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Predictive explanations for and by Reinforcement Learning*

Léo Saulières Martin C. Cooper Florence Dupin de Saint-Cyr

IRIT, University of Toulouse III, France

Abstract

In order to understand a reinforcement learning (RL) agent’s behavior within its environment, we
propose an answer to ‘What is likely to happen?’ in the form of a predictive explanation. It is com-
posed of three scenarios: best-case, worst-case and most-probable which we show are computationally
difficult to find (W[1]-hard). We propose linear-time approximations by considering the environment
as a favorable/hostile/neutral RL agent. Experiments validate this approach. Furthermore, we give a
dynamic-programming algorithm to find an optimal summary of a long scenario.

Keywords: Explainable Artificial Intelligence, Reinforcement Learning

1 Introduction
The need for explanations of black-box Artificial Intelligence models, highlighted by researchers [16, 7]
but also by legislators [8], has become an important topic during the last few years. As a consequence, the
research field of eXplainable Artificial Intelligence (XAI) has developed, with the aim of building trust-
worthy AI models. These models can be then used in a wider range of applications, including high-risk
or safety-critical ones. The aim of this paper is to explore new avenues of explanations in Reinforcement
Learning (RL). RL can be summarized as follows. An agent learns while making a sequence of decisions
consisting of actions within an environment. At each time-step, the information available to the agent de-
fines a state. In a state, the agent chooses an action, and so arrives in a new state, determined by a transition
function (which is not necessarily deterministic), and receives a reward (a negative reward being rather a
punishment). The agent aims at maximizing its reward, while striking a balance between exploration (dis-
cover new ways to face the problem) and exploitation (use already learnt knowledge). The agent’s strategy
is learnt in the form of a policy, which maps each state to either an action (if the policy is deterministic) or
a probability distribution over actions (if the policy is stochastic).

The subfield of XAI which focuses on RL models is eXplainable Reinforcement Learning (XRL).
Researchers used key RL features to explain agent’s decisions. As an example, the VIPER algorithm [2]
learns a Decision Tree policy which is a surrogate for the actual policy given by a deep neural network. The
surrogate policy is easier to verify concerning different properties such as safety, stability and robustness.
With states considered as images, [10, 22] explain agent’s decisions in different ways. Greydanus et al.
use a perturbation-based approach to generate a saliency map, i.e. parts of an image that lead the agent to
choose an action [10]. Given a state s and a selected action a, a GAN produce a counterfactual state s’, to
show the user in which settings the agent would select an action b instead of a [22]. Another approach is
reward decomposition [15] which focuses on the reward function and is used when an agent has multiple
objectives. This XRL method expresses a reward through a vector of scalars instead of a simple scalar. This
makes it easier to understand why an agent performs an action, and to identify its objective in choosing this
action.

In their survey, Milani et al. emphasize the need for explanations that capture the concepts of RL
[19]. Our study tries to meet this need by proposing a predictive XRL method based on the sequential
aspect of RL. The aim of this method is to answer the question “What is likely to happen from the state
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s with the current policy of the agent?". To this end, we compute three different state-action sequences
(called scenarios), starting from the current state s. This method allows us to explain a policy by giving
pertinent examples of scenarios from s, hence the name of the explainer: Scenario-Explanation, shortened
to SXp. It provides information about future outcomes by looking forward N time-steps according to three
different scenarios: a worst-case scenario, a most-probable scenario and a best-case scenario. To avoid
an exhaustive search over all possible scenarios, we propose approximations based on learning policies of
hostile/favorable environments. Our approximate SXp’s are computed using transition functions learnt by
treating the environment as an RL agent. The advantage is that this can be achieved by using the same
technology and the same computational complexity as the learning of the agent’s policy. We tested our
approximate SXp on two problems: Frozen Lake, an Open AI Gym benchmark problem [3], and Drone
Coverage, a problem we designed.

This paper is an extended version of the paper [23]. The main additional contributions are a represen-
tativeness score and a method for summarizing the Scenario-Explanation. This last addition allows us to
consider SXp’s with a large N and thus to have a long term vision of what can happen, while keeping the
explanations concise.

This paper first gives a theoretical justification for Scenario-Explanation and introduces new metrics
for quantifying their quality and representativeness, before describing experimental results on two RL
problems. For each problem, short and long scenarios explanations are computed, the long scenarios are
summarized thanks to a quadratic algorithm. We then survey related work on XRL, before discussing the
efficiency and usefulness of SXp.

2 Scenario-Explanation
Before describing our XRL method, we need to introduce some notation. An RL problem is described by
a Markov Decision Process (MDP) [26]. An MDP is a tuple ⟨S,A,R, p⟩ where S and A are respectively the
state and action space, R : S×A→ R is the reward function, p : S×A→ Pr(S) is the transition function
of the environment which provides a distribution over reachable states: given an action a ∈ A and a state
s ∈ S, p(s′|s,a) denotes the probability of reaching the state s′ when a is performed in the state s. For
a deterministic policy π : S→ A,π(s) denotes the action the agent performs in s whereas for a stochastic
policy π : S→ Pr(A), π(a|s) denotes the probability that the agent performs action a in s.

Our aim is to answer the question: “What is likely to happen from the state s with the current policy
of the agent?". We choose to do this by providing three specific scenarios using the learnt policy π. By
scenario, we mean a sequence of states and actions, starting with s. Scenarios are parameterised by their
length, denoted by N, which we consider as a parameter determined by the user. We provide a summary of
all possible scenarios via the most-probable, the worst-case and the best-case scenarios starting from s.

When considering possible scenarios, we may choose to limit our attention to those which do not
include highly unlikely transitions or actions. The following technical definition based on two thresholds
α and β allows us to restrict the possible transitions and actions. We do not filter out all transitions with
probability less than a certain threshold, but rather those whose probability is small (less than a factor of
α) compared to the most likely transition. This ensures that at least one transition is always retained. A
similar remark holds for the probability of an action. We filter out those actions whose probability is less
than a factor of β from the probability of the most probable action.

Definition 1 Given N ∈ N∗, α,β ∈ [0,1], an MDP ⟨S,A,R, p⟩ and a stochastic policy π over S, an (α,β)-
credible length-N scenario is a state-action sequence s0,a0,s1,a1, . . ., aN−1,sN ∈ (S× A)N × S which
satisfies: ∀i ∈ {0, . . . ,N−1}, π(ai|si)/π∗ ≥ β and p(si+1|si,ai)/p∗ ≥ α, where π∗ = maxa∈A π(a|si) and
p∗ = maxs∈S p(s|si,ai).

In a (1,1)-credible length-N scenario, the agent always chooses an action among it’s most likely choices
and we only consider the most probable transitions of the environment. At the other extreme, in a (0,0)-
scenario, there are no restrictions on the choice of actions or on the possible transitions of the environment.

The following definition is parameterised by α,β ∈ [0,1] and an integer N. For simplicity of presenta-
tion, we leave this implicit and simply write credible scenario instead of (α,β)-credible length-N scenario.
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In the following definition, R(σ) denotes the reward of a credible scenario σ. By default R(σ) is the reward
attained at the last step of σ.

Definition 2 For an MDP ⟨S,A,R, p⟩ and a policy π over S, a scenario-explanation for π from a state s is a
credible scenario σ = s0,a0,s1,a1, ...,aN−1,sN such that s0 = s. σ is a most-probable scenario-explanation
for π from s if its probability given s, denoted Pr(σ), is maximum, where

Pr(σ) =
N

∏
i=1

π(ai−1|si−1)p(si|si−1,ai−1)

σ is a best-case scenario-explanation for π from s if it maximises the reward R(σ). σ is a worst-case
scenario-explanation from s if it minimizes the reward R(σ).

In the best (worst) case, the environment always changes according to the best (worst) transitions for
the agent, i.e., the environment maximises (minimises) the agent’s reward after N steps. Not surprisingly,
finding such scenarios is not easy, as we now show.

Proposition 1 For any fixed values of the parameters α,β ∈ [0,1], the problem of finding a best-case
or worst-case length-N scenario-explanation, when parameterized by N, is W[1]-hard. Finding a most-
probable length-N scenario-explanation is W[1]-hard provided α < 1.

The detailed proof of Proposition 1 can be found in [23].

2.1 Approximate Scenario-Explanation
In view of Proposition 1, we consider approximations to scenario-explanations which we obtain via an
algorithm whose complexity is linear in N, the length of the SXp. Indeed, since determining most-
probable/worst/best scenarios is computationally expensive, we propose to approximate them. For this
purpose, it can be useful to imagine that the environment acts in a deliberate manner, as if it were another
agent, rather than in a neutral manner according to a given probability distribution. In this paper, as a first
important step, we restrict our attention to approximate SXp’s that explain deterministic policies π. An
environment policy πe denotes a policy that models a specific behavior of the environment.

There are different policies πe for the most-probable, worst and best cases which correspond to policies
of neutral, hostile and favorable environments respectively. In the case of a hostile/favorable environment,
πe denotes an environment policy that aims at minimizing/maximizing the reward of the agent. The policy
of a neutral environment is already given via the transition probability distribution p. On the other hand
the policies of hostile or favorable environments have to be learnt. We propose to again use RL to learn
these two policies. Compared to the learning of the agent’s policy, there are only fairly minor differences.
Clearly, in general, the actions available to the environment are not the same as the actions available to
the agent. Another technical detail is that as far as the environment is concerned the set of states is also
different, since its choice of transition depends not only on the state s but also on the action a of the agent.

Recall, from Definition 1, that in a (1,1)-scenario a most-probable action and a most-probable transition
are chosen at each step. Of course, for deterministic policies or transition functions there is no actual choice.

Definition 3 A probable scenario-explanation (P-scenario) of π from s is a (1,1)-scenario for π starting
from s.

A favorable-environment scenario-explanation (FE-scenario) for π from s is a (1,1)-scenario, in which
the transition function (p in Definition 1) is a learnt policy πe of a favorable environment.

A hostile-environment scenario-explanation (HE-scenario) for π from s is a (1,1)-scenario, in which
the transition function p is a learnt policy πe of a hostile environment.

A length-N P-scenario is computed by using an algorithm that simply chooses, at each of N steps
starting from the state s, the action determined by π and a most-probable transition according to p. In the
case of the FE/HE scenario, p is replaced by the environment policy πe which is learnt beforehand. The
same RL method that was used to learn the agent’s policy π is used to learn πe (which hence is deterministic
since we assume that π is deterministic). The fact that the learnt environment policy πe is deterministic
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means that scenario-explanations can be produced in linear time. In the favorable-environment (FE) case
the reward for the environment is R (the same function as for the agent) and in the hostile-environment
(HE) case the reward function is (based on) −R.

Proposition 2 Consider an MDP ⟨S,A,R, p⟩ for which we learn by RL a deterministic policy π. Producing
length-N P/HE/FE scenario-explanations does not increase the asymptotic worst-case (time and space)
complexity of the training phase. Moreover the computation of the explanation only incurs a cost which is
linear in N.

The proof of Proposition 2 can be found in [23]. Having shown that our algorithm is efficient in
time, hence avoiding the complexity issue raised by Proposition 1, in Section 3 we describe experiments
which indicate that the returned results are good approximations of the most-probable, best and worst
explanations.

2.2 Scenario-Explanation rendering
The length of an SXp is parameterized by N, as already mentioned. Accordingly, the SXp’s rendering
to the user will depend on it. On one hand, for N relatively low, we simply display each scenario (FE-
scenario/HE-scenario/P-scenario) to the user by assuming that the amount of information does not impact
the user’s understanding of the explanation. So, the SXp provides a summary of what is likely to happen
in the short term. On the other hand, for N high, the SXp provides more information on the agent’s future
interaction with the environment. In this case, displaying the three scenarios can give rise to an important
cognitive load for the user, thus making the explanation inefficient. In order to avoid this, we propose to
summarize the scenarios for large values of N. Before describing how to summarize such scenarios, we
define which goals the summary must achieve to be of good quality.

First, a scenario summary has to highlight the most important states within it. We call state importance
the notion introduced by Clouse [4]. This notion is used to provide explanations in the form of a policy
summary in [1]. Formally, given a Q function and a state s, the importance of s is defined as the difference
between the best and worst Q value in s by performing an action a:

I(s) = max
a

Q(s,a)−min
a

Q(s,a)

Secondly, the summary should cover the entire scenario as well as possible. In other words, the selected
states should be distributed as uniformly as possible along the scenario. We achieve this by minimizing the
sum of the squares of the distances between consecutive selected states. The following definition expresses
the summary problem discussed above through an objective function.

Definition 4 Let σ = (s1,a1,s2,a2, . . . ,aN−1,sN) be a length-N scenario and I(s1), . . ., I(sN) the corre-
sponding state importance scores. For given constants M ≤ N and λ≥ 0, the summary problem consists in
finding a sample of M states si1 , . . . ,siM , with 1 = i1 < i2 < .. . < iM = N such that the following objective
function is maximised:

fN(σ, i1, . . . , iM) =
M

∑
j=1

I(si j)−λ

M−1

∑
k=1

(ik+1− ik)2

The spread-regularity score is given by the negation of the sums of the squares of the differences
between consecutive values, i.e. −∑

M−1
k=1 (ik+1− ik)2. Observe that maximizing this score is equivalent to

minimizing the variance of these differences, since their average µ = 1
M−1 ∑

M−1
k=1 (ik+1− ik) = 1

M−1 (iM −
i1) = (N− 1)/(M− 1) is a constant and their variance 1

M−1 ∑
M−1
k=1 (ik+1− ik− µ)2 = 1

M−1 ∑
M−1
k=1 ((ik+1−

ik)2−2(ik+1− ik)µ+µ2) = 1
M−1 ∑

M−1
k=1 (ik+1− ik)2−µ2.

Thus, with the objective function given in Definition 4, we want a sample of M states which have
high state importance scores and are evenly spread. The summary problem can be solved using dynamic
programming with the following equations.
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Definition 5 For 2≤m≤ n≤N and a length-N scenario σ, let gσ(m,n) be the optimal value of fn(σ, i1, . . . , im)
such that i1 = 1 and im = n. We can calculate all values of g(m,n) using dynamic programming via the
equations

gσ(m,n) = max
p∈{m−1,...,n−1}

(
gσ(m−1, p)+ I(sn)−λ(n− p)2) (2 < m≤ n≤ N)

gσ(2,n) = I(s1)+ I(sn)+λ(n−1)2 (2≤ n≤ N)

Once we have calculated gσ(M,N), we can determine for which values of p the maximum is reached: this
gives us the values of iM−1, . . . , i2, thus the states siM−1 , . . . ,si2 .

Note that the value of λ has a significant impact on the summary. Indeed, the higher the value is, the
more evenly spread out the summary states are. On the contrary, a small value can lead to summaries which
only maximize the sum of the importance of the states in the summary.

We normalize the two terms of the objective function fN to lie in the interval [0,1] to have the two terms
within the same amplitude (hence fN lies in the interval [−λ,1]) whatever the amplitude of the Q-values and
the scenario length. The normalization of a value b that is obtained by a function h is performed by means
of the norm function which requires b, the value to be normalized, together with hmin and hmax, the extrema
of the function h. Formally, we have: normh(b) = (b−hmin)/(hmax−hmin). For the sum of the importance
scores, we perform a normalization of the importance scores. In this context, the extrema used are the
minimum and maximum importance score reachable in a scenario. To keep the sum of the importance
scores of M states selected among N in the range [0,1], the following formula is used: 1

M ∑s∈SM normI(I(s)),
where SM is the set of M selected states.

Lemma 1 The complexity of the normalization of the sum of importance scores is in O(N)

proof : It is the complexity of finding the maximal and minimal importance scores. □ □

Lemma 2 The complexity of calculating the normalization factor for the spread-regularity term is in O(1).

proof : To normalize the sum of the squares of the gaps ik+1− ik, we have to determine the extrema as a
function of M and N. With σ = (s1,a1,s2,a2, . . . ,aN−1,sN) a length-N scenario, these extrema are attained
for a sample of M ≤ N states si1 , . . . ,siM such that the following equation is maximised/minimised:

M−1

∑
k=1

(ik+1− ik)2

s.t. i1 = 1, iM = N and ik < ik+1 for k ∈ [1, ..,M−1]

By elementary methods, we find that the maximum value is: (M− 2)(1)2 +(N−M + 1)2. With v =
(N−1)/(M−1) and w = (v−⌊v⌋)× (M−1), the minimum value is: w× (⌈v⌉)2 +(M−1−w)× (⌊v⌋)2.
Therefore, the complexity of this calculation is in O(1). □ □

Proposition 3 The complexity of solving the summary problem is in O(MN2)

proof : Based on Definition 5, and lemmas 1 and 2, it is easy to see that the complexity of solving the
summary problem is in O(MN2). Indeed, with the negligible complexity of the normalization step, the
complexity depends on the complexity of the dynamic programming algorithm. □

It is important to specify that the normalizations mentioned above do not impact this complexity (the
extraction of the minimal and maximal importance scores being performed before the use of the dynamic
programming method). Note that the summary problem would be more difficult with a different objective
function. Indeed, minimizing redundancy between all pairs of states would make the summary problem
NP-hard, as observed by McDonald [18].

In several different experiments, we noticed that scenarios can contain loops, i.e. repeating sub-
sequences of state-actions. This inevitably leads to a redundancy in the explanation. So, before producing
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a summary of a scenario, we perform a pre-processing step to detect such loops in order to display to the
user only one iteration. It is interesting to note that when the agent is in a loop, it can never get out of it if
the environment response is deterministic, as stated in the following proposition:

Proposition 4 Given a deterministic policy of the agent π, a deterministic response of the environment πe,
consider a length-N scenario σ = s0,a0,s1, . . . ,sN−1,aN−1,sN , corresponding to π and πe. Suppose that
s j = sk where 0≤ j < k ≤ N and that ( j,k) is the lexicographically smallest pair with this property. Then
σ is a periodic sequence from rank j.

proof : By design, the agent’s choice and environment response are deterministic, hence the produced
scenario σ is also deterministic. A loop starting at time-step j, always repeats. Thus, this ensures the
sequence periodicity of σ from rank j. □ □

As a reminder, with SXp we are interested in explaining deterministic policies. Moreover, in the case
of FE-scenarios and HE-scenarios, the environment policy πe is deterministic. The proposition therefore
holds for them. For P-scenarios, the response of the environment depends on its transition function p.

Corollary 1 Let σ j be a loop in a P-scenario σP, and trb(s,a) be the highest environment transition
probability from (s,a). Proposition 4 holds for a P-scenario iff :

∀(s,a) ∈ σ, card({s′ ∈ S and p(s′|s,a) = trb(s,a)}) = 1

where card is the cardinality of a set.

In other words, the existence of a non-deterministic transition in a scenario invalidates Proposition 4.
The method described in Definition 5 thus provides a solution to the selection of M states among a set

of size N. In practice, for the generation of SXp summaries, the value of M cannot be fixed beforehand,
as the length-N scenario may contain sub-sequences to be summarized (in the case of loop detection). It is
therefore necessary to introduce a ratio that defines the number of elements to be extracted. Thus, µ defines
the compression ratio, i.e. the number of states to be summarized into a single one. Consequently, with µ
fixed, the number of states m to be extracted for any sequence of length n is defined by: m = ⌊n/µ⌋.

The summarizing of a scenario, taking into account the loops, is described in Algorithm 1 where the
function f indLoop looks for a loop and its starting index in the scenario (it is only performed when Propo-
sition 4 holds), and the function summarize returns the elements to display to the user according to a set of
states and the compression ratio µ. When Algorithm 1 is executed, depending on the values of N and µ, a
length-N scenario is either summarized or simply displayed. If a loop is detected, the scenario is split into
two sub-sequences, and each part is summarized according to its length and µ. Finally, states are displayed
to the user.

Algorithm 1 Scenario summary
Input: σ = s0,a0,s1, . . . ,sN−1,aN−1,sN , µ ∈ N

1: states← [s0]
2: loop, j← f indLoop(σ)
3: if loop then
4: if j > 1 then ▷ Summarize first part of σ

5: states.add(summarize([s1, . . . ,s j−1],µ))
6: end if
7: states.add(summarize(loop,µ)) ▷ Summarize the loop
8: else
9: states.add(summarize([s1, . . . ,sn−1],µ)) ▷ Summarize the scenario σ

10: end if
11: states.add(sn)
12: display(states)

Proposition 5 The complexity of summarizing an SXp is in O(MN2).
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proof : Summarizing an SXp consists of the summary problem (Definition 4) and loop detection. Since
loop detection can be carried out in O(N2) time (even O(N) with an appropriate data structure), the com-
plexity of summarizing an SXp is in O(MN2) by Proposition 3. □ □

Although the linearity of the time complexity of producing explanations is not preserved when the
length of the scenario requires a summary, explaining nevertheless remains efficient.

2.3 Metrics
Since SXp is an original approach to provide explanations, we did not find in the literature a way to evaluate
them. Therefore, we introduce three scores related to the quality of SXp which we used in a validation
phase. Moreover, in order to provide additional information to the user, we introduce a score of how
representative the displayed scenarios are. For example, whereas the quality of an HE-scenario measures
how good of an approximation it is to the true worst-case scenario, its representativeness measures how
likely it is.

2.3.1 SXp’s quality

To measure the quality of the SXp produced, we implemented three simple scores to answer the question:
“How good is the generated Scenario-Explanation?”. Let the function q denote the quality evaluation
function of a scenario σ; q(σ) can vary depending on the application domain and the quality aspect we
choose to measure. By default it is equal to the reward R(σ), but may be refined to incorporate other
criteria for technical reasons explained later. q(σF) and q(σH) are respectively the quality of a FE-scenario
σF and a HE-scenario σH . They are used to measure to what extent the scenario is similar to a best-case
or worst-case scenario respectively. The resulting FE-score/HE-score is the proportion of k randomly-
generated scenarios that have a not strictly better/worse quality (measured by q) than the FE/HE-scenarios
themselves (hence the score lies in the range [0,1]). For the P-scenario, the P-score is the absolute difference
between the normalized quality q(σP) of a P-scenario σP and the normalized mean of q(σ) of k randomly-
generated scenarios (hence lies again in the range [0,1]). Formally, given a FE-scenario σF , a HE-scenario
σH and a P-scenario σP from s:

FE-score(σF) =
card({σ ∈ Sk

s and q(σ)≤ q(σF)})
k

HE-score(σH) =
card({σ ∈ Sk

s and q(σ)≥ q(σH)})
k

P-score(σP) =

∣∣∣∣∣∣normq(q(σP))−normq(∑
σ∈Sk

s

q(σ)/k)

∣∣∣∣∣∣
where Sk

s is a set of k randomly-generated scenarios s.t. ∀σ = (s0,a0, . . . ,sN) ∈ Sk
s , s0 = s. The closer the

HE-score, FE-score of a HE/FE-scenario is to 1, the closer it is respectively to the worst/best-case scenario
because no other, among the k scenarios produced, is worse/better. A P-score close to 0 indicates that the
P-scenario is a good approximation to an average-case scenario. In each case, the scenarios randomly-
generated for comparison are produced using the agent’s learnt policy π and the transition function p. As
mentioned above, by default, the function q is the last-step reward of a scenario, i.e. q(σ) = R(sN−1,aN−1).

It is important to specify that these quality scores are only used to validate the SXp, given learnt agent
and environment policies. These scores are not calculated for each SXp requested by the user but rather
upstream during the validation phase of the explainer. On the contrary, the following metric is computed
for each SXp to provide additional information to the user.

2.3.2 SXp’s representativeness

The objective of this score is to measure the representativeness of a scenario. For each SXp, it is com-
puted and displayed to the user next to the scenarios. This score aims at answering the question: “How
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representative is this scenario of all possible scenarios starting at state s and with a horizon of N?". This
information is important because it indicates, as an example, which scenario is the most representative at
horizon N between the FE-scenario and the HE-scenario and to what extent. If the representativeness score
is low for the HE-scenario (resp. FE-scenario), it may reassure (resp. alert) the user because this scenario
is not very representative. On the contrary, if its score is high, the HE-scenario (resp. FE-scenario) is
representative and it may alert (resp. reassure) the user.

To compute this score, it is first necessary to obtain the probability of the FE-scenario, HE-scenario and
P-scenario. The agent’s policy being deterministic, the probability of a scenario σ= s0,a0,s1, . . . ,sN−1,aN−1,sN ,
denoted Pr(σ), is defined by: Pr(σ) = ∏

k
i=1 p(si|si−1,ai−1). The P-scenario being an approximation of the

most probable scenario, it is considered the most representative. Therefore, the representativeness score is
simply the ratio between the probability of a scenario σ and the probability of the P-scenario σP.

Definition 6 Given a P-scenario σP, the representativeness score of a scenario σ is:

rep(σ,σP) = min(1,Pr(σ)/Pr(σP))

The score lies in range [0,1]. A score of 1 means that the scenario is at least as representative as the
P-scenario and a score close to 0 reflects a scenario with little representativeness. The min operation limits
the result to 1. If the ratio is higher, it can mean two things. First meaning: the HE/FE-scenario length
is smaller than that of the P-scenario, which may make the HE/FE-scenario more likely. This can occur
if the agent reaches a terminal state in less time in the HE/FE-scenario than in the P-scenario. Second
meaning: the HE/FE-scenario is the same length as the P-scenario but it is a better approximation of the
most-probable scenario than the P-scenario. This latter case was not encountered during the experiments.

3 Experimental results
The Frozen Lake (FL) and Drone Coverage (DC) problems illustrate, respectively, a single and a multi-
agent context. Furthermore, the training process was managed by two distinct algorithms, respectively
Q-learning [30] and a Deep-Q-Network [21]. Recall that the algorithm used to train environment-agents is
similar to the one used to train the agent. The exploration/exploitation trade-off is achieved by using an ε-
greedy action selection where ε is a probability to explore. For short SXp, the hyper-parameter N (scenario-
length) is set to 5 and 6 respectively for the FL and DC problems. For long SXp’s, it is set respectively
to 20 and 50 for the FL and DC problems. The compression ratio µ is set to 5 for both problems. FL
experiments were run on an ASUS GL552VX, with 8 GB of RAM and a 2.3GHz quad-core i5-6300HQ
processor and DC experiments were carried out using a Nvidia GeForce GTX 1080 TI GPU, with 11 GB
of RAM (source code available at: https://github.com/lsaulier/SXp-ICAART23). Each SXp presented in
this section (see e.g. Figure 2) is displayed as follows. On the left, there is the starting state, from which
the SXp is generated. On the right, there are 3 lines, each representing a scenario, which are in order the
FE-scenario, HE-scenario and P-scenario. Next to each scenario is displayed its representativeness score.
The explanation quality scores in Tables 1 and 2 are based on k = 10000 to reduce the randomness of score
calculation. The Avgi and σi columns show the average and standard deviation of explanation scores based
on i different states, or configurations (i.e. states of all agents in a multi-agent problem such as DC).

3.1 Frozen Lake (FL)
3.1.1 Description

The FL problem is an episodic RL problem with discrete state and action spaces. The agent (symbolized
in Figure 2 by a blue dot) moves in a 2D grid world, representing the surface of a frozen lake, with the
aim to reach an item in a specific cell of the grid (marked with a star). There are holes in the frozen lake
(symbolized by blue cells in the map) and the others cells are solid ice. When an agent falls into a hole, it
loses. The agent’s initial state is at the top-left corner cell of the map.

A state is represented by a single value, corresponding to the agent’s position in the map, S = {1, . . . , l×
c} with, l, c the map dimensions. For the sake of readability, in the results a state is denoted by the agent’s
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coordinates (line,column), where (1,1) is the top left cell and (4,4) is the bottom right cell which are
respectively the initial state of the agent and its goal on the 4× 4 map in Figure 2. The action space is
A = {left,down,right,up}. The reward function is sparse and described as follows: for s ∈ S,a ∈ A, s′

denoting the state reached by performing action a from s, and sg being the goal state:

R(s,a) =
{

1, if s′ = sg.
0, otherwise.

The transition function p is the same from any state. Because of the slippery nature of the frozen lake, if
the agent chooses a direction (e.g. down), it has 1/3 probability to go on this direction and 1/3 to go towards
each remaining direction except the opposite one (here, 1/3 to go left and 1/3 to go right).

To solve this RL problem, we use the tabular Q-learning method because the state and action space is
small. The end of an episode during training is characterized by the agent reaching its goal or falling into
a hole.

As stated in the proof of Proposition 2, an environment-agent’s state contains an extra piece of infor-
mation compared to an agent’s state: the action executed by the agent from this position, according to its
policy π. As the environment-agent reflects the transitions of the environment, there are only 3 actions
available and they depend on the agent’s choice of action. The reward function of the favorable agent is
similar to the agent’s reward function. The hostile agent receives a reward of 1 when the agent falls into a
hole, of −1 if the agent reaches its goal and a reward of 0 otherwise.

3.1.2 Results

Figure 1: Agent’s learnt policies for the 4×4 and 8×8 maps and a safe 7×7 grid [23].

Short SXp In order to test our approximate SXp on different environment sizes, we used a 4× 4 map
and a 8× 8 map, the ones presented in OpenAI Gym [3]. Since the reward is sparse (0 except in goal
states), FE/HE/P-scores computed purely with q(σ) = R(sN−1,aN−1) are uninformative (when the number
of steps N is not large enough to reach the goal). Accordingly, the quality evaluation function was defined
as follow: q(σ) = R(σ)+ λQ(σ), where Q(σ) = maxaN∈A Q(sN ,aN) is the maximum last-step Q-value,
R(σ) = R(sN−1,aN−1) is the reward of scenario σ and λ < 1 is a positive constant. Another particularity of
this problem, is that since the transitions are equiprobable, many P-scenarios are possible.

The agent’s learnt policy for the 4×4 map is represented in Figure 1. Each arrow represents the action
performed by the agent from this state. We note that the agent learns to avoid to enter the top-right part of
the map (i.e. the two first lines without the first column), which is the most dangerous part, due to the (2,3)
state. In the remaining parts of the map, the only dangerous state is (3,3) since the agent action choice is
down, so it has a probability of 1

3 to fall into a hole.
The SXp calculated starting from the state (2,1) is shown in Figure 2. The P-scenario is one scenario

among many, and it highlights the difficulty for the agent to succeed in this particular grid with a few steps.
The hostile agent exploits well its only way to force the agent to fall into a hole given the agent’s policy
(Figure 1) which is to push it towards the hole located at (3, 4). The favorable agent also learns well and
provides an FE-scenario where the agent reaches its goal in the minimum number of steps. The HE-score
and FE-score of SXp’s from state (2,1) are presented in Table 1. These are perfect scores (equal to 1).
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Figure 2: Scenario-Explanations (from top to bottom: FE-scenario, HE-scenario, P-scenario) from a specific
state in the 4×4 map [23].

Table 1: Quality scores for Scenario-Explanation in the 4×4 map and 8×8 map [23].

4x4 map 8x8 map
State (2,1) Avg7 σ7 State (3,6) Avg20 σ20

FE-score 1 1 0 1 0.824 0.281
HE-score 1 1 0 1 0.828 0.346
P-score 0.081 0.211 0.115 0.031 0.08 0.09

Moreover, since the P-score is close to 0, the provided P-scenario is a good approximation. We computed
SXp’s based on the same agent’s policy π but starting from 7 reachable states, i.e. states that can be reached
following the policy π (Figure 1) and which are neither holes nor the goal. Results are reported in the Avg7
column of Table 1. Hostile and favorable agents learnt perfectly.

The SXp method was also tested with an 8×8 map. As we can see in Figure 1, the agent has learned
to avoid as much as possible the left zone of the map which is dangerous. Figure 3 depicts an SXp starting
from the state (3,6). Due to the agent’s policy, the hostile agent can’t just push the agent down from state
(3,6), but it manages to push the agent along a path which ensures that the agent falls into a hole, hence
the HE-scenario ends after only 3 steps. In the FE-scenario, the favorable agent brings the agent closer to
its goal over the N = 5 time-steps. The P-scenario again provides evidence that the agent is likely not to
succeed in this difficult environment in a small number of steps.

From the scores presented in Table 1 concerning the 8× 8 map, we can again conclude that the 3
produced scenarios are of good quality. The scores presented in the Avg20 column were obtained by SXp
from 20 randomly-chosen starting states. The average score is lower than 1 but note that 1 is achieved

Figure 3: Scenario-Explanations from a specific state in the 8×8 map [23].
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Figure 4: Agent’s learnt policies for two 10×10 maps (respectively named map A and map B).

for respectively more than 75% and 60% of HE-scenarios and FE-scenarios. Hence, apart from some
randomly-generated starting states located in the little explored left-zone of the map, the scores indicate
that HE/FE-scenarios are good approximations of worst/best scenarios.

The representativeness scores are similar for each scenario in Figure 2 and Figure 3. This is due to the
fact that each transition is equiprobable in the FL problem. In addition, the time horizon of the displayed
HE/FE-scenarios do not exceed that of the P-scenarios. This is why all scenarios are equally representative.

In order to check the impact of the agent’s policy on the environment-agents’ learning process, we
designed a 7×7 map, shown in Figure 1, in such a way that if the agent learns well, it can avoid falling into
a hole. Once the learning phase is over, we noticed that the hostile agent learns nothing. Since the agent
learns an optimal policy π, the hostile agent can’t push the agent into a hole. Accordingly, it can’t receive
any positive reward and therefore can’t learn state-action values. This is strong evidence that the agent’s
policy is good.

Long SXp The summarized SXp’s were tested on two maps of size 10× 10 to show the usefulness
of summaries with a relatively large scenario-length. The maps and their policies are shown in Figure 4
(named map A and map B respectively). The agents for the 2 maps have learned well to reach the objective,
avoiding as much as possible to fall into the holes. However, there are still many opportunities for the
hostile agent to make the agents fall. The scenario length is large (N = 20) to have a long term view of
what can happen from a given state. λ is set to 1.0 for the calculation of the objective function fN of the
summary problem (Definition 4). This means that we consider as equally important the importance of the
states and the distribution of the displayed states. Figure 5 and 6 show summarized SXp’s for respectively
map A and B beginning in the agent’s initial state. Each number shown between states (such as 4, 4, 5, 1
in the FE-scenario of Figure 5) represent the number of omitted states.

In Figure 5, the hostile agent succeeds in causing the agent to fall into the nearest reachable hole from
its starting point. The HE-scenario summary gives a good idea of what happened. It is more difficult to
understand what happened in the P-scenario by looking at its summary. This is due to the problem difficulty
of the agent reaching the goal; non-deterministic transitions can cause the agent to stagnate in a region of
the map for a long time. The favorable agent is successful in helping the agent achieve the objective and
the FE-scenario summary is of good quality. Indeed, the states are sufficiently spread out for the user to
understand how the scenario unfolds. In the FE-scenario, the last states displayed are relatively close in
terms of distance. Importance scores for states near the goal are higher than those far from it; as a result,
the summary is impacted. These remarks are also relevant for the SXp summarized in Figure 6. Similarly
to the presented short SXp, the scenarios are equally representative.

We now focus on the FE-scenario in Figure 5 and vary the value of λ to observe its impact on the
scenario summary provided. The different summarized FE-scenarios are displayed in Figure 7. The values
of λ are respectively 1, 0.5 and 0. With λ = 0, the uniformity of the gaps between the selected states is not
taken into account. Note that the associated summary only displays the last elements, because they are the
most decisive for achieving the objective. The problem is that we have no idea about what happened during
14 time-steps. Accordingly, this summary is not informative enough. This justifies taking into account the
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Figure 5: Scenario-Explanations from a specific state in map A.

Figure 6: Scenario-Explanations from a specific state in map B.

uniformity of the distribution of selected states in selecting SXp summaries. The other two summaries
provided are of good quality, with a more evenly spread summary for the summary provided with λ = 1.

In the experiments, no loops were detected for the FE-scenarios and HE-scenarios. This makes sense
since both the hostile and favorable agents must bring the agent into specific states to obtain a reward.
In other words, looping between different states (i.e. positions on the map) does not bring any reward,
which is why there are no loops in FE-scenarios/HE-scenarios (assuming they have learned well). The
P-scenarios have probability zero of containing infinite loops. This is because the environment response is
non-deterministic. Whatever the state s and the action a chosen from s, transitions are non-deterministic.
Therefore, Proposition 4 does not hold in this problem for P-scenarios.

3.2 Drone Coverage (DC)
3.2.1 Description

The DC problem is a novel multi-agent, episodic RL problem with discrete state and action spaces. The
agents’ goal is to cover the largest area in a windy 2D grid-world containing trees (symbolized by a green
triangle in Figure 8). The coverage of each drone (represented as a dot) is a 3× 3 square centered on
its position. A drone is considered as lost and indeed disappears from the grid if it crashes into a tree or
another drone.

A state for an agent is composed of the contents of its neighbourhood (a 5× 5 matrix centered on the
agent’s position) together with its position on the map. The action space is A= {left,down,right,up,stop}.
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Figure 7: Summarized FE-scenarios from a specific state in map A.

The reward function R of an agent is impacted by its coverage, its neighbourhood, and whether it has
crashed or not (the reward is -3 in case of crash): if there is no tree or other drone in the agent’s 3× 3
coverage, it receives a reward (called cover) of +3 and +0.25× c otherwise, where c is the number of free
cells (i.e. with no tree or drone) in its coverage; the agent receives a penalty of −1 per drone in its 5× 5
neighbourhood (since this implies overlapping coverage of the two drones). With s′ the state reached by
executing action a from s, the reward function is as follows: for s ∈ S,a ∈ A,

R(s,a) =
{
−3, if crash
cover(s′)+ penalty(s′), otherwise

As there are 4 drones, the maximum cumulative reward (where cumulative reward means the sum of all
agents rewards in a given configuration) is 12 and the minimum is −12. The transition function p, which
represents the wind, is similar in each position and is given by the following distribution: [0.1,0.2,0.4,0.3].
This distribution defines the probability that the wind pushes the agent respectively left, down, right, up.
After an agent’s action, it moves to another position and then is impacted by the wind. As an additional
rule, if an agent and wind directions are opposite, the agent stays in its new position, so the wind has no
effect. After a stop action, the drone does not move and hence is not affected by the wind.

In order to train the agents, we used the first version of Deep-Q Networks [21] combined with the
Double Q-learning extension [12]. The choice of this algorithm was motivated by two factors. First, we
wanted to investigate our XRL method’s ability to generalise to RL algorithms, such as neural network
based methods, used when the number of states is too large to be represented in a table. Secondly, this
setting enables us to deal with a problem which is scalable in the number of drones and grid size.

The end of an episode of the training process occurs when either one agent crashes, or a time horizon is
reached. This time horizon is a hyper-parameter fixed before the training; it was set to 22 for the training of
the policy which is explained in the following subsection. When restarting an episode, the agents’ positions
are randomly chosen. This DC problem is a multi-agent problem, and to solve it, we use a naive approach
without any cooperation between agents. Only one Deep-Q Network is trained with experiences from all
agents. The reward an agent receives is only its own reward; we do not use a joint multi-agent reward.

Concerning the implementation of the hostile and favorable environment: the extra information in the
environment-agent’s state is the action performed by the agent in its corresponding state. Actions are
similar to the agents’ except that there is no stop action. The favorable-agent reward function is similar to
the one of the agent’s and the reward function of the hostile agent is exactly the opposite.

3.2.2 Results

Short SXp For the sake of simplicity, each drone has an associated color in Figure 8. Above each map,
there is a list of colored arrows, or stop symbols, corresponding to each colored drone’s action which leads
them to the configuration displayed in the map. A colored cell means that the area is covered by the drone
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Figure 8: Scenario-Explanation of a specific configuration of the DC problem [23].

of the same color and a dark grey cell indicates an overlap of the coverage of different drones. To compute
the SXp quality scores, we use q(σ) = ∑i Ri(sN−1,aN−1) with Ri denoting the reward of agent i (i.e. q is the
last-step aggregate reward). Note that the policy to be explained is good, but not optimal. Measuring the
performance of a policy by the average of the cumulative rewards obtained at the end of the last hundred
training episodes, the performance is 11.69 (out of 12).

The SXp for a particular configuration, denoted as configuration A, is shown in Figure 8. The hostile
agent succeeds in crashing two drones and positioning the remaining drones in bad covering positions. The
P-scenario demonstrates well the most probable transition (the wind pushes the drones to the right) and
the favorable agent manages to reach a perfect configuration in only 5 steps. The representativeness scores
reassure the user for this SXp. Indeed, the catastrophic HE-scenario is not representative at all while the
successful FE-scenario is. SXp quality scores are given in Table 2 where the last columns show the average
and standard deviation of scores obtained from 30 random configurations. These results indicate good
approximate SXp’s. Moreover experiments showed that 19 HE-scores are higher than 0.95 and 24 FE-
scores are perfect (equal to 1). The quality of the learnt policy is also attested by the fact that a maximum
reward is attained in 21 out of 30 P-scenarios.

Table 2: Quality cores for Scenario-Explanation in 10×10 map, showing the mean and standard deviation
over 30 trials [23].

Configuration A Avg30 σ30
FE-score 1 0.919 0.198
HE-score 1 0.936 0.08
P-score 0.073 0.034 0.04

Long SXp The DC problem is a multi-agent one. This means that a new configuration importance score
must be expressed to summarize SXp. Since a configuration is the aggregation of each drone’s state, the
configuration importance is simply the average importance score of drone states. With C denoting the set
of states of a configuration, the configuration importance score Iconfig is defined by:

Iconfig(C) =
1

card(C) ∑
s∈C

I(s)

An example of an SXp summary based on the same policies as the short SXp is shown in Figure 9. λ is
set to 1.0 for the computation of the objective function fN of the summary problem (Definition 4). Scenario-
length is voluntarily large because, during the experiments, we noticed that the drones looped quite quickly
between one or several states. Therefore, loop handling is useful for SXp. Moreover, Proposition 4 holds
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Figure 9: A long Scenario-Explanation of a specific configuration of the DC problem.

for P-scenarios since the environment response is deterministic. Indeed, at each time step, whatever the
state is, there is only one most probable transition (push the agent to the right).

In the long SXp shown in Figure 9, each scenario ends with a loop (of length 1, 2 and 1, respectively).
The hostile agent definitively prevents 3 out of 4 drones from having a perfect coverage by ‘blocking’ them
in a loop of two configurations. The P-scenario shows a scenario where drones quickly reach a perfect
configuration that they maintain. The summary of the first part of the P-scenario allows the user to deduce
the drones’ movements (despite the compression ratio of µ= 3). The FE-scenario presents a scenario where
drones reach a perfect configuration faster. For the FE/HE-scenario, there is no need to summarize the part
before the loop because there are few states. In each scenario, loop management allows us to keep SXps
both concise and easily comprehensible.

Figure 10: Summarized FE-scenarios from a specific configuration of the DC problem.

We now focus on the FE-scenario and vary the value of λ in order to observe its impact on the scenario
summary. λ takes a value among 0, 0.5 and 1 and the compression ratio µ is set to 3. In Figure 10, the
summary only has an impact on the first part of the scenario. The different scenarios are of good quality,
except for the third one in which the gap between the configurations is not taken into account (λ = 0).
In this summarized FE-scenario, only the first states, considered important, are displayed. Therefore, it
is more difficult to understand how the drones reached the loop configuration. Again, these experiments
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confirm that the default value λ = 1 is a sensible choice.
Results obtained in the FL and DC problems show that, whether the agent’s policy is optimal or not,

we can obtain interesting information via our SXp. Furthermore, this XRL method does not increase
asymptotic complexity of RL. The user can choose to display short-term scenarios or long-term scenarios.
These latter are summarized by a combination of loop detection and a dynamic programming algorithm to
find the best balance between the importance of states and their uniform spread over the scenario.

4 Related work
XRL methods use different key features of Reinforcement Learning to provide explanations. As an ex-
ample, we can cite the interpretable reward proposed in [15]. Using exclusively agent’s states which are
images, Greydanus et al. present a method to produce saliency maps for Atari agents [10]. By adding
object recognition processing, Iyer et al. produce object saliency maps from states to gain more insights
about the agent’s decisions [14]. Olson et al. and Hubert et al. answer the question ’Why perform action
a rather than action b from the state s?’ in a counterfactual fashion [22, 13]. To do so, a state s′ close to s
is generated using a GAN, which leads to the choice of action b. In order to focus on causal relationship
between action and state variables, Madumal et al. [17] build an action influence model (AIM) used for
explanation. Yu et al. extend the use of AIM to problems with continuous action space, without the need of
prior knowledge of the environment causal structure [32]. Additional information can be collected during
the agent’s training process, including XRL methods [5] which extract success probabilities and number
of transitions, or methods which learn a belief map [31]. All these XRL methods allow one to essentially
explain the choice of an action in a specific state. For policy-level explanations, EDGE highlights the most
critical time-steps, states, given the agent’s final reward in an episode [11]. Policy explanations can be used
to improve the policy. As an example, the ReCCoVER algorithm shows to developers the spurious corre-
lations between critical states features which impact the generalisation of the agent’s policy and proposes
a revision [9].

Several works aim at making the policy interpretable, i.e. making it understandable for the user. A
fairly common approach consists in training a black-box policy represented by a NN and approximating it,
or even outperforming it, with an interpretable model also called a surrogate model. The VIPER algorithm
results in verifiable policies in the form of decision trees [2]. With the PIRL framework, the NDPS algo-
rithm allows to check a policy represented by an intuitive and understandable programming language [29].
Danesh et al. transform RNNs into compact Moore machines [6]. In a multi-task RL context, Shu et
al. propose to represent each learned policy for a sub-task as a human language description [25]. Thus,
the global policy is directly interpretable. Rather than obtaining an interpretable policy by design, some
works add an interpretability layer to black-box policies. In this sense, Zahavy et al. interpret policies
represented by DQN’s in a post hoc manner, by highlighting the hierarchical state aggregation, as well as
the policy’s strengths and weaknesses [33]. Another post-hoc explainer tool is PolicyExplainer which is a
visual analytic interface that provides a set of tools to understand the policy [20].

An alternative way to explain the agent’s policy is through state-action sequences, like our SXp. One
part of the framework proposed by Sequeira and Gervasio provides a visual summary, based on sequences
obtained during the learning phase, to globally explain the policy [24]. With the same goal, HIGHLIGHTS
extracts sequences based on a notion of state importance to provide a summary of the agent’s learnt be-
haviour [1]. In a context of MDP, the method implemented in [27] computes sequences that differ in at
most n actions from the sequence to explain, as counterfactual explanations. Explaining a sequence in a
contrastive way, is achieved in [28] by producing a contrastive policy from the user question and then com-
paring both sequences. These XRL methods do not solve the same problem as our SXp. Indeed, [24] and
[1] provide high-level policy explanation through summaries in a general context of the agent’s interaction
with the environment. [27] and [28] explain the policy in a counterfactual way; the problem is to generate
a sequence in which actions differ from π. Thus, these approaches are incomparable with our SXp, which
explain the policy from a particular state, by producing scenarios using the policy π.
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5 Discussion
The experiments illustrate the different possible uses of SXp. Apart from understanding policies, SXp also
provide a way to evaluate them. Indeed, even if the policy π learnt is not optimal, HE-scenarios and FE-
scenarios provide useful information. If from multiple starting states and by varying the scenario-length
N, an FE agent cannot bring the agent closer to its goal, this is a proof that the policy π is inadequate.
Conversely, an HE agent which cannot prevent the agent from reaching its goal is a evidence of a good
policy π. Concretely, in the FL problem this means that the agent has learnt not to give a hostile environment
the opportunity to force it to fall into a hole, and in the DC problem the agent has learnt to stay sufficiently
far away from trees and other drones. To ensure that the scenario-length is not impacting the results, a more
complete study could be carried out by increasing N and using summarized SXp in order to examine the
generated scenarios. In other words, our XRL method can also be used as a debugging tool.

The experiments have also taught us some valuable lessons. Since we use the same RL method and
the same resources to learn πe as were used to learn π (in order not to increase asymptotic time and space
complexity), we cannot expect the quality of explanations to be better than the quality of the original policy
π. For example, when states are represented by a simple index in a table, as in Q-learning, πe can provide
no useful information concerning states which were not visited during the learning of πe. Indeed, whatever
the RL method used, since πe is learnt after (and as a function of) the agent’s policy π, the latter will be
of better quality on (states similar to) states visited more frequently when following the agent’s policy π.
A higher/lower quality of explanation for those states that are more/less likely to be visited is something
the user should be aware of. If it is important that quality of explanations should be independent of the
probability of a state, then the training phase of πe should be adapted accordingly. This is an avenue of
future research.

We should point out the limitations of our method. The three scenarios which are produced are only
approximations to the worst-case, best-case and most-probable scenarios. Unfortunately, approximation is
necessary due to computational complexity considerations, as highlighted by Proposition 1. We should also
point out that the distinction between these three scenarios only makes sense in the context of RL problems
with a stochastic transition function. Moreover, the transition function must be known or approximated
using model-based methods and SXp summaries require Q-values for the importance score computation.
Finally, due to the relative novelty of the notion of scenario-explanation, no metric was found in the litera-
ture to evaluate the quality of SXp’s.

6 Conclusion
In this paper, we describe an RL-specific explanation method based on the concept of transition in Rein-
forcement Learning. To the best of our knowledge, SXp is an original approach for providing predictive
explanations. This predictive XRL method explains the agent’s deterministic policy through scenarios
starting from a certain state. Moreover, SXp is agnostic concerning RL algorithms and can be applied to all
RL problems with a stochastic transition function. An SXp is composed of 3 scenarios: HE-scenario, FE-
scenario and P-scenario. They respectively give an approximation of a worst-case scenario-explanation, a
best-case scenario-explanation and a most-probable scenario explanation. Experiments indicate that these
approximations are informative according to SXp quality scores. In the FL and DC problems, SXp pro-
vides a good answer to the question “What is likely to happen from the state s with the current policy
of the agent?". Of course, in any new application, experimental trials would be required to validate this
XRL method and evaluate its usefulness. Our 3-scenario-based method appears promising and can be
used in more complex problems: we only require that it is possible to learn policies for hostile/favorable
environments.

SXp’s are parameterized by the length N of the scenarios generated. This parameter must be entered
by the user in order to look at the short- or long-term future of the agent’s interactions in the environment.
The greater the N, the longer the scenarios, and therefore the more long-term the vision. A large N results
in a high cognitive load for the user. To eliminate this cognitive overload, we have introduced summarized
SXp. It summarizes HE-scenario, FE-scenario and P-scenario according to two criteria: the importance
of a state and its position in the scenario. We consider that an optimal summary should display important
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states that are well distributed along the scenario. We have developed a dynamic programming solution
to generate these summaries. We use the parameter λ to modulate the importance of the spread of states
displayed in the summary produced. Summarized SXp provides a concise and effective way of seeing what
can happen in the long term.

An avenue of future work would be to focus on the probabilistic aspect of stochastic policies and
provide specific approximate SXp definitions. Another avenue of future work would be to provide SXp’s
for 2-person games (e.g. Connect 4) where the presence of an opponent player makes the environment
stochastic. In this context, the environment policies would simply be opposing player policies. The hostile
environment can be seen as a player who is good and the favorable environment as a bad player who
gives the agent plenty of opportunities. To provide the P-scenario, one would have to determine the likely
behavior of an average opponent. Another idea would be to provide the user with more tools to understand
the agent’s policy in detail. This could be achieved by learning several environment policies, based on
more refined properties than the agent’s success or failure in achieving its goal, such as the risk or safety of
the agent’s policy. An avenue of future research would be to study possible theoretical guarantees of SXp
performance.

In a nutshell, after introducing a theoretical framework for studying predictive explanations in RL,
we presented a novel practical predictive-explanation method. A pleasing aspect of our method is that
explanation employs the same tools as the original reinforcement learning method. In addition, when
scenarios are too long to be displayed to the user, we provide a dynamic programming solution that enables
us to generate scenario summaries in which a compromise is made between displaying the most important
states and evenly covering the scenario steps.
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