"1u=0 ondB
where 2* := ni’;k A very interesting conjecture of Pucci and Serrin ([20], p58) is

stated as follows:

Conjecture 1.1. Let B be the unit ball of R™ and let k € N be such thatn > 2k > 2.
Assume that
2k < n < 4k.

Then there exists Ao(n, k) > 0 such that for all0 < X < Ao(n, k), any radial solution
to (1) 4s identically null.

Edmunds-Fortunato-Janelli [7] and Grunau [10] proved that there exists a pos-
itive radial solution to (1) for all A € (0, A;) when n > 4k, where A; > 0 is the
first eigenvalue of A¥ on B with Dirichlet boundary condition. In particular, the
expected range (2k,4k) is optimal. In this paper, we prove the following:

Theorem 1.1. Let B be the unit ball of R™ and let k € N be such that n > 2k > 2.
Assume that

2k < n < 4k.

Then, for any M > 0, there exists Ao(n,k, M) > 0 such that for all 0 < X <
Xo(n, k, M), any radial solution to (1) satisfying that ||ull2x < M is identically
null.

Concerning terminology, Pucci-Serrin defined that a dimension n > 2k is critical
if there exists Ag(n, k) > 0 such that any radial solution of (1) is identically null
when 0 < A < Ap(n, k). Theorem 1.1 proves the conjecture under any arbitrary
fixed bound on the Lebesgue’s norm.
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2 FREDERIC ROBERT

Here is a brief history of the problem. The conjecture turns to be true in the
following situations:

k =1 (Brézis-Nirenberg [4]);

k = 2 (Pucci-Serrin [20]);

k> 2etn=2k+1 (Pucci-Serrin [20]);

k> 2et 2k <n < 2k + 6 (Bernis-Grunau [2] and Grunau [11]).

In these situations, the proofs are based on Pohozaev-type identities for radial func-
tions. The larger k is, the trickier and longer the computations are and achieving
n < 2k+6 is a true "tour de force”. Moreover, beside the computational difficulties,
the methods in these papers do not seem enough to tackle the full conjecture (see
Grunau [11] for discussions on this issue).

The case of positive functions is interesting in itself. Grunau [12] proved the validity
of the conjecture when restricted to positive functions (weakly critical dimensions).
In this situation, the key is to test a solution u to (1) against a carefully chosen
positive polyharmonic function on B. The case of arbitrary sign-changing solutions
involved in the original conjecture, the one we address here, is much more involved.

As a final remark, we mention that Jannelli [14] has formalized the notion of critical
dimensions in a more general setting by connecting it to the LZ—integrability of
the Green’s function.

In the present paper, we adopt a new approach that is based on the concentration
analysis of families of solutions to (1): this permits to develop a method that is
uniform and independent of the value of the power k. This approach is particularly
relevant due to the critical exponent 2* that may tolerate an unbounded family of
solutions as A — 0: in this situation, this family should concentrate along explicit
profiles referred to as bubbles. The general theory for second-order problems (k = 1)
has been performed in Druet-Hebey-Robert [5] for positive solutions and was based
on the comparison principle, see also Hebey [13] for a modern point of view on such
issues. We refer also to Druet-Laurain [6] regarding a method for positive solutions
and to Premoselli [18] for a more recent and promising approach for sign-changing
solutions.

Due to the sign-change and to the lack of comparison principle when & > 2, we
develop tools based on Green’s representation formula for a linear equations. More
precisely, we rewrite (1) as Pu = 0 + {bdy conditions} where P = AF — \ — |u|?" 2
and we express u in terms of the Green’s function of P. The core and the bulk of
our analysis is to get a sharp pointwise control of this Green’s function, which is
the object of Theorem 5.2. This control is based on the regularity Lemma 6.1 for
solutions to linear equations with ”almost” Hardy-type potential.

Most of the analysis is valid for any elliptic operator like A¥ 4+ ...: the restriction
n < 4k and the specificity of A¥ — X are used only for the final argument involving
the Pohozaev-Pucci-Serrin identity. We will make an intensive use of the elliptic
regularity of the reference Agmon-Douglis-Nirenberg [I]. For the convenience of
the reader, the last section 7 is a collection of results contained in [1].

Notations: C(a,b,...) will denote any constant depending only on a, b, .... The same
notation might refer different constants from line to line, and even in the same line.

Acknowledgement: The author thanks Emmanuel Hebey for remarks and comments
on this work.
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2. PRELIMINARY ANALYSIS

We prove Theorem 1.1 by contradiction. We fix M > 0. If Theorem 1.1 is not
true, then there exists a sequence ()\;)ien € Rsg and (u;)ieny € C?F(B) radially
symmetrical such that

AFy; — Nu = |ui|2*_2ui in B
u; = Oyu; =...= 0 u; =0 on OB
u; #0 (2)

In order to simplify the exposition, we assume that there exists Ag > 0 such that
for all 0 < A < ), there exists uy € C?*(B) radially symmetrical such that

Akuy — duy, = |uA|2**2uA in B
uy = 0yuy =...= 0" luy =0 ondB 3)
U 7_é 0
[ulle < M

We are performing an analysis of uy as A — 0. All the results and statements
will be up to the extraction of subfamilies, although we will always refer to uy. A
preliminary remark is that uy € C**+19(B), 0 < 0 < 1, due to elliptic regularity.

2.1. Sobolev spaces and inequalities. For any 2 C R" a smooth domain,
p > 1and I € N, we define Hf'(Q) (resp. H[((Q2)) as the completion of {u €
C>(Q) s.t. [Jul[gr < oo} (resp. C°()) for the norm u — [lul|gr =3, [Viull,.
Given a finite set S C 2, we define L (Q\S) = {u:Q = Rs.t. nu € LP(Q) for all n €

C=(R™\ S)}, HY (N S) = {u: Q' R s.t. nu € H(Q) for all n € C(R"\ 5)}
and Hp,.(Q\ S) = {u: Q =R/ s.t. nu & Hf;(?) for all n € C(R™\ S)}. This
notation is a bit abusive since 2\ S is open, but there will be no ambiguity in this
paper. In the specific case p = 2 and € is bounded, note that on HE,O(Q), [RRIPE
is equivalent to u — ||A¥/2u||y. Here and in the sequel, Az = VAT when i is
odd. Note that for u € C?*(Q) and Q a smooth bounded domain of R” or € is a
half-space, then {u € H,ao(Q)} s {u=0,u=..=01u=0on 00}

We let D?(R") be the completion of C2°(R") for the norm u — [|AF/2u|ly. It
follows from Sobolev’s theorem that there exists K (n, k) > 0 such that

2

</n Ju* dff) " < K(n,k)/ (Agu)2 dz for all u € DE(R™). (4)

n

As one checks, this inequality is a also valid for all u € Hy ().

Lemma 2.1. Let (uy)aso € C?*(B) be a family radially symmetrical solution to
(3). Then limy_g ||ux|loo = +00.

Proof. We argue by contradiction. If the conclusion does not hold, then there exists
C > 0 such that ||uy|jeo < C for all A > 0. It follows from elliptic theory (Theorems
7.1 and 7.2) that ||ux]|ger.1/2 < C for all A > 0. It then follows from Ascoli’s theorem
that there exists ug € C?*(B) such that limy_,0 ux = ug in C?*(B). Passing to the
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limit in (3) yields
AFyy = \uO\Q**Quo in B
_ S ()
ug = Oytig = ... =0, 'ug=0 ondB
It then follows from Lazzo-Schmidt (point (a) of Corollary 3.10 of [15]) that ug = 0.
Multiplying (3) by wy, integrating by parts and using Holder’s inequality yield

/(Ak/zu,\)de:/ u,\Aku,\dx:)\/ uidx+/ lua|?" dz < CA[Jux|l2. + [luallZ.
B B B B

With the Sobolev inequality (4) and using that uy # 0 and uy € H,E,O(B), we get

that K (n, k)~! < CA+|lux||% 2. Passing to the limit A — 0 and using that ug = 0,
we get a contradiction. This proves the Lemma. |

Note that as a consequence of the preceding argument, (uy )y is bounded in H,iO(B),
that is there exists C'(M) > 0 such that [[ux[|z2z < C(M) for all A > 0.

Lemma 2.2. Let (yx)x € B and (rx)x>o0 € Rso be such that limy_, r;1|y)\\ = +o0.
Then
iig% lux|?" da = 0.
By, (yx)NB

Proof. Let us fix N € N. There exists a group of isometries of R", say G, such that
#G > N and there exists ey > 0 such that d(o(e1),7(e1)) > ey for all 0,7 € G,
o # 7. Here, e; is the first vector of the canonical basis of R™. Therefore, as one
checks, By, (0(yx)) N By, (7(yx)) = 0 for all 0,7 € G, ¢ # 7 and A > 0 is small
enough. With the invariance of uy under the action of the group G, we get that

M* > / lux|? dxz/ lua|? dx
B U(TEG B7‘>\ (U(yk))nB
= jul?' do = 4G usl? da
ceG Y Bry(o(yx))NB By, (yx)NB
and therefore
. M
/ lua|?” dr < —— as A — 0.
Bry (y)NB N
Since this is valid for all N, the conclusion follows. [l

Lemma 2.3. Let (uy)xso € C?*(B) be a family radially symmetrical solution to
n—2k

(3). Then there exists C' > 0 such that |x| "2 |ux(z)| < C forallz € B and A — 0.

n—2k

Proof. We prove the lemma by contradiction. We set wy(x) := |z|” 2 |ux(x)| for
all z € B and A > 0. Let us assume that
wy(yr) := sup wy(x) = o0 as A — 0.
zeB

We define r) = |u,\(y>\)|_ﬁ. We have that

M:u)A(yA)ﬁ%ooand rxy— 0as A — 0. (6)

A
Case 1: assume that

d B
lim M = +4o0. (7)

A—=0 DY
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We define B

n—2k —

oa(x) =71, 2 ur(yn +raz) for x € . LY
A
A change of variable in (3) yields
* B -
AFvy — Aoy = oy "2uy in 29 (8)

D)

It follows from the definition of y, that

n—2k n—2k B —
[t fua(ya + )| < a7 Jua ()] for v € =2,
and then
n—2k
2 —
LS lua(z)] <1 for x € LY
lual [yl A

We fix R > 0. It follows from (7) and the above inequality that there exists Ar > 0
such that

B—
Bgr(0) C A and |vx(z)] < 2 for all z € BR(0) and 0 < A < Ag.

With (8), it then follows from elliptic theory (Theorems 7.1 and 7.2) and Ascoli’s
theorem that there exists v € C?*(R™) such that limy_,o vy = v in C?*(R™). Given
R > 0, with a change of variable, we get that

/ |’UA|2* dr = / |’U,)\|2* dx.
Br(0) Brry (yx)

It follows from Lemma 2.2 and (6) that passing to the limit yields fBR(O) [v]* dz =0

for all R > 0, so that v = 0 since it is continuous. However, since |vy(0)] = 1, we
get that |v(0)| = 1, which contradicts v = 0. This ends Case 1.

Case 2: 5
d B
i 4, 9B)
A—=0 X
Up to a rotation, we then get that

=p € [0, +00).

lim
A=0 Ty

2 = (=00, p) x R"™1,

The proof is then similar to Case 1 by working on this half-space. We leave the
details to the reader. This yields also to a contradiction.

In both cases, we have gotten a contradiction, which proves the Lemma. O

Lemma 2.4. Let (up)aso € C%LE) be a family radially symmetrical solution to
(3). Then limy_,ouy =0 in C?*(B\ {0}).

Proof. It follows from Lemma 2.3 that for all § > 0, there exists C'(§) > 0 such
that |ux(z)| < C(6) for all A > 0 and = € B\ B;s(0). It follows from elliptic theory
(Theorems 7.1 and 7.2) and Ascoli’s theorem that there exists ug € C?*(B\ {0})
such that limy_,o uy = ug in CZX(B\ {0}). Since [uxl[zz < C(M) for all A > 0, we
also get that ug € Hj, o(B) and uy — ug weakly in Hf ((B). Passing to the limit
A — 0 in (3), we get that ug is a weak solution to (5). Regularity theory (see Van
der Vorst [23] and Theorems 7.1 and 7.2) yields ug € C?*(B) is a strong solution
to (5), and then uy = 0 by [15] since it is radial. This proves the Lemma. O
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We will make use of the following classification:

Theorem 2.1 (Swanson [22]). Let k,n € N be such 2 < 2k < n. Let u € D}(R")

be a distributional solution to AFu = |u[* ~2u in R™. Assume that u is radially
symmetric. Then there exists p > 0 and € € {—1,0,4+1} such that
n—2k

1
k

M 2 k-1 A\
— s h = (H_ 2 )
u(z) =€ <M2 n an,k|$|2> where a, i k(n+2j)

Proof. Although Swanson’s Theorem 4 in [22] is only stated for positive functions,
the proof is working for any functions. More precisely, if u(0) # 0, we follow exactly
Swanson’s proof. If 4(0) = 0, the arguments of Swanson (Lemma 7) yield u = 0. O

n—2k

Lemma 2.5. Let (yx)x € B be such that limyx_0|ya| 2 |ua(yr)| = ¢ € (0,400).
Then there exists (ry)x € (0,400) such limy_oryx = 0, limy_ r;1|y>\| =c e
(0, +00) and
n—2k
lim 7= ua(ra) = U in CEL(R™ \ {0)), (9)
—
for some € € {—1,4+1} where
n—2k
1 i Iz eR 10)
Uiz)=|——""= "
(z) TF an o for all z € (

Proof. 1t follows from Lemma 2.4 that yy — 0 as A — 0. We set sy := |y,| and we
n—2k
define W (z) := s, > wux(saz) for x € By/,,(0) and A > 0. Lemma 2.3 yields

(Wa(2)] < Cla|™ "= for all & € By, (0) and A > 0. (11)
A change of variable in (3) yields
AFWy = As3¥Wy = W2 72Wy in By, (0). (12)
Due to elliptic theory (Theorems 7.1 and 7.2) and Ascoli’s theorem, (11) and (12)
yield the existence of W € C?¥(R™ \ {0}) such that

lim Wy = W in C2X (R™\ {0}).
A—0

Since W)y (IZ%I) = Jyal "= ua(y»), passing to the limit A — 0 yields |W (Yp)| = ¢ >
0 where Yy := limy_,q lz—il Therefore W % 0.

We prove that W € DZ(R"). Let us fix [ € {0,...,k}. It follows from Sobolev’s
embedding that there exists C(I,k,n) > 0 such that

2

. PHO)
([196r0a)™ < et [ @22 i (13)
B B
for all ¢ € H} ((B), where 2*(I) := % Given R > 0, with a change of

variable, we get

2 2

2% (1) 2% (1)
(/ Vi, 20 dx) = </ |V 2O dac)
Br(0)\Bg-1(0) Brry (0)\Bg-1,., (0)

C’(l,k,n)/ (A*2uy) 2 de < C
B

IN
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since [luxl/ g2 is uniformly bounded. Letting A — 0 and R — +o0 yields VW | €
L¥(O(R™). We now let n € C°(R") be such that n(z) = 1 for € B;(0) and
n(xz) = 0 for x € R™\ By(0). For R > 0, we define Wg(z) := (1 — n(Rx)) n(5)W(x)
for all 2 € R™. Since |[V'W| € L¥O(R™) for all I € {0,...,k}, one gets that
(Wg)r is a Cauchy family in D(R™) as R — +o0, so it has a limit in DZ(R") as
R — 400, and then W € D?(R™). So Theorem 2.1 yields the existence of ¢ > 0
and € € {—1,+1} such that

n—2k
2

t n
W(]}) =€ <t2_’_a’mk|x|2) for all = e R".

Therefore, setting 7y := tsy, we get the conclusion of the Lemma. [l
3. SHARP ANALYSIS AT THE FURTHEST SCALE

Proposition 3.1. Let (uy)x € C**(B) be a family of solutions to (3). Then there
exists (va)x € (0,400) and ¢y € {—1,+1} such that

lim vy = 0;
A—0
n—2k
lim v, ux(va7) = €U in CRL(R™ \ {0}); (14)
—
n—2k
lim lim sup |z] 72 |ua(z)] = 0.

R—+400 A=0 3 B\ Bg,,, (0)

Proof. Given N > 1, we say that (% x) holds if there exists (px,1)a,---» (A, N)x €
(0, +00) such that

lim A0 Oforalli=1,..,N —1and lim pyny =0,
A=0 [UX 41 A—0
and that for all 7 € {1,..., N}, there exists ¢; € {—1, 41} such that

n—2k

(R™\{0}) where vy ;(z) := py 7 ux(pa,iw) for all z € By, ,(0),

lim vy ; = ;U in CZF
A—0

while for ¢ = 1, this convergence holds in C* (R™).
Step 1: We claim that (#;) holds.
We prove the claim. We define zy € B and py 1 = py = |u,\(x,\)|_ﬁ where
lux(zx)] = supp |ux|. We define
n—2k

Un(w) := py > ux(paz) for all z € By, (0). (15)
It then follows from elliptic theory (Theorems 7.1 and 7.2) that there exists Ue
C?k(R™) such that limy o Uy = U in C?¥(R") and A*U = |[U|*"~2U. The defini-

loc

ton of py and Lemma 2.3 yield |z)| < Cuy, so there exists Xy € R™ such that
hm’\”(’% = Xg. We have that |U/\(;%)| = 1, so that, letting A — 0 yields

\U(XQ)| = 1. Therefore U # 0 and |U| < |U(z¢)| = 1. As in Lemma 2.5, we get
that U € D?(R") and Theorem 2.1 yields the conclusion.

Step 2: Assume that (Hy) holds for some N > 1 and that

. . n—2k
lim lim sup |z] 2 |ur(z)| > 0. (16)
R—+400 A—0 IGB\BR,L)\,N (0)

Then (Hy41) holds.
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We prove the claim. It follows from (16) that there exists (yx)x € B such that
l‘;i*}lr = +o00 and limy_g |y, S lua(yn)| = ¢ > 0. We define py ny1 1= 7,
where ) > 0 is given by Lemma 2.5. As one checks, we get that (% 1) holds.

The claim is proved.

limy ¢

Step 3: We claim that there exists C'(M,n, k) > 0 such that if (Hy) holds, then
N < C(M,n,k).

We prove the claim. For any i € {1,..., N}, we get that

lim lim lux|* dr = lim lim loi|* da
R—+400 A—0 BRMAJ(O)\BR_l,U\i(O) R—+00 A—=0 BR(O)\BR—l(O)
= U? dx
]Rn

Since the N domains Bgy, ,(0) \ Br-1,, ,(0) are distinct for A — 0, we get that

N
Z/ lux]? dac:/ lux)? dxg/ lua|? de < M?".
=1 BRHA,i(O)\BR—luk,i(O) U BRHA,i(O)\BR—l,,)\’i(O) B
And then N < C(M,n, k) with C(M,n, k) := fMUiz;idx This proves the claim.
e

Step 4: We conclude the proof of the Proposition. We let N > 1 be maximal such
that (Hy) holds: the existence follows from Step 2. It follows from Step 1 that

lim lim sup || = lux(z)| = 0.
R— 400 /\_>0‘7"€B\BRM>\,N(O)

Therefore Proposition 3.1 follows by taking vy := pa n- O

Proposition 3.2. Let (uy)x € C%*(B) be a family of solutions to (3), and let (vy)x
be as in Proposition 3.1. Then for any v € (0,n —2k), there exists C > 0 such that

n—2k
5
lux(z)] < Cﬁwm for all z € B\ B,, (0) and A — 0. (17)
X

Proof. We fix R > 0 and we define V) := 1p\p,, o |ur|* 7% so that
(AF — X = Vy)uy = 0in B\ Bagy, (0).

Let 11, > 0 be as in the statement of Theorem 5.2. It follows from Proposition 3.1
that there exists R = R, > 0 such that

| X?¥IX + V()| < py for all 2 € B and A > 0 small enough.
We let G be the Green’s function for A¥ — X — V) on B with Dirichlet boundary

condition given by Theorem 5.1 with the pointwise controls of Theorem 5.2. We
choose = € B such that |z| > 3Rvy. Since (A* — X — Vy)uy = 0, we get that
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wie) = [ g G A Vaurdy
2Rv)y
+/ D (0 A uNAFTITIG (3, ) — AMun0, AT TG () do
d(B\Bzru, (0)) ;=
_ Z/ v1+2zU)\*VZ(k_1_Z)G,\((E,') —|—V2ZU)\*V?1J+2(I€_1_1)G>\($,-)
i=0 Y 9B2rv, (0)

where T'x S denotes any linear combination of contractions of the tensors 7" and S.
For all j =0,...,2k — 1, it follows from the convergence (14) that
. _n—2k _ .
IViur(y)| < Cvy, 2 7 for y € OBary, (0).
The pointwise controls of Theorem 5.2 and (51) yield
|V§G(x, y)| < C’|y|77*j|x\2k7"+"Y for all x € B\ Bsgy, (0) and y € 0Bagy, (0).

Therefore, we get that
n—2k _
un(z) < COvy, > 27" for all x € B\ Bsgy, (0).
The validity of this inequality on Bsg,, (0) \ By, (0) is a consequence of (14). This
proves Proposition 3.2. O

Proposition 3.3. Let (uy)x € C%*(B) be a family of solutions to (3), and let (vy)x
be as in Proposition 3.1. Then for any w CC B, there exists C > 0 such that

n—2k

lux(z)| < C\ZT”*% for all z € w\ By, (0) and A — 0, (18)

and

fn - g dx) Gol0,) in CZA(B\{0})  (19)

.y
lim o — H = €0 <
2 R
A

where Gy(0, ) is the Green’s function for A* on B with Dirichlet boundary condi-
tion. In particular A*H =0 in B\ {0}.

Proof. Let us fix € w such that |x| > 4vy. Let G be the Green’s function of
A¥ — X in B with Dirichlet boundary condition. The existence follows from Theorem
5.1. Green’s representation formula yields

uy(z) = Gi(z,y)|u " dy = 2
A7) /B A, y)|ua(y)] A(y) dy /|w_y|>|z/2+/z—y|<w/2 20

We estimate these terms separately. Regarding the second term of (20), for y € B
such that |z —y| < |z|/2, we have that |y| > |z|/2 > 2v\, and we apply (17) and
we use (96) to get

/ G () ua (1) ~2u(y) dy
lz—y|<|z|/2

(25 -)(2"-1) nge 2k—7(2"~1)

_n V 14 1%
< C _ 2k—n “\ d < C A . A 21
< o yl< o2 lz—y |z|(n—2k—1 (2" =1) Y= |z|n—2k 7| (21)
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We split the first term of (20) in three parts. First, using the pointwise control
(96), Holder’s inequality and ||uy|j2x < M, we get

/ G,y [ur ()] 2 (y) dy
{lz—y|<lz|/2}n{|ly|<R~1vr}

<

/ & =y ()2 dy
{lz—y|<lz|/2}n{|ly|<R~1vr}

< e / () dy
1

R=1uy

1 —1
Pia =
< Cla? / dy / lux(y)|* dy
Br-1,, (0) BR71V)\(0)

n—2k
2
n—2k V)\
2

S C|x|2k7n (Rfly)\)"T = CR™

|$‘n—2k

Now, using (96) similarly and the pointwise control (17), we get

Gz, y)lur(m)* ~ua(y) dy

/{Iw—y<ll‘|/2}ﬂ{yZRw}

<

/ & — y2Fun ()2 dy
{lz—yl<|z|/2}{]y|>Rvr}

(7»—22k —)(2F 1) |x|2k7n n—2k

< 2k—n Yy
< Clz| /B\BR,,A(O) |y|(n—2k—)(2*~1) = 7 R2k—v(2*-1)

(23)

for v < 525 . Taking R = 1 and plugging (21), (22), (23) in (20), we get (18).

We fix © € B such that = # 0, so that all the preceding estimates hold. For any
R > 0, with a change of variable, we have that

/ G, ) |ua ()2 ~2un(y) dy
{lz—yl<|z|/2}NBRruy, \Bgr-1,, (0)

_ / G () ua ()| ~2ux (y) dy
BR”A\BR_luA (0)

n—2k

=v,? / GA(x,VAZ)\UA(z)\Q*_QU)\(z) dz.
Br\Bj—1(0)

Independently, given x € B\ {0}, the definition and uniqueness of Green’s functions
of Theorem 6.1 combined with the integral bound (38) yields the convergence of
(Ga(z,))a to Go(z,-) uniformly in CP (B \ {z}) as A\ — 0. Therefore, (14) yields

n—2k
2

lim lim v, /
R=rfo0 A=0 {lz—y|<|2|/2}NBriy \By-1,, (0)

= € (/ Uzt dx) Go(0,z).

Gz, y)lur@)* ~2ua(y) dy
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Combining this latest limit with (21), (22), (23) and (20), we get the pointwise

limit in (19). The convergence in C?* is consequence of elliptic theory (Theorems

7.1 and 7.2). This ends the proof of the Proposition. (]
4. CONCLUSION VIA THE POHOZAEV-PUCCI-SERRIN IDENTITY

The following identities are essentially in Pucci-Serrin [19] and are generalizations
of the historical Pohozaev identity [17]. We recall them for the sake of completeness.
The first lemma is a straightforward iteration:

Lemma 4.1. For any v € C*(Q), where Q is a domain of R™, we have that
AP(2'0;v) = 2pAPv + 210; APy for allp € N and
;AP (2'9v) = (2p + 1)9;APv + 2°0;(0;APv)  forallpeNand j=1,..,n. [~
These identities rewrite A2 (¢'9;v) = IA2v + 210;(A2v) for alll € N.

Proposition 4.1. Let Q C R™ be a smooth bounded domain with 2 < 2k < n.
Then for all u € C***1(R™) and ¢ € R, we have that

/Q (Aku - C|u|2**2u) T(u)dx = /89 <(x,1/) <|A’52u|2 - C|I2{2*> + S(u)) do

where T'(u) == 222y + 2'0;u and

B(k/2)—1
S(u) = Z (=0, AP AT (u) + AR 0, AT (u)) (24)
=0

k-1 k=1
_1{k Odd}ay(A 2 ’U,)A 2 T(u)

Proof. Integrating by parts, for any [ € N, [ > 1, U,V € C?(R"), we have that

/(AZU)VdX:/U(Alv)dXJr 3(1)(U’V)dg (25)
Q Q Ele)
where
-1
BOW,V) =3 (-0,A7 WAV + A-LU9,AY) (26)
=0

We first assume that k = 2p is even, with p € N. Using Lemma 4.1, we get

/ (Aku - c\u|2*_2u> T(u)dx = | APuAPT(u)dx + BP) (AP, T(u)) do
Q Q a0

- 2k * - O 2
- (n / c|u\2 dx Jr/ cxlia [ul da:)
2 Q Q 2%

= / AP (ﬁApu—&—xi@i(Apu)) dx + BW) (APu, T(u)) do
0 2 o0

_ 2*
- (n 2]€/<3|u\2 dac——/c|u|2 dx—|—/ (x’y)c|ul dx)
2 Ja o9 2
% P 2%
:/ai (M) d:c+/ B (AP, T(u do—/ C‘”'
Q 2 o)

D,,\2 2*
20 2 2%
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which proves Proposition 4.1 when k is even. When k = 2¢q + 1 is odd, we get that
/ AfuT(u)de = / AN AT )T (u) de
Q Q

= / ATYWAIT(u)de + | BO(AY u, T(u)) do
Q o0

/ > 0;(AM)0; (AT (u)) da
@y
+/ (B(q)(Aq+1u,T(u)) - GZ,(Aqu)AqT(u)) do
o0
Using Lemma 4.1, we get that
k — (A4 LW 19 9. A4
/QA uT(u)dx/sz:aj(A w) (zajA u+ 29,0, A u)
+ / (B(q)(Aq+1u,T(u)) - 8V(Aqu)AqT(u)> do
o0

- /Q o; (;UW) d + /a ) (B (AT 0, T(w) ~ 0,(ATW)AIT () do

= /a @ ”)M do + /8 ) (B(‘”(Aq“u, T(u)) — 6‘V(Aqu)AqT(u)) do

Using the same computations as in the case when k is even, we get the conclusion
of Proposition 4.1. O

We fix § € (0,1). Since uy solves (3), Proposition 4.1 yields

N
)\/ u)\T(uA)dx:/ (z,v) - + S(uy) | do (27)
B;(0) 9B5(0) 2 2z

where T'(uy) and S(uy) are as in (24).

Proposition 4.2. Let (uy)y € C?*(B) be a family of solutions to (3), and let (vy)x
as in Proposition 3.1. Fiz 0 < § < 1. Then there exists A € R such that

lim V2k_"/ (z,v) A w2 - N +S(uy) | do=A<0 (28)
A—=0 A 9B;(0) ’ 2 2%

_n—2k

Proof. Setting uy :=v, > wuy and using (19), we get that

ko2 2*
/ (z,v) Aruml |u,\l + S(uy) | do
9B5(0) 2 2
£ )2 = 2F
= yf’%/ (z,v) RSN vk ‘u)‘*‘ + S(ay) | do
9B5(0) 2 2
k2
2k (/ ((w) <|A H] ) +S(H)> d0+0(1)>
985 (0) 2
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It follows from Boggio’s formula [3] (see also Lemma 2.27 in [8]) that there exists
Ap n > 0 such that

1/|x|
Go(z,0) = Ak,n|x|2k_”/ (? = DE 1l gy
1
for all z € B\ {0}. Therefore, since €y [, U ~!dz # 0, there exists 3 € C**(B)
and « # 0 such that
H(z) = o (T'(z) + B(z)) for all z € B\ {0}, T'(z) := |z|** ™ and £(0) < 0.
We then get that

. - ASuy2 Juy*
lim 2% "/ T,V | Al _ + S(uy) | do = Cs 29
lim 13 8&@Q (1Bl ) s (29)

where Cj := a2/ ((x, v) (W) +S5T+ 5)) do.
dB5(0)

Applying Proposition 4.1 to I' + 8 on B;s(0) \ B,.(0) for 0 < r < § with e = 0 and
f =0, we get that Cy is independent of the choice of 0 < § < 1. We compute the
different terms of Cy separately. Using that 8 and all its derivatives are bounded
in B, we get that

£ 2 2
/ (@) 22EHBE / (.22 4o 1 0 (%) + 0™
9B5(0) 2 9B5(0) 2

We let Sp be the natural bilinear form such that S(u) = Sp(u,u) for all u. With
the expression (24) of S, we get that

ST+p) = Sp(,I)+Sp(I,B)+Sp(B,T)+ Sp(B,B)
= S(I) = (B,AM'D)T(B) + O(|«*~™)
With (89), we get that

n — 2k n n
S+ 5) = S(0) + 52 B(O)af " + O(fof*~")
These identities yield
—2k)a?
Cs = a2D5 + "2 50y 1 0(s)
2wn71
where
AsTJ?
D, = / ((x, Y —iiign S(F)) do
9B,(0) 2

for all » > 0. Taking the identity of Proposition 4.1 for ¢ = 0, v = I' so that
AFy = 0 and Q = B1(0) — B,(0) for 0 < r < 1, we get that D, = D; for all
0 < r < 1. A quick computation yields the existence of Dy, € R such that

AT
<|x|| 22 | + S(F)) = Dpn|x|** 172" for all z € R™\ {0},

so that D, = kawn_lrzk*" for all 0 < r < 1. Since this quantity is independent
of r, we get that Dy , = 0, so that Ds = 0 for all 6 > 0 and then
n — 2k)a?
¢y = =20 50y 4 0(s),

2anl
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Since Cs is independent of §, using (29), we get (28) with A = %ﬁ(m <0. O

Proposition 4.3. Let (uy)y € C?*(B) be a family of solutions to (3), and let (vy)x
as in Proposition 3.1. Fiz 0 < < 1. Then

/ urT(uy) dz = Oy~ %) if 2k < n < 4k. (30)
Bs(0)

Proof. Integrating by parts, we get that

_9 ,
/ uT(uy)de = / uy (n kuA + x@ﬂu) dx
B5(0) B5(0) 2

= —k:/ ul dx —|—/ (z,v)u3 do
B;(0) 0B5(0)

With Holder’s inequality and the pointwise control (18), using that n < 4k, we get

/ u de < / ul dx+/ Y2k | 2R gy
B5(0) By, (0) B;(0)\Bu, (0)

2* -2 2

= 3%
< (/ dx) </ uy d:c) +/ V2R g 2R g
B, (0) B, (0) B5(0)\By, (0)
< Cuvik +/ 1/;1_2’“\;1:|2(2k’”) dr < Cz/f\L_Qk
B5(0)\Bu, (0)
since n < 4k. The result then follows from these estimates and (19). g

Conclusion of the argument and proof of Theorem 1.1. Putting (28) and
(30) into the identity (27), we get that o(¥} %) = (A+0(1))vy ™ as A — 0, which
contradicts A # 0.

5. GREEN’S FUNCTION FOR AN "ALMOST”’ HARDY OPERATOR

Let © be a smooth domain of R™ and let & € N be such that 2 < 2k < n. Given
h € L>=(), we consider operators like P = AF + h. Integrating by parts yields
JquPudx = [, ((Agu)2 + huz) dz for all u € C°(Q), so that this expression
makes sense for u € H,iO(Q). We say that P is coercive if there exists ¢ > 0 such
that [, uPudx > c||u|@12 for all u € Hf, ,(€2). We prove the following theorems:

Theorem 5.1. Let Q be a smooth domain of R™ such that 0 € Q is an interior
point. Fiz k € N such that 2 < 2k < n. We consider an operator P = A* + h,
where h € L>(Q) and P is coercive. We let V € L*(Q) such that for some u > 0,
2|28V (2)| < p for all z € Q.
Then there is po(P,h) > 0 such that for 0 < u < po(P,h), there exists G : (2 \
{0H) x (Q\{0P) \ {(2,2)/2 € @\ {0}} — R such that:

e For allz € Q\ {0}, G(x,-) € LY(Q) for all 1 < q < L5

o Forallz € 0\ {0}, G(z,) € L. (Q\ {«})

o Forall f € L7 (Q) N L, (Q\{0}), p > &, we let ¢ € H} () such that
Py = f in the weak sense. Then ¢ € CO(Q\ {0}) and

p(x) = /QG(x, ) fdy for all z € Q\ {0}.




PUCCI-SERRIN CONJECTURE 15

Moreover, such a function G is unique. It is the Green’s function for P — V. In
addition, G is symmetric and for all x € Q\ {0},

G(z,") € HEy 1. (Q\ {0, 2}) N HE 5 10.(2\ {z}) N C* 712\ {0, 2})
for all 1 < p < oo and

{ (P-V)G(z,-) =0 in Q\ {0,z} }
9,G(x,") 90 =0 fori=0,..k—1.

In addition, we get the following pointwise control:

Theorem 5.2. Let Q be a smooth domain of R™ such that 0 € Q is an interior

point. Fizx k € N such that 2 <2k <n, L >0 and p > 0. We consider an operator

P = AF 4 h, where h € L=(Q), |h|l~ < L and [,uPudz > L™l for all
k

u € HZO(Q) We let V € L*(Q) such that P —V s coercive and
|z|2*|V ()| < p for all z € Q.

We let G be the Green’s function of P —V as in Theorem 5.1.

Then for any v € (0,n — 2k), there exists 1, > 0 such that for p < p., for any
w CCQ, for any x € w\ {0}, y € Q\ {0} such that x # y, we have that

[ ]
max{|z[, yl}\" 2%
Gl )| < Oy, L) (2 o = gl
min{|z|, [y[}
o If|z| <|y| and ! < 2k — 1, we have that
max{|33|, |y}>’Y |$ _ y‘Qk—n—l
min{|z], |y[}
o If |yl < |x| and ! <2k — 1, we have that

VLG, y)] < Q. L kL, w) (

Y+
l < max{|z|, ly|} o 12k—n—1

where C(Q,~, L, u, k,l,w) depends only on Q, v, L, u, k,l and w.
5.1. Construction of the Green’s function. Preliminary notations: In addi-

tion to the Sobolev inequality (4), we will make a regular use of the Hardy inequality
on R™ (see Theorem 3.3 in Mitidieri [16]): there exists Cg(n, k) > 0 such that

2
| fmaX <Cutnk) [ (AFoRdX orallpe DREY). (32
RTI,

For p > 0, we define

n

P o= V € L'(2) such that
B V()] < pla| =2k for all 2 € Q\ {0} [~

In the sequel, we consider an operator P = AF 4 h, where h € L>(Q) is such that
[l < I and /QuPu do > L7V ull%y for all we HE (). (33)

Step 0: Approximation of the potential. We claim that there exists pg =
to(k, L) such for all Vo € P, with 0 < p < o, then

1
/Q(Pu —Vou)udz > EHuH%IE for all u € H}, ;(2) (34)
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and there exists a family (V;)eso € L(Q) such that:

lime_,o Ve(z) = V() for a.e. x € Q\ {0}
Vee Py for all e > 0 (35)
P-V, is uniformly coercive for all € > 0

in the sense that

1
(Pu—Vou)u > —||ul|% for all u € HZ ;(Q) and € > 0 (36)
Y 2L " ’
We prove the claim. The coercivity of P and the Hardy inequality (32) yield

1 u? 1
/Qu(P —Vo)udz > Z||u||§,5 - “/Q FIES dx > (L - ucH(mk)) ull

for all u € H,f’O(Q). For n € C*°(R) such that n(t) = 0 for ¢ <1 and n(t) = 1 for
t > 2, define Vi(z) := n(|z|/e)Vo(z) for all € > 0 and a.e. x € Q. As one checks,
the claim holds with 0 < pg < (2Cy (n, k)L)~*. This proves the claim.

For any € > 0, we let G be the Green’s function for the operator P — V.. Since
V. € L*°(Q), the existence of G, follows from Theorem 6.1 of the Appendix 6.1.

Step 1: Integral bounds. We choose f € C%(Q) and we fix ¢ > 0. Since P -V,
is coercive, it follows from variational methods that there exists a unique function
e € H,f,o(ﬂ) such that

{(P_—ve)soe:f in ©

af/SanQ 0 fori=0,.. k-1 } in the weak sense.

It follows from Theorem 7.3 and Sobolev’s embedding theorem that ¢, € C2¢~1(Q)
and ¢, € HY, () for all p > 1. The coercivity hypothesis (36) yields

1
sledie < [ (Poc—Viedpeds = [ fods <51z ol
Q Q

n+2k n—2k
With inequality (4), we get that
(k) el < gl < 2LK(nR) 7] 2. (37)
for all f € C2(Q). We fix p > 1 such that
n n
7_1 and Hp =2k — E € (0,1)

We fix § € (0,d(0,00)/4). Since V, € P, for all € > 0 and P satisfies (33), it follows
from regularity theory, see Theorem 7.1 of Appendix 7) and Sobolev’s embedding
theorem that

IN

leellcoon @\ 55 (0)) C(p, 0, )| @ell g, 2\ 550))

IN

C(p,d,k, L, po) (”f”LP(Q\B(;/Z(O)) + [|pell 2* (9\35/2(0))> .
With (37) and noting that J& > 2%, we get that
[ellco.0n @\ Bs(0)) < CWs 0.k, Ly po) || fl e (02)-

Since ¢, € H3, () for all p > 1, for any « € 2\ {0}, Green’s representation formula
(see Theorem 6.1) yields

we(x) = /QGG(;U,y)f(y) dy for all z € Q\ {0},
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and then when |z| > §, we get

/QGG(‘T7y)f(y) dy‘ S C(p7 67]{:7‘[/’/1/)”]0”[4”(52)

for all f € C2(Q) and p € (2%, ﬁ) Via duality, we then deduce that

|Gelw Yl zaey < C(g.8,k, L. ) for all g € (1, n”%) and o] > 5. (38)

We now fix x € 2 such that |z| > 6. We take f € C%(Q) such that f = 0 in
Byj)a(x), so that (P — Vi)pe = 0 in Bs/a(x). Since Ve € P, for all € > 0 and P
satisfies (33), it follows from regularity theory (Theorem 7.1 of Appendix 7) and

n

Sobolev’s embedding theorem that for any p > o7,

”SDCHCOﬂP(QﬂB(;M(r)) < C(Pafs’k)”‘Pe”H;“k(QﬁBm(w))
C(p, 0.k, L, po) el L2 (nBs s (2))-

IN

With (37), we get that
||<Pe||cov9p(szm35/4(x)) < C(pd, k7L7M0)||f||L

2n .
nT2k (Q)

Since ¢ € Hy, (Q) for all p > 1 and ¢, € C**~1(Q) N H ;(£2), Green’s representa-
tion formula (see Theorem 6.1) yields

(pe(m) = /szﬁ(x7y)f(y) dy,

and then

[ s dy\ < C(p,6.k L, )| f|

for all f € C2(Q) vanishing in Bs/s(z). Via duality, we then deduce that
[Ge(®, )2 @\Bs o (a)) < €0k, L, pio) when |z| > 6. (39)

2n
L7+2E (Q)

Step 2: passing to the limit ¢ — 0 and Green’s function for P — V.
We fix § > 0 and = € Q such that |z| > §. For all ¢ > 0, we have that

PG (z,-) = V.Ge(z,-) =0 in Q\ {z}
0 Ge(@,) 190 =0 fori=0,..,k—1

Since V. € P, for all € > 0, we have that |V(y)| < C(u,d) for all y € Q\ Bs/2(0)
and € > 0. Since P satisfies (33) and G.(z,-) € Hgkyloc(Q\{O,x})ﬂH,aO,loc(Q\{x}),

it follows from the control (38) and standard regularity theory (see Theorem 7.1)
that given v € (0,1), we have that for any r > 0,

(40)

HGE(x7 ')||C2k*11"(Qf(B1v(0)UB,,.(w)) < 0(67 ka /J/,L,'I”, v, /”'0) for all |.13| > 0. (41)

It then follows from Ascoli’s theorem that, up to extraction of a subfamily, there
exists Go(z,-) € C**~1(Q2 — {x,0}) such that
lim Ge(x,) = Go(x,) in CEE=HQ — {,0}). (42)

By Theorem 7.1 again, we also get that
li_r>r(1) Ge(z,) = Go(z,-) in Hy, ;,.(Q — {z,0}) for all p > 1. (43)
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Moreover, passing to the limit in (38), we get that

||G0(CC, ')”L‘I(Q) < C(qa67 k7L7/U‘0) for all qc (17 > and |$| > 63 (44)

n
— 2k
and then Go(z,-) € L1() for all ¢ € (1
we get that

,ﬁ) and x # 0. Similarly, using (39),
|Gol(a, .)||L2*(Q\Bé/2(l_)) < C(d,k, L, po) when |x| > 0. (45)
SO that Go(l', ) loc(Q \ {SL’})

Step 3: Representation formula. We fix f € L%(Q)HLZPM(Q\{O}), p> g >
1. Via the coercivity of P —V, and P — Vj, it follows from variational methods (see

_2n
also Theorem 7.3) that there exists ¢. € Hf 4(€2) N Hy " (Q) and ¢o € HE 4()
such that

(P =Ve)pe = f in and (P=Vo)po = f in
0, pPejpn =0 fori=0,...,k—1 dy 0100 =0 fori=0,..,k—1
(46)
As one checks,
. . . 2 . o . 0 J—
lim e = o in Hi; o(Q) and lim e = @o in G (2 {0}) (47)

We now write Green’s formula for ¢, to get

we(x) = / Ge(z,-)f dy for z # 0 and for all € > 0.
Q

With (38), (39), (42), (44), (45) and (47), we pass to the limit to get

/Go ) f dy.

This yields the existence of a Green’s function for P — Vjy in Theorem 5.1. Con-
cerning uniqueness, let us consider another Green’s function as in Theorem 5.1, say
Go, and, given x € Q\ {0}, let us deﬁne H, = Go(z,-) — Go(z,-). We then get
that H, € LI(Q) for all 1 < ¢ < "5 and fQH fdy =0 for all feC%Q). By
density, this identity is also valid for all f e LY (Q) where =+ > = 1. By duality,
this yields H, = 0, and then Gy = Gp, which proves unlqueness This ends the
proof of Theorem 5.1.

Step 4: First pointwise control. As above, we fix § > 0 and we take z € 2 such
that || > §. It follows from (40), (41), (42) and regularity theory (see Theorem
7.1) that for all [ € {0,...,2k — 1}, we have that

VyGe(z,y)| < C(Q,0,k, po, L) for {lz —y| > 6, 2] > 6, [y| > 8}, (48)
and
|V§JGO(x7y)| < C(Qaé7k7/‘07L) for {|{L‘ - yl >0, |$| >0, |y| 2 6} (49)

We fix v € (0,n — 2k). Since G(z, ) satisfies (40) in the weak sense and G(z,-) €
HZ(Bs)2(0)), it follows from Lemma 6.1 that for all p > 1, there exists u =
w(y, L,0) > 0, there exists C = C(Q,~,p, L,d) > 0 such that

Y7 |Ge(2,y)| < ClGe(, )| Lo (85 200y for all y € Bss(0) — {0}
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when |z| > §. It then follows from (38) that
[y"[Ge(w,9)] < C(©,8,k, L) for all y € Bs»(0) — {0} and || > 8. (50)
With Lemma 6.1, for all 0 <1 < 2k — 1, there exists C(4, k, L,~,1) > 0 such that
TV Ge(,y)| < C(Q,6,k, L,,1) for all y € Bs/3(0) — {0} and |z| > 6. (51)

These inequalities are valid for € > 0, and then for € = 0. In order to get the full
estimates of Theorem 5.2, we now perform infinitesimal versions of these estimates.

5.2. Asymptotics for the Green’s function close to the singularity. We
prove an infinitesimal version of (48) and (50) for z,y close to the singularity 0.

Theorem 5.3. Let Q be a smooth domain of R™ such that 0 € Q is an interior
point. Fix k € N such that 2 <2k <n, L >0 and u > 0. Fiz an operator P that
satisfies (33), V € P, and a family (Ve) as in (35). For p > 0 sufficiently small,
let G be the Green’s function for P — V., € > 0. Let us fixr U,V two open subsets
of R™ such that

UCCR" {0}, VCCR" andUNV =).

We let ag := aog(U,V) > 0 be such that |aX| < d(0,00)/2 for all 0 < a < g and
X eUUV. We fixy € (0,n — 2k). Then there exists u = u(y) > 0, there exists
CU,V,u,k,L) >0 such that

|| X|7a" VLG (X, aY)| < CU,V, k, L) (52)
forall X eV —{0}, Y eU,1=0,..,2k—1, a € (0,ap) and € > 0.
Proof of Theorem 5.3. We first set U’, )V’ two open subsets of R™ such that
UcCCU cCR"—{0},VcCV cCR"andU' NV = 0.
We fix f € C°(U') and for any 0 < o < g, we set

1 T
falz) = ﬁf (a) for all z € Q.

As one checks, f, € C®(ald") and old’ CC Q\ {0}. It follows from Theorem 7.3
that there exists ¢, € Hyy () N H] ((Q) for all ¢ > 1 be such that

P@a,e - V;:Qooz,e = fa in O .
{ ali/@e\asz ~0 fori=0,. k—1 ™ the weak sense. (53)
It follows from Sobolev’s embedding theorem that ¢, . € C?*~1(Q). We define
Bac(X) = a*F o, (aX) for all X €R" — {0}, |aX]| < d(0,0).  (54)

A change of variable yields

1l = [ 1@ @ [ i)

Therefore

A dr = || f(X)|7E dX.
Z/{/

(55)

1ol sty = 191 e gy
With (36), (53) and the Sobolev inequality (4), we get

< /‘Pa,e(P_Ve)SOa,edx:/fa@a,edx
Q
(| fol < VEm k)| fall

L
2L

IN

”‘P«LEH

Lnigk (Q) Ln 2k Q) - Lhigk (Q)HQOQ’EHHIE,O(Q)
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Therefore, using again the Sobolev inequality (4) and (55), we get that
< kDS

2 (Q L7 @)
Equation (53) rewrites

AFGae + 0™ h(a)a.c — 0 Ve(aX)@ae = f (57)
weakly locally in R™. Since V satisfies (35), we have that

|0 V. (aX)| < p|X|7?* for all X € V' — {0}

Since f(X) =0 for all X € V' and @, € Hyy .. (V'), it follows from the regularity
Lemma 6.1 that there exists 1 = p(y) > 0 such that for any 6 > 0 such that
Bs(0) cC V', there exists C(L,d,7,V’) > 0 such that

X" [Ga,e(X) < C(L, 6,7, U, U")|Baell 2 (vry for all X € Bs(0) — {0}

Since the coefficients are uniformly bounded outside 0, classical elliptic regularity
yields

|Pae(X)] < C(L, 6,7, V. V)| Pae (v for all X € V — Bs(0)
These two inequalities yield the existence of C'(L,d,v,V,V’) such that
[ X[" [Ga,e(X) < Cl|@aell 2+ vy for all X € ¥V — {0} (58)
Arguing as in the proof of (55), we have that

”‘Pa,EHLﬁ(V,) < ”(’DO"E”Lﬁ(Q)' (59)
Putting together (54), (56), (58) and (59) we get that
X[ 02" gae (aX)| < C(L, 6,17, V, V)| /] (60)

LA )
for all X € V — {0}. For a > 0, we define
Goo(X,Y) :=a" ?*G (aX,aY) for (X,Y) eV xU', X #0 (61)

It follows from Green’s representation formula for G, € > 0, and (53) that

Gae (aX) = /Q G, (aX,y) fa(y) dy

for all X € V — {0}. With a change of variable, we then get that

0" o (aX) = y Go (X, Y)f(Y)dY (62)

for all X € V — {0}. Putting together (60) and (62), we get that

IXP [ GodX V)50 Y| < Ol V.V ) |

L3R (1)
for all f € C°(U') and X € V — {0}. It then follows from duality arguments that
X1 Gae (X, )2 @y < C(L 6, 7, VU for X €V — {0} (63)

Since G(z, ) is a solution to (P — V¢)Gc(z,-) = 0in Q — {0, 2}, as in (57), we get
that

Ak ( ) a2kh( )G e(X")
2’“V( )é (X, )=0inU ccR"—-{0,X}
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Since U' CC R™ — {0, X}, there exists ¢+ > 0 such that |Y| > ¢ for all Y € U'.
Since V satisfies (35), we have that
|a2kV (aY)| < pe P for all Y € U
It then follows from elliptic regularity theory (see Theorem 7.1) that
X[ G (X, V)] < Oy L s V)X G (X, )

forall Y e Y CCU’ and X € V — {0}. The conclusion (52) of Theorem 5.3 then
follows from this inequality, (63), the definition (61) of G, the limit (42) and
elliptic regularity for the derivatives along y.

5.3. Asymptotics for the Green’s function far from the singularity. We
prove an infinitesimal version of (48) and (50) for x,y far from the singularity.

Theorem 5.4. We fix p € Q\ {0} and U,V two open subsets of R™ such that
UCCR", VCCR" andUNY = 0.
We let ag > 0 be such that

1
laX]| < 3 min{d(0, 99Q), |p|, d(p, ON)} for all0 < a < ap and X € VUU. (64)

Then for all v € (0,n — 2k), there exists = pu(y) > 0 and C(V,U, L, ap, 7, 1) >0
such that
‘oz"_QkHV;GE(p +aX,p+ aY)| < CO(U,w, L,ap, 7, i) (65)
forall X €V andY eU,1=0,...2k—1, a € (0,a0) and € > 0 small enough.
Proof of Theorem 5.4. We first set U’,V’ two open subsets of R™ such that
UccU ccR*, VccV ccR"and U NV =)

and (64) still holds for X € V' UU’. We fix f € C(U’) and for any 0 < a < ay,
we set

1 _
fa(®) = —= f (x p) for all z € Q.
o 2 o

As one checks, f, € C®(p+ald’) and p+ald’ CC Q\ {0}. It follows from Theorem
7.3 that there exists o, € Hyy () N H 1(Q) for all ¢ > 1 such that

P‘pa,e - e@a e = fa in ©
{ 85‘)0&76‘39 =0 fOI‘ 7= 0, ,kj — 1. (66)

It follows from Sobolev’s embedding theorem that ¢, . € C?*~1(Q). We define

n—2k

Goe(X) = a7 @uc(p+aX) forall X € R", [aX| < d(p,dQ).  (67)
As in (55) and (56), we get

I fal L () = = £l L gy 20 [ v @ < Cn kDIl 2, wy (68)
Equation (66) rewrites
Ak@a,s + Oézkh(p + a')@a,e - a2k‘/e(p + aX)Qba,e =f (69)

weakly in R™. Since V, satisfies (35), we have that
|0 V. (p + aX)| < pa®*|p+ aX|72F for all X € V'
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With (64), we get that

—2k
2
|a®* V. (p + aX)| Su('fl) < Cl(pp) for all X € V'
Since f(X) = 0 for all X € V', it follows from standard regularity theory (see

Theorem 7.1) that there exists C(k, L, V, V' U, U’, ap) > 0 such that

|Pae(X)] < Cllgacllpz (v for all X € V (70)
Arguing as in the proof of (55), we have that
[Pacel, e g < el 2 - ()
Putting together (67), (70), (71) and (68) we get that
a7 pac(p+aX)| < CR,LYVV  IfIl 20 forall X eV.  (72)

L7n+2k (UY')

We now just follow verbatim the proof of Theorem 5.3 above to get the conclusion
(65) of Theorem 5.4. We leave the details to the reader.

5.4. Proof of Theorem 5.2. We let Q, k, u, L, P, V as in the statement of
Theorem 5.2. With p > 0 small enough, we let Gy be the Green’s function of
P —V as in Theorem 5.1. Given v € (0,n — 2k), we let py, > 0 as in (50) and
Theorems 5.3 and 5.4 hold when 0 < 1 < p,. We prove here the first estimate
of Theorem 5.2 by contradiction. We fix w CC © and we assume that there is a
family of operators (P;);cy such that P; satisfies (33) for all 4, a family of potentials
(Vi)ien € P, sequences (z;), (y;) € Q\ {0} such that z; # y; and z; € w for all
1 € N and

lim |lzi — yi|n_2k|Gi(xz;; Yi)|

i—+00 (méx{la:il’\yi\})
min{[z;[,ly}

where G; denotes the Green’s function of P; — V; for all i € N. We distinguish 5
cases:

= +o00, (73)

Case 1: |z; — y;| = o(|z;]) as i — +o00. It then follows from the triangle inequality
that |z; — ;| = o(|yi|) and |z;| = (1 + o(1))|y;|. Therefore

max{ |z, |Z/z|})v

——=2 ) =1+0(1)
<mln{$i|7 lyal}

and then (73) yields

1—+00
We let Y; € R™ be such that y; := x; + |z; — y;|Y;. In particular, |Y;| = 1, so, up to
a subsequence, there exists Yo, € R™ such that lim, 1. Y; = Yoo with [Yoo| =1
Note that since x; € w, there exists g > 0 such that d(x;, 0Q) > ¢ for all i. We
apply Theorem 5.4 with p := x;, a = [v; — yi|, V = B13(0), U = By/3(Yeo): for
i € N large enough, taking X =0 and Y =Y in (65), we get that

=i "2 G (s, yi)| = |ri— gl Gt =yl -0, @ity YD) < C(Ly vy, )
which contradicts (74). This ends Case 1.

The case |z; — yi| = o(Jyi]) as i — +o0 is equivalent to Case 1.
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Case 2: |z;| = o(lx; — yi|) and |z; — y;| /> 0 as i — +oo. Therefore (73) rewrites

i a7 G (3, )| = o0 (75)
1—+400
This is a contradiction with (50) when € = 0. This ends Case 2 by using the
symmetry of G.

Case 3: |z;| = o(Jx; —y;|) and |z; — y;| — 0 as ¢ — 4o00. Then |z;| = o(|y;|) and
|z; — yil = (14 o(1))|ys|. In particular, x;,y; — 0 as ¢ — +o0o0. Therefore (73)
rewrites
hm |z — |2 Y| Gy (2, i) | = oo (76)
11— 400
We let X;,Y; € R™ be such that z; = |z; — v|X; and y; = |z; — y|Yi. In
particular, lim; 1 |X;| = 0 and |Y;] = 14 o(1). So, up to a subsequence, there
exists Yoo € R™ such that lim, . Y; = Y with |Y| = 1. We apply Theorem
5.3 with a := |z; —ys], V = B13(0), U = By3(Ys): for i € N large enough, taking
X=X,#0and Y =Y, in (52), we get that

|Xilfy‘xi - yi‘n_2k|Gi(‘xi - yi‘Xia |‘T2 - yzln)' < C(,LL,]{Z,L)7

and, coming back to the definitions of X; and Y;, we get a contradiction with (76).
This ends Case 3.

Case 4: |y;| = o(Jx; — y;|) as i — 4o00. Since the Green’s function is symmetric,
this is similar to Case 2 and 3.

Case 5: |z;| < |yi| < |z; — yi|. Then (73) rewrites

Hm |z — yi|" ¥ Gil@i, yi)| = +00 (77)

1—+4o00
Case 5.1: |z; — y;| # 0 as i — +oo. Then it follows from (48) that |G;(x;,v:)| <

C(u, k, L) for all 4, which contradicts (77).

Case 5.2: |x;—y;| = 0asi — +oo. Welet X;,Y; € R™ be such that ; := |x; —y;|X;
and y; := |z; — y;|Yi. In particular, there exists ¢ > 0 such that ¢=! < | X;|,|V;] < ¢
and |X; — Y;| > ¢! for all i. So, up to a subsequence, there exists X, Yo € R
such that lim, 400 Xi = Xoo # 0 and limy, 400 Y = Yoo # 0 and Xoo # Yoo, We
apply Theorem 5.3 with a 1= o; = |2; — yi|, V = By, (Xoo), U = By, (Yoo ) for some
ro > 0 small enough. So for i € N large enough, taking X = X; #0 and Y =Y} in
(52), we get that

| X702 |Gy X, 0Y3)| < C(U,w, Ly, 1)

and, coming back to the definitions of X; and Y;, we get that a contradiction with
(77). This ends Case 5.

Therefore, in all 5 cases, we have obtained a contradiction with (73). This proves
the first estimate of Theorem 5.2. The proof of the estimates on the derivative uses
the same method by contradiction, with a few more cases to study using regularity
theory (Theorem 7.1). We leave the details to the reader.
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6. THE REGULARITY LEMMA

For any domain D C R"™, k € N such that 2 < 2k < n and L > 0, we say that an
operator P is of type Oy, 1(D) if P := A¥ + h, where h € L>(D) and ||h|s < L.

Lemma 6.1. Let k € N be such that 2 < 2k < n and 6,L > 0. Fizp > 1
and 61,09 > 0 such that 0 < &1 < d2. We consider a differential operator P €
Ok.1(Bs,(0)) where Bs,(0) C R™. Then for all 0 < v < n — 2k, there exists
w = u(y,p,L,81,02) > 0 and Cy = Co(v,p, L,61,02) > 0 such that for any V €
LY(Bs,(0)) such that

|V (x)| < plz|=?* for all x € Bs,(0),
then for any ¢ € HZ(Bs,(0)) N H3y 1,.(Bs,(0) — {0}) (for some s > 1) such that
Py —V - =0 weakly in H?(Bs,(0)),
then we have that
2" |¢(2)| < Co - [l¢llLr(Bs, 0)) for all x € Bs, (0) — {0} (78)

and
ol 285, 0)) < Co - llelless, 0))-
Moreover, for any 0 <l < 2k, there exists C; = Cy(v,p, L,01,02) > 0 such that

2V (@)| < Cr- @l o) Jor all @ € By, (0) = {0} (79)

For the reader’s convenience, we set § := §; and we assume that do = 301 = 34.
The general case follows the same proof by changing 26, 2.99, etc, into various radii
8', 8", ... such that §; < 8’ < §” < &, etc. We split the proof of the Lemma in two
steps.

Step 1: Proof of (78) when V =0 around 0. We prove (78) by contradiction
under the assumption that V vanishes around 0. We assume that there exists

€ (0,bn—2k), p > 1, L > 0, > 0 such that for all 4 > 0, there exists a
differential operator P, = AF+h,, and a potential V,, € L'(Bss(0)) such that there
exists ¢, € Hf(B3s(0)) N H;, 1,.(B3s(0) — {0}) (for some s > 1) such that

(Pu = Vu)¥u = 0 weakly in H{(Bss(0)) N Hsy, 1. (Bss(0) — {0})
%ullr(Bas0) = 1

|V, (2)] < plz| =2 for all z € Bss(0) — {0} (80)
V,, = 0 around 0

sup,, 5oy 127 (¥ ()] > i — 4ooas pu—0

With our assumption that V,, vanishes around 0, we get that V,, € L>(Bss(0)).
Then, by regularity theory (see Theorem 7.1), we get that 1, € C°(Bas(0)). There-
fore, there exists z, € Bs(0) such that

1
|z, u ()l = sup 2" (2)] > = — +o0 (81)
2€B5(0) H

as u — 0.
Step 1.1: We claim that lim, oz, = 0.

We prove the claim. For any r > 0, we have that |V, (z)| < ur=2F for all z €
Bss(0) \ B,(0). So, with regularity theory (see Theorem 7.1), we get that for

all qg>1, then ||w,u||qu(B25(O)\B2T(O)) = C(TvQ7L7p7)||'l/}y‘||LP(Bg(5(0) < C(T,(LL»P)~

2
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Taking ¢ > 5, we get that [y, (x)] < C(r,q, L, p) for all x € Bs(0) \ B2,(0). With
(81), this forces lim,,_,o z,, = 0. The claim is proved.

Step 1.2: Convergence after rescaling. We set r,, := |z,| > 0 and we define
- X 0
Du(X) = YuluX) g0 X € R — {0} such that [X] < .
Yu(ry) Tu

We define X,, € R” such that =, = r,X,. In particular |X,| = 1. With the
definition of ,,, for any X € R™ such that 0 < |X| < -2, we have that
X[ (r X)) 20| [ ()] y

VX (X)) = —
X P5u(X)] D)l ]

Therefore, we get that

_ s _
| X7, (X)| <1 for all X € R™ such that 0 < |[X| < — and ¥,(X,) =1. (82)
Ty

The equation satisfied by JJM in (80) rewrites
ARy + 72K R, () — 2RV (r, X ), = 0 (83)
weakly in Bss/,, (0) — {0}. Note that

34
P25V, (r, X)| < plX|72F for all 1> 0 and 0 < | X| < — (84)
o
With the bound (82) and the bounds of the coefficient h,,, it follows from regularity
theory (see Theorem 7.1) that for any R > 0 and any 0 < v < 1, there exists C(R) >
0 such that |[¢ullczr-10(Br0)-B,_1(0)) < C(R,v) for all p > 0. Ascoli’s theorem
yields the existence of ) € C?*~1(R"™ —{0}) such that b, — 1 in CEE-Y(R™ —{0})
as p — 0. Passing to the limit 4 — 0 in (83), we get that AFyp = 0 weakly in
R™ — {0} and regularity yields ¢ € C?*(R™ — {0}). We define X := lim,,_,o X,,, s0
that | Xo| = 1. Finally, passing to the limit in (82) yields
v € C*(R" — {0})
k.o n __
A% =0 mR {0} (85)
'LZJ~(X0) =1 with ‘X0| =1
[(X)| < |X]77 for all X € R™ — {0}.
By standard elliptic theory (see Theorems 7.1 and 7.2), for any | = 1, ..., 2k, there
exists C; > 0 such that

|Vi(X)] < €| X |77 for all X € R™ — {0}. (86)
Step 1.3: Contradiction via Green’s formula. Let us consider the Poisson
kernel of A at X, namely
Tx,(X) := Cp | X — Xo|?*™" for all X € R" — {X,},

where
1

(n — 2w, T} (n — 2k +2(i — 1)) (2k — 26)
Let us choose R > 3 and 0 < € < 1/2 and define the domain
Qp.c := Br(0) \ (Br-1(0) U B(Xp)) -

Cn,]c =
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Note that all the balls involved here have boundaries that do not intersect. With
(25), we get

k—1
Ty (AF) dX + / S B, D)o (89)

Q.. 7o

/ (AFTx, )i dX =
QR,E QR,E
where the B are as in (26). We have that 0Qg . = 9Br(0)UdBr-1(0) UOB.(Xy).
Using that I'x, is smooth at 0, that ¢ is smooth at Xy, using the bounds (86) and
the corresponding ones for I'x,, for any ¢ =0, ...,k — 1, we get that

<CR™, < Ce*

[ B, d)do
OBR(0)

| Bk d)de
9B:(Xo)

< CRQ—n+'y+2i < CR—(n—2k—’y)

/ B(i)(FXm’(/;) do
OB R-1(0)

and

< CGn_162k_n_2(k_1) < Ce.

/ A* 1Ty, 0,4 do
6BS(X0)

Therefore, since 0 <y < n — 2k, all the terms involving R go to 0 as R — +o0, the
terms involving € go to 0 when i # 0. Since A*T'y, = 0, A¥y = 0, it follows from
(88) and the inequalities above that

/ 9, A* T x ihdo = o(1) as € — 0.
0Bc(Xo)

With the definition of I'x,, we get that

1

—0,AF 1Ty (X) = |X — Xo|' 7" for X # Xo. (89)

n—1

So that, with a change of variable, we get that
/ V(X0 +€X)do = o(1) as € — 0.
0B1(0)

Passing to the limit, we get that 1)(X) = 0, which is a contradiction with (85).
This proves (78) when V vanishes around 0.

Step 2: The general case. Let n € C*°(R) be such that n(t) = 0 if ¢t < 1,
n(t)=1i¢t>2and 0 < n < 1. For any € > 0, define V.(x) := n(|jz|/e)V(x) for
all € Bs,(0). Up to taking d; > 0 small enough to get coercivity, for any ¢ > 0,
there exists p. € HZ(Bs,(0)) N H, (Bs,(0)) for all ¢ > 1 such that
Olpe =0l on 0Bs,(0) for i =0,--- ,k—1
As one checks, limeope = ¢ in HZ(Bs,(0)) and limc o pc(z) = ¢(x) for all
x € Bs, (0) — {0}. Since V. vanishes around 0, we apply (85) to ¢, and let € — 0.
We leave the details to the reader. The estimates on the derivatives are consequence
of elliptic theory.
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6.1. Green’s function for elliptic operators with bounded coefficients.

Definition 6.1. Let Q be a smooth bounded domain of R™. Fiz k € N such that
n > 2k > 2. Let P be an elliptic operator of order 2k. A Green’s function for P is
a function (x,y) — G(z,y) = Gz (y) defined for all x € Q and a.e. y € Q such that
(i) G € LY(Q) for all x € Q,
(i) for all x € Q and all ¢ € C**(Q) such that dLpion =0 foralli=0,.,k—1,
we have that

/ G,Ppdx = p(x).
Q

Theorem 6.1. Let ) be a smooth bounded domain of R™, n > 2. Fiz k € N such
that n > 2k > 2 and L > 0. Let P be an elliptic operator such that (33) holds.
Then there exists a unique Green’s function for P. Moreover,

o G extends to Q x Q\ {(z,z)/x € Q} and for any x € Q, G, € H,%,O’loc(Q -
{z}) N HE, 1, (2 = {z}) for allp > 1 and G, € C**1(Q — {z})

o G is symmetric;

e For all x € Q, we have that

PG, =0 in Q\ {z}
(%GmlaQ:O fori=0,....k—1

e Forall f € LP(Q), p > 55, and p € H3, () N HY ((Q) such that Py = f
weakly, then
o(x) = / G.Ppdzx for all x € Q.
Q
e For all p € C*(Q), we have that

p(z) = / G.Pody —/ Cp(p,Gy)do for all x € Q.
Q a0
where

Cplp,Ga)i=— Y. OAQAPITIG, + > Alpd, ARG,

2i+1<k—1 2i<k—1

If 0L =0 on 0 for all i =0, ...,k — 1, then Cp(p,G,) =0 on 0.
e For allw CC Q, There exists C(k,L,w) > 0 such that

|G ()| < C(k,L,w) - |z —y/** ™ forallz € w,y €Q, x#vy,
e foralll=1,...,2k — 1, there exists Cy(k,L,w) > 0 such that
VG (y)| < Ci(k, L,w) - |z — y[** " forallz € w, y € Q,  # y;
The sequel of this subsection is devoted to the proof of Theorem 6.1. We build

the Green’s function via the classical Neumann series following Robert [21]. Let
n € C*°(R) be such that n(t) =1if ¢t <1/4 and n(¢t) =0 if t > 1/2. We define

Uo(y) = T(w,y) = Coglz —y[** " for all 2,y € Q, x #y.
where C,, i, is defined in (87). Note that I';, € C=(Q — {z}).

Step 1: As in the proof of Step 1.3, see formula (88), for all z € Q, there exists
fz € L*(£2) such that

Pl =6, — fs weakly in }

{ fo)| < C(k, L)z -y forallz,y e, z £y, (01)
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Where the equality is to be taken in the distribution sense, that is
k—1

/Fngpdx: /fxcpder/ ZB@ ¢, T,) do for all ¢ € C?*(Q),
Q 0

where the B()’s are defined in (26) and where f, := —(AFT, + hT,).
Step 2: We are now in position to define the Green’s function G. We define

Fl(x y) _fw( ) for l’ayGan?éy,
Dipi(z,y) = [Ti(z,2)f2(y)dz  forz,y e Q z#y,iecN

With straightforward computations (Giraud’s Lemma [9], as stated in [5] for in-
stance), the definition of I and (91), for all ¢ € N, we have that
|z — |2k if 2ki <y
ITi(z,y)| < Ci(k, L, Q) ¢ 1+ |Infe—yl| if 2ki = n; (92)
1 if 2ki > n.
for all 2,y € Q, x # y. We then get that I';(z,-) € L>(2) for all z € Q and i > 57

We fix p > n/k. For z € Q, we take u, € H2,(Q) N C?**~1(Q) that will be fixed
later, and we define

G.(y) :=T.(y) + Z/ Ti(z, 2)T(z,y) dz 4+ u,(y) for a.e y € Q. (93)

We fix ¢ € C?*(Q0). Via Fubini’s theorem, using the definition of the T';’s and the
definition of P, we get that

| cpody= [T Psody+§j /Q T A 9) Poly) dedy
X
k—1
+/ Pumgady+/ B (g, uy) do
Q SQ; ( )

— (@)~ [ Taepde+ 3 [ Tiln el iz

—Z/ (/ (,2) f-(y )d2> ¢(y) dy

-1
+/ Puwgodx—l—/ B® p, G
Q aszg (
=)+ | (Pu =Tyt edy+ [ ZB“

Since I'pi1(z, ) € L>(Q), we choose u, € Ng>1Hy, () N HY ((R2) such that
Pu, =Tpi1(z,-) in .
Oiuy = =08 (T + >0 [oTi(z,2)(2,-)dz)  on O

The existence follows from Theorem 7.3. Sobolev’s embedding theorem yields u, €
C?=1(Q) and Theorem 7.3 yields C(k, L, p,w) > 0 such that

lug(v)| < C(k, L,p,w) for all x € w, y € Q. (94)
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In particular, G, € C*~1(Q\ {z}) and 0!G, = 0 on 9Q and i = 0,...,k — 1.
Finally, we get that

k—1
/ GyPpdy = ¢(x) +/ ZB(i)(QD, G.)do for all ¢ € C?*(Q). (95)
Q 09 =y

Note that since 92G, = 0 on OQ and i = 0, ...,k — 1, then VG, = 0 on 99 for
1 =0,....,k — 1 and then we have that

k-1
Y B, Gr) = = ) ApATITIG + Y A, AMTIG,
=0 2i+1<k—1 2i<k—1
The controls (92) and (94), the definition (93) and Giraud’s Lemma yield
|G.(y)| < C(k, Lyw)|x —y/** ™ forallz €w,y€Q, z#y. (96)

This proves the existence of a Green’s function for P. Moreover, the construction
yields G, € Hyy ,.(Q — {z}) N HY ;,,.(Q — {z}) for all p > 1 and PG, = 0 in
Q — {z}. The validity of (95) for u € Hy, (Q) N Hy ;() and f € LP(Q2) such that
Pu = f and p > n/(2k) follows by density of C2°(Q2) in LP(Q2) and the regularity
Theorem 7.3. The symmetry of G follows from the self-adjointness of the operator
P. The uniqueness goes as the proof of uniqueness of Theorem 5.1. The pointwise
control for |G(y)| is (96). The control of the gradient of G, is a consequence of
elliptic theory. Since the details of these points are exactly the same as in the case
of a second-order operator A + h, we refer to the detailed construction [21].

7. REGULARITY THEOREMS

The following theorems are reformulations of Agmon-Douglis-Nirenberg [1].

Theorem 7.1. We fix k € N, L > 0 and § > 0. Let Q be a smooth domain of
R”, n>2k>2and xg € QA =QUON. Let P = A* + h be a differential operator
such that h € L>®(Q N Bs(xo)) and ||h||oo < L. Let u € H5. (2N Bs(xzo)) be such
that nu € H}, () for all n € C°(Bs(wo)) and f € LP(N Bs(xo)), p,s € (1, +00)
be such that Pu = f. Then for all v < 6, u € HY, (2N By(xg)). Moreover, for all
q > 1, we have that

HUHH&(QOBT(QEU)) < C(n’ Ok, L,p,q,9, T) (”f”LP(QﬂBs(xo)) + ”uHLfI(QﬁBé(zo)))
where C(n,Q,k, L, p,q,6,r) depends only onn, Q, k, L, p, q, § and .

Theorem 7.2. We firk € N and L > 0 and § > 0. Let 2 be a smooth domain
of R", n > 2k > 2 and xg € Q = QUIN. Let P = AF + h be a differential
operator such that h € C%®(Q N Bs(xg)) and ||h||co.« < L for some a € (0,1). Let
u € C*(Q N Bs(xo)) be such that Oiu =0 on Bs(xo) NOQ for alli=0,...k—1
and f € C%*(QN Bs(zo)) be such that Pu= f. Then for all v < §, we have that

[ullc2re (@B, (o)) < C(n, Q2 K, Ly, 8,7) ([ fll o @ns(ao)) + lullco@nis o))
where C(n,Q,k, L, «,d,r) depends only onn, Q, k, L, a, § and r.
Theorem 7.3. We fit k € N and L > 0. Let Q be a smooth domain of R™, n >
2k > 2. Let P be a differential operator such that (33) holds and fiz p € (1,400).

Then for all f € LP(Q), there exists u € Hy, (Q)NHY, ((Q) unique such that Pu = f.
Moreover,

lull ez ) < C(Qk, L, p)|| fllLe (o)
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where C(Q, k, L,p) depends only on Q, k, L and p.
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