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Abstract

Our understanding of motor-related, macroscale brain processes has been significantly shaped by
the  description  of  the  event-related  desynchronization  (ERD)  and  synchronization  (ERS)
phenomena in the mu and beta frequency bands prior to, during and following movement. The
demonstration  of  reproducible,  spatially-  and  band-limited  signal  power  changes  has,
consequently, attracted the interest of non invasive brain-computer interface (BCI) research for a
long time. BCIs often rely on motor imagery (MI) experimental paradigms that are expected to
generate brain signal modulations analogous to movement-related ERD and ERS.  However,  a
number of recent neuroscience studies has questioned the nature of these phenomena. Beta band
activity has been shown to occur,  on a single-trial  level,  in short,  transient and heterogeneous
events termed bursts rather than sustained oscillations. In a previous study, we established that an
analysis of hand MI binary classification tasks based on beta bursts can be superior to beta power
in  terms  of  classification  score.  In  this  article  we  elaborate  on  this  idea,  proposing  a  signal
processing algorithm that is comparable to- and compatible with state-of-the-art techniques. Our
pipeline filters brain recordings by convolving them with kernels extracted from beta bursts and
then applies spatial filtering before classification. This data-driven filtering allowed for a simple and
efficient analysis of signals from multiple sensors thus being suitable for online applications. By
adopting a time-resolved decoding approach we explored MI dynamics and showed the specificity
of  the  new classification  features.  In  accordance  with  previous  results,  beta  bursts  improved
classification  performance  compared  to  beta  band  power,  while  often  increasing  information
transfer rate compared to state-of-the-art approaches.



Significance statement

Patterns of waveform-specific burst rate comprise an alternative, neurophysiology-informed way of
analyzing beta band activity during motor imagery (MI) tasks. By testing this method on multiple
electroencephalography datasets and comparing its corresponding classification scores against
those of conventional power-based features, this work demonstrates that brain-computer interface
applications could benefit from utilizing beta burst activity. This activity gives access to a reliable
decoding performance often requiring short recordings. As such, this study shows that waveform-
specific beta burst rates encode information related to imagined (and presumably real) movements
and serves as the first step for a real-time implementation of the proposed methodology.

Introduction

Time-locked changes in induced power within specific frequency bands, originally described in a
number of seminal studies in motor neuroscience (Pfurtscheller, 1981; Pfurtscheller and Berghold,
1989; Pfurtscheller and Lopes da Silva, 1999), have long influenced the way in which we interpret
macroscale recordings of brain activity such as those provided by electroencephalography (EEG).
These  studies  have  revealed  a  gradual  reduction  in  brain  signal  power  during  an  ongoing
movement or motor imagery (MI) task in the mu (~8-12 Hz) (Neuper et al., 2006; Pfurtscheller et
al., 2006, 1997; Pfurtscheller and Lopes da Silva, 1999) and beta (~13-30 Hz) (Pfurtscheller et al.,
1997; Pfurtscheller and Lopes da Silva, 1999) frequency bands relative to baseline activity. This
phenomenon is termed event-related desynchronization (ERD). The same studies have, moreover,
described a relative-to-baseline increase in power in the beta band shortly following the end of the
movement or MI (Alayrangues et al., 2019; Neuper et al., 2006; Pfurtscheller et al., 1996), known
as event-related synchronization (ERS). These phenomena are especially marked over cortical
areas contralateral  to  the real  or  imagined movement  (Kobler  et  al.,  2020;  Little  et  al.,  2019;
Makeig et al., 2000; Pfurtscheller and Berghold, 1989; Pfurtscheller and Neuper, 1997; Seeber et
al.,  2016;  Zich  et  al.,  2023) and  their  topographies  approximately  match  the  somatotopic
organization of the sensorimotor cortices  (Gordon et al., 2023; Natraj et al., 2022; Penfield and
Rasmussen, 1950). Taken together, these observations have given rise to the hypothesis that the
ERD is an indication of brain processes pertaining to movement preparation and execution while
the ERS is an indication of processes related to movement completion (Kilavik et al., 2013).

Given the reproducibility of the spatial and frequency specificity of the ERD and ERS, these neural
markers are often exploited by non-invasive BCI applications, especially those that are based on
MI  paradigms  (Jayaram  and  Barachant,  2018;  Tangermann  et  al.,  2012).  Such  paradigms,
designed to reproduce consistent time-locked signal modulations, normally rely on transforming the
recordings in the time-frequency domain (TF)  (Brodu et al.,  2011; Bruns, 2004; Herman et al.,
2008) and  then  applying  spatial  filtering,  most  commonly  using  the  common  spatial  pattern
algorithm (CSP)  (Blankertz et al., 2008; Koles, 1991; Müller-Gerking et al., 1999). This chain of
signal transformations is expected to increase signal-to-noise ratio by extracting signal power in
specific time windows and frequency bands of interest, and also to maximize the spatial disparity
among different MI classes (e.g. ”left” or “right” hand, or “feet”), thus improving classification results
and/or allowing for decoding of multiple commands with distinct signal features (Lotte, 2014; Lotte
et al., 2018).

Although the ERD and ERS are consistently observed across subjects and recording modalities,
their  nature  is  not  clear.  Based  on  the  assumption  of  amplitude  modulation  of  sustained
oscillations, these patterns are the result of signal power averaging in the TF domain over multiple



trials. However, converging evidence suggests that, on the contrary, beta band activity occurs in
short events termed bursts (Coleman et al., 2024; Jones, 2016; Little et al., 2019; Lundqvist et al.,
2024,  2016;  Shin et  al.,  2017;  Torrecillos et  al.,  2018;  Wessel,  2020) on the single trial  level,
therefore questioning the functional role of ERD and ERS altogether, at least within the beta band.
Beta burst rate has been shown to be more behaviorally relevant in motor processes (Enz et al.,
2021;  Hannah et  al.,  2020;  Little et  al.,  2019;  Rayson et  al.,  2023;  Szul et  al.,  2023;  Wessel,
2020) than averaged beta band power. Additionally, recent studies have shown that beta bursts are
not  a unitary  phenomenon but  rather  constitute heterogeneous events  (Szul  et  al.,  2023) with
different functions, alluded to by the differential modulation of their rate and shape depending on
task conditions (Langford et al., 2023; Papadopoulos et al., 2024) or movement phase (Rayson et
al., 2023; Szul et al., 2023). As such, beta bursts have the potential to be a more sensitive marker
of brain processes during real or imagined movements on the single trial level.

To test this hypothesis,  in a previous study we examined multiple open MI EEG datasets. We
analyzed the activity of channels C3 and C4 during binary classification tasks of hand MI (“left” vs
“right” hand) and demonstrated that the waveform-resolved beta burst rate is superior to beta band
power changes in terms of classification (Papadopoulos et al., 2024). In this article we streamline
our  approach.  We  develop  an  algorithm  that  is  computationally  efficient  and  can  analyze  an
arbitrary number of recorded signals thus being comparable to state-of-the-art techniques. Beta
burst  waveforms,  whose  rate  is  expected  to  be  maximally  modulated  during  the  trial  period
compared to baseline,  are identified in  calibration data.  These bursts  are used as data-driven
kernels that filter the signals from all recording channels in the time domain. The convolved signals
are then spatially filtered with CSP and the spatial features are used as classification features. We
re-analyze the activity during “left” and “right” hand MI of the same open EEG datasets and also a
recently-published  composite  EEG  dataset,  now  in  a  time-resolved  fashion.  We  show  that
classification  features  based  on  waveform-resolved  beta  burst  rate  offer  better  decoding
performance  and  improve  the  decoding  speed  versus  accuracy  trade-off  when  compared  to
standard band-limited power-based classification features.

Materials and Methods

Datasets: We analyzed the recordings of six open EEG MI benchmark datasets available through
the MOABB  (Aristimunha et  al.,  2023;  Jayaram and Barachant,  2018) project:  BNCI 2014-001
(Tangermann et  al.,  2012),  BNCI  2014-004  (Leeb et  al.,  2007),  Cho 2017  (Cho et  al.,  2017),
MunichMI (Grosse-Wentrup 2009) (Grosse-Wentrup et al., 2009), Weibo 2014 (Yi et al., 2014) and
Zhou 2016 (Zhou et al., 2016), and the recordings of a composite open EEG dataset that became
recently available (Dreyer et al., 2023) referred to hereafter as Dreyer 2023. All datasets comprise
a number of subjects with recordings corresponding to multiple trials of two or more randomly
chosen, sustained kinesthetic MI commands, each performed following the appearance of a visual
cue on a screen (Table 1). For our analysis we only considered trials corresponding to the “left
hand” or “right hand” classes.

Pre-processing: The epoched recordings of each subject were loaded using the MOABB python
package (v0.4.6, class LeftRightImagery; parameters: tmin and tmax as in indicated in Table 1), and
were filtered with  a low pass cutoff  of  120 Hz (parameters:  fmin =  0,  fmax =  120;  default  MNE
(Gramfort et al., 2013) zero-phase FIR filter designed with the windowed approach and transition
bandwidth of 25% of the low pass frequency). Because the sampling frequency of the Weibo 2014
recordings is 200 Hz, we set the low pass cutoff to 95 Hz for this dataset. Finally, we used the
autoreject python package (Jas et al., 2017) (v0.4.0, function get_rejection_threshold, default para-



Dataset # Subjects # Channels # Trials Baseline
period (s)

Task
period (s)

Post-task
period

(s)

BNCI
2014-001 9 22 288

217 – 288 (243) -1.0 – 0.0 0.0 – 4.0 4.0 – 5.5

BNCI
2014-004 9 3 680 – 760 (720)

269 – 621 (411) -1.0 – 0.0 0.0 – 4.5 4.5 – 6.5

Cho
2017 49 64 200 – 240 (200)

  38 – 237 (159) -1.0 – 0.0 0.0 – 3.0 3.0 – 5.0

Dreyer
2023 87 27 160 – 240 (240)

  23 – 240 (192) -1.0 – 0.0 0.0 – 5.0 5.0 – 6.0

MunichMI
(Grosse-

Wentrup 2009)
10 128 300

109 – 278 (200) -1.0 – 0.0 0.0 – 7.0 7.0 – 9.0

Weibo
2014 10 64 140 – 160 (160)

  31 – 160 (132) -1.0 – 0.0 0.0 – 4.0 3.0 – 3.5

Zhou
2016 4 14 290 – 319 (295)

114 – 280 (150) -1.0 – 0.0 0.0 – 5.0 5.0 – 7.0

Table 1. Dataset attributes. The lines in the fourth column indicate the original number of trials per subject (or
the range in case this number was different between subjects), and the range of remaining trials across all
subjects following trial rejection. Numbers in parentheses indicate the median number of trials.

meters) in order to remove noisy trials.

Burst detection and kernel selection: In order to select kernels for convolving the data from all
channels we first detected bursts from channels C3 and C4 (or equivalently channels 43 and 44 for
the MunichMI (Grosse-Wentrup 2009) dataset).  To do so, we applied the  pre-processing steps
described  above  within  a  dataset-specific  cluster  of  channels  above  the  sensorimotor  cortex
(Papadopoulos et al.,  2024). We applied a time-frequency (TF) decomposition in the 1 – 43Hz
range  on  each  selected  channel  separately,  using  the  superlets  algorithm  (Moca  et  al.,
2021) (parameters: omin = 1, omax = 40, c = 4) with a frequency resolution of 0.5 Hz. We noted high-
power artifacts at approximately 25 – 30 Hz when inspecting the TF of the Cho 2017, Dreyer 2023
and MunichMI (Grosse-Wentrup 2009) datasets. This noise interferes with the burst detection step,
therefore, we included an extra pre-processing step, prior to trial rejection, based on a custom
implementation  of  the  ZapLine  algorithm  from  the  meegkit  python  package  (de  Cheveigné,
2020) (v0.1.3, dss_line function) to remove these artifacts. Then, we detected bursts within the
beta frequency range (15 – 30 Hz) from each TF matrix channel and used their temporal location
to extract their waveforms from the raw time series within a fixed time-window of 260ms. For more
details regarding the burst detection step we refer the readers to previous work from our group
(Szul et al., 2023).

As the number of detected bursts per subject is large, we randomly sampled 10% of the trials of
each participant per dataset and created a matrix that contained the waveforms of all detected
bursts regardless of the trial class (“left”  or “right” hand) for a given dataset.  Due to the large
number of subjects of the Dreyer 2023 dataset we restricted the random sample to 5% of each
subject’s trials. Then, after robust scaling (scikit-learn package (Pedregosa et al., 2011), v1.0.2),
we  reduced  the  time  dimension  of  the  waveforms  using  principal  component  analysis  (PCA)
(Shlens, 2014) (scikit-learn package, v1.0.2).

We used the PCA score of each waveform detected from electrodes C3 and C4 (or equivalently
channels 43 and 44 for the MunichMI (Grosse-Wentrup 2009) dataset), which is a metric of the
difference between any waveform and the average shape of all  bursts contained in the matrix



provided as input to PCA. We defined an index of lateralized modulation of the average-per-axis
PCA score Im :

Im=|(uipsiC 3−ucontraC 4 )− (uipsiC 4−ucontraC 3 )|,m∈ {2 , ... ,9}

u=|ŝcoretrial period− ŝcorebaseline|

where ipsi (contra) refers to bursts recorded from channels C3 / C4 during a left / right (right / left)
hand MI (Figure 1 a). 

This index measures the inter-hemispheric difference of the average waveform shape between the
baseline and trial periods. Its values span the range [0 ,∞) and higher values indicate greater
discrepancies between hemispheres and the two recording periods.

Based on observations from our previous study (Papadopoulos et al., 2024), we computed Im
among components 2 to 9 in order to find three PCA axes that maximized this metric. We did not
take into account the first component because it likely describes the temporal skew of the bursts
(Papadopoulos et al., 2024; Szul et al., 2023). Finally, we divided the score range of each of the
three  selected  axes  in  seven  equally  spaced  groups,  each  group  corresponding  to  a  set  of
“similarly shaped” bursts. We kept the two groups per axis that lie further away from the origin
(score equal to 0) and, by computing the Euclidean-average waveform of bursts within each group,
we identified two kernels per axis. As such, we identified six kernels per dataset corresponding to
burst waveforms whose rates were expected to be maximally modulated during the task, compared
to baseline.

Feature extraction: For each subject we applied the pre-processing, burst detection and kernel
selection steps described above (pre-processing was applied to all available recording channels).
Then, we convolved the EEG recordings with the corresponding kernels thus computing a proxy of
the waveform-resolved burst rate per kernel. The temporally convolved, epoched data was then
spatially  filtered  using  the  CSP  algorithm  (MNE  package,  v1.5.1,  function  CSP,  parameters:
n_components = 4,  transform_into = “average_power”).  Finally,  we concatenated all  24 spatial
features into a single vector for each trial (Figure 1 b).

To compare with, we also used standard approaches to compute spatial features of band-limited
power modulations. After pre-processing, we independently filtered the epoched data in the mu (6
– 15 Hz), beta (15 – 30 Hz) or both the mu and beta (6 – 30 Hz) bands, using either a single filter
or a filter bank approach. Then, the filtered data served as inputs to the CSP algorithm (using the
already  described  parameters)  resulting  in  four  spatial  features  per  filter.  For  the  filter  bank
approach, we split either frequency range in non-overlapping filter banks with a frequency span of
3 Hz per filter. As such we defined three filters for the mu band (6 – 9 Hz, 9 – 12 Hz, 12 – 15 Hz),
five filters for the beta band (15 – 18 Hz, 18 – 21 Hz, 21 – 24 Hz, 24 – 27 Hz, 27 – 30 Hz) and eight
filters for the mu-beta band (6 – 9 Hz, 9 – 12 Hz, 12 – 15 Hz, 15 – 18 Hz, 18 – 21 Hz, 21 – 24 Hz,
24 – 27 Hz, 27 – 30 Hz). Then, we again used CSP and concatenated all spatial features of each
filter bank, resulting in 12, 20 and 32 spatial features respectively per trial.

Classification: We used a repeated (n = 10),  5-fold cross validation procedure to estimate the
decoding score using linear discriminant  analysis  (LDA)  (Tharwat et  al.,  2017;  Vidaurre et  al.,
2011)(scikit-learn, v1.0.2) as a classifier. We adopted a time-resolved decoding paradigm, using
both an incremental and a sliding time window. In the first case we started with a 100 ms time



Figure 1: Illustration of methodology for computing classification features based on the convolution of raw
signals with beta burst waveform kernels.  (a) After randomly sampling the recording trials of all  subjects
within any dataset the beta bursts waveforms are analyzed using PCA. This constructs a high-dimensional
space whose origin corresponds to the shape of the average waveform or equivalently a score equal to 0,
and each axis defines a different axis of waveform variation. By only considering the beta bursts of channels
C3 and C4 that occur at any point in time, the lateralization modulation index Im dynamically identifies the
expected deviation of the average waveform shape from the overall average shape for each PCA axis. The
axes that maximize  Im are identified, the bursts are projected on these axes, split  in groups of similarly
shaped waveforms and the average waveform shapes of the two extrema are computed. (b) The raw signals
of all recording channels of each dataset are independently convolved with each selected waveform from a
resulting in distinctly temporally filtered copies of the signals. Each copy is then spatially filtered using the
CSP algorithm, and finally all spatial features are concatenated in a single matrix that is provided as input to
the classifier.

window and repeated the classification procedure by incrementing this window by 100 ms at a
time. The baseline period was considered separately from the trial period. In the latter case we
used 1 s long sliding time windows which moved in 50 ms increments. Decoding scores were
based on the area under the curve (AUC) of  the receiver operating characteristic (scikit-learn,
v1.0.2). All numeric computations were based on the numpy python package (v1.21.6;  (Harris et
al., 2020)) and an environment running python (v3.10).

Information transfer rate: Information transfer rate (Arslan and Sinha, 2024; Sadeghi and Maleki,
2019) was defined as:



ITR=1−H
T

H=−p (t) log2 p (t) − (1−p (t)) log2(1−p(t ))

where the binary entropy function H depends on the average accuracy probability at any time
window p(t) ,  and T corresponds  to  the  maximum  recording  time  required  by  each  time
window in seconds. T was shifted such that all time values are positive, i.e. using the absolute
time starting from the beginning of the baseline period (Table 1) when using a sliding window and
when considering the baseline period using an incremental time window. The values of this metric
span the range [0 ,10] when using an incremental  window decoding approach and [0 ,20]
when using a sliding window. Large values indicate a better trade-off between decoding accuracy
and decoding speed.

Statistical analysis: On the dataset level, we performed pairwise comparisons of the across-subject
average decoding score corresponding to the beta burst convolution spatial features and each of
the spatial features of the band-limited power modulations. These comparisons were based on
threshold-free  cluster-based  permutation  (n =  213)  tests  (MNE  package,  v1.5.1,  function
permutation_cluster_test, parameters: threshold = dict(start = 0, step = 0.2), tail = 1) that were
subsequently thresholded at significance level of a = 0.05 for visualization purposes.

To estimate, on the population level, any statistical differences between the maximum classification
scores obtained using different feature extraction pipelines during the trial period, we compared the
scores of the beta burst convolution pipeline against those based on classical filtering pipelines.
We used a linear mixed model with across-trials average classification score as the dependent
variable setting the number of trials as prior weights, the type of classification feature as a fixed
effect, and subject nested within dataset as random intercepts. We implemented similar models to
compare the time required to achieve the maximum classification  score per  feature extraction
pipeline, and also the maximum ITR and time needed to reach it. In the latter two cases we first
transformed the values to logarithmic scale in order to ensure normality of the residuals. Statistical
analyses were conducted using R (v4.1.2) and lme4 (v1.1-31; (Bates et al., 2015)). Fixed effects
were assessed using type II Wald X 2 tests using car (v3.1-1; (Fox and Weisberg, 2019)). Pairwise
Tukey-corrected  follow-up  tests  were  carried  out  using  estimated  marginal  means  from  the
emmeans package (v.1,8,7; (Lenth, 2023)).

Results

In summary, we have employed seven freely available datasets of EEG recordings from subjects
performing left and right hand MI. Within each dataset, we detected beta bursts for each subject
within electrode clusters over left and right sensorimotor cortex and then randomly sampled 10% of
the trials containing these bursts (the sample size was limited to 5% for the Dreyer 2023 dataset).
We applied PCA to the matrix of all burst waveforms and defined a modulation index Im in order
to find burst waveform shapes whose lateralized rates were expected to be maximally modulated
between the baseline  and trial  periods.  These waveforms were then employed as kernels  for
convolving the EEG data in time domain before applying spatial filtering with CSP. Finally all spatial
features were combined and served as input for LDA, in order to classify “left” versus “right” hand
MI.  We also performed classification by applying standard temporal  filtering techniques before
applying spatial filtering with CSP, using either a single filter or a filter bank in the mu (6 – 15 Hz),
beta (15 – 30 Hz) and mu-beta (6 – 30 Hz) frequency bands. We estimated the time-resolved



decoding score  per  subject  of  each dataset  for  each classification  feature  employing both  an
incremental and a sliding decoding window (see Materials and Methods for details).

Across all  datasets, the average decoding accuracy obtained using the proposed methodology
based on beta bursts outperformed the results based on standard beta band filtering irrespective of
the filtering (single filter or filter bank) or the windowing (incremental or sliding) technique during
most of the recording time (Figure 2 a, Sup. Figure 1 a). Within each dataset, the across-subjects
average score obtained by beta bursts was higher than that of any beta band filtering technique,
usually shortly after the beginning of the trial or towards its end (Figure 2 b-h, Sup. Figure 1 b-h).
Exceptions to this finding when using an incremental window were the BNCI 2014-001 dataset, for
which all features produced equivalent results (Figure 2 c, Sup. Figure 1 c), and the Weibo 2014
dataset,  for  which  mu-beta  filtering  outperformed  beta  bursts  (Figure  2  g,  Sup.  Figure  1  g).
Threshold-free cluster-based permutation tests (see Materials and Methods) revealed a significant
cluster of increased accuracy for beta bursts compared to either beta filtering technique during
most of the recording time or following the trial onset for each windowing (incremental or sliding)
technique respectively (Figure 2 a, Sup. Figure 1 a). Within each dataset, we found clusters similar
to those of the population average for the Dreyer 2023 dataset (Figure 2 e, Sup. Figure 1 e). The
across-subjects average score obtained by beta bursts was higher than that of any beta band
filtering technique shortly after the beginning of the trial for the BNCI 2014-001 and Cho 2017
datasets (Figure 2 b, d, Sup. Figure 1 b, d). For the rest of the datasets (BNCI 2014-004, MunichMI
(Grosse-Wentrup 2009), Weibo 2014, Zhou 2016) no differences were observed among the beta
bursts  and  either  beta  band  filtering  method.  Overall,  in  terms  of  classification  accuracy,  we
observed an improvement with beta bursts over beta power on the population level and in 5/7 (4/7)
datasets, with clusters of statistically significant differences arising on the population level and in
3/7 (2/7) datasets when using an incremental (sliding) window.

We did not observe such clear differences when comparing the beta bursts and mu-beta filtering
decoding scores. On the population level, when using an incremental time window, average beta
burst convolution results outperformed the single filter and filter bank techniques early after the
beginning of a trial (Figure 2 a). On the dataset level, this was true for the BNCI 2014-001 and
Dreyer datasets (Figure 2 b, e). For the rest of the datasets, differences varied depending on the
filtering  technique.  Notably,  in  the  mu-beta  band,  both  filtering  techniques  produced  higher
decoding scores than beta bursts for the Weibo 2014 dataset (Figure 2 g). A similar pattern was
also observed when using a sliding window (Sup. Figure 1 a-h). The permutation tests between the
beta  burst  features  and  the  mu-beta  filtering  techniques  revealed  only  small  clusters  on  the
population  level,  as  well  for  the  Dreyer  2023  dataset.  We  found  that  beta  bursts  improve
classification scores over the mu-band filtering techniques on the population level and 4/7 (2/7)
datasets when using an incremental (sliding) window, with small clusters of statistically significant
differences on the population level and one dataset only when using an incremental window.

Finally,  comparisons  between  beta  burst  convolution  and  mu  filtering  results  showed  an
improvement when using a sliding window. Clusters of statistically significant differences revealed
that  beta  bursts  are  better  than  single-filter  mu  band  power  on  the  population  level  and  2/7
datasets (Sup. Figure 2 a-c). No differences were found on the population level when comparing
beta bursts to the filter bank technique, but on the dataset level the beta bursts score was better for
the BNCI 2014-001 dataset (Sup. Figure 2 b) and conversely worse for the Weibo 2014 dataset
(Sup. Figure 2 g) based on cluster permutation tests. Comparisons of results when using a sliding
window approach did not reveal any differences (Sup. Figure 3).



Figure  2: (a) Population  average  time-resolved  decoding  score  and  standard  error  for  the  beta  burst
convolution (red),  beta band (yellow) and mu-beta band (purple) filtering pipelines using an incremental
window. Due to the different duration of the task per dataset we restricted the time to the minimum trial
period corresponding to 3 seconds.  (b – h) Average, time-resolved decoding score and standard error per
dataset of the same features using an incremental window. For each panel,  the left  subplot  depicts the
decoding results obtained using a single filter, while the right subplot depicts the results based on a filter
bank technique. The beta burst results are the same for the pair of each panel. The horizontal dashed line
corresponds to the expected chance level. Vertical dotted lines represent the onset and end of the trial period
of each dataset. Horizontal lines on the top of each subplot show the results of pair-wise permutation cluster
tests between the beta bursts  and either  filtering technique, with correction for  multiple comparisons at
significance level of 0.05. The color of the lines indicate which feature produces, on average, better results at
any time point. A lack of color indicates no statistically significant differences between the compared features.

For all datasets we computed the information transfer rate (ITR) in order to quantify the difference
between all classification features in terms of the decoding speed-accuracy trade-off (see Materials
and Methods). On the population level, beta bursts provided a higher ITR than either beta band
filtering technique across the whole trial (Figure 3 a). On the dataset level, the same pattern was
observed for the Dreyer 2023 dataset (Figure 3 e). Moreover, beta bursts ITR was higher than any
beta band filtering early after trial onset for the BNCI 2014-001, Munich MI (Grosse-Wentrup 2009)
and Zhou 2016 datasets, and later for the Cho 2017 dataset. No differences between the features
were observed in the case of BNCI 2014-004 dataset, whereas beta bursts resulted in the lowest
ITR for the Weibo 2014 dataset (Figure 3 b-h). Permutation cluster tests revealed a significant
difference between beta bursts and either filtering technique in the beta band on the population
level, and for most of the time for the Dreyer 2023 dataset. A cluster after the trial onset was found
for the BNCI 2014-001 dataset, and no clusters were found for the rest of the datasets. When
using a sliding window approach, beta bursts provided a higher ITR than either beta band filtering
technique  on  the  population  level  early  after  the  beginning  of  the  trial  and  towards  its  end
highlighted by the presence of a cluster (Sup. Figure 4 a). A significant difference was also found
for the Dreyer 2023 dataset after the trial onset (Sup. Figure 4 e). For datasets BNCI 2014-001,
Cho 2017, Dreyer 2023 and Zhou 2016 we observed a higher ITR for beta bursts compared to
beta band filtering mainly after the trial onset, whereas for the rest of the datasets either feature
resulted in equivalent ITRs (Sup. Figure 4 b-h). No significant clusters were found for any of these
datasets. In summary, irrespective of the windowing method beta bursts resulted in higher ITR than



Figure 3: (a) Population average time-resolved information transfer rate (ITR) and standard error for the beta
burst convolution (red), beta band (yellow) and mu-beta band (purple) filtering pipelines using an incremental
window. Due to the different duration of the task per dataset we restricted the time to the minimum trial
period  corresponding  to  3  seconds.  (b  –  h) Average,  time-resolved  information  transfer  rate  (ITR)  and
standard error  per dataset  of  the same features using an incremental  window.  For each panel,  the left
subplot depicts the ITR results obtained using a single filter, while the right subplot depicts the results based
on a filter bank technique. The beta burst results are the same for the pair of each panel. Vertical dotted lines
represent the onset and end of the trial period of each dataset. Horizontal lines on the top of each subplot
show the results of pair-wise permutation cluster tests between the beta bursts and either filtering technique,
with correction for multiple comparisons at significance level of 0.05. The color of the lines indicate which
feature produces,  on average,  better  results  at  any time point.  A lack of  color  indicates no statistically
significant differences between the compared features. Insets provide a zoomed-in view of the values within
the corresponding panels.

beta power on the population level and for 5/7 datasets with clusters arising on the population level
and 2/7 datasets.

Regarding the comparison between beta bursts and the mu-beta filtering techniques,  ITR was
higher for the former on the population level as well as datasets BNCI 2014-001, Cho 2017, Dreyer
2023, Munich MI (Grosse-Wentrup 2009) and Zhou 2016 shortly after the trial onset, especially
when  adopting  the filter  bank  method.  No  differences  were  observed  for  the  BNCI  2014-004
dataset. The mu-band filter bank technique produced higher ITR than beta bursts period in the
case of the Weibo 2014 dataset (Figure 3 a-h).  The results were similar  when using a sliding
window (Sup. Figure 4 a-h). On the population level, cluster-based permutations tests revealed a
significant difference between the beta bursts features and the filter bank in the mu-beta band
using  either  an  incremental  or  a  sliding  window  approach,  but  no  significant  clusters  when
comparing the beta bursts to the single filter in the mu-beta band (Figure 3 a, Sup. Figure 4 a).
Similar clusters of significant differences between the features were found only for the Dreyer 2023
dataset with an incremental window (Figure 3 e, Sup. Figure 4 e). Overall,  beta bursts yielded
higher  ITR  than  mu-beta  power  on  the  population  level  and  4/7  datasets  regardless  of  the
windowing technique. Permutation cluster tests revealed improvements attributable to beta bursts
compared to the filter bank technique on the population level, and for one dataset when using an
incremental time window.



We used linear mixed models to quantify the differences in maximum decoding score, latency to
achieve the maximum score, maximum ITR and latency to the maximum ITR per feature (see
Materials and Methods) using both the incremental and sliding windows (Figure 4, Sup. Figure 5).

On the population level, the maximum classification scores for the beta bursts technique, filtering in
the beta band using a single filter, filtering in the mu band using a single filter, and filter bank in the
beta or mu and beta bands using an incremental time window were 0.832 ± 0.066, 0.755 ± 0.065,
0.827 ± 0.066, 0.734 ± 0.066 and 0.819 ± 0.066 (Figure 4 a). The time required to reach each of
these decoding scores (latency) was 2.26 ± 0.91, 3.04 ± 0.90, 2.96 ± 0.90, 2.50 ± 0.90 and 2.44 ±
0.91 seconds (Figure 4 c), respectively. The maxima of the ITR before applying the logarithmic
transformation (see Materials and Methods) per feature were 0.6443  ± 0.207, 0.0554 ± 0.207,
0.3531  ±  0.0206,  0.0667  ±  0.206,  0.5241  ±  0.207  (Figure  4  b).  The  corresponding  average
latencies before the logarithmic transformation were 0.827 ± 0.203, 1.316 ± 0.204, 1.182 ± 0.203,
1.064 ± 0.201, 0.945 ± 0.203 seconds (Figure 4 d). Regarding the analysis based on a sliding
window, the maximum classification scores were 0.816 ± 0.050, 0.753 ± 0.050, 0.810 ± 0.050,
0.753 ± 0.050 and 0.818 ± 0.050 respectively (Sup. Figure 5 a). The latencies were 2.03 ± 0.23,
2.45 ± 0.22, 2.19 ± 0.23, 2.49 ± 0.24 and 2.22 ± 0.23 seconds (Sup. Figure 5 c). Before applying
the logarithmic transformation, the ITR maxima were 0.694 ± 0.180, 0.170 ± 0.178, 0.413 ± 0.177,
0.206 ± 0.182, 0.533 ± 0.179 (Sup. Figure 5 b), and the corresponding latencies 0.575 ± 0.162,
0.840 ± 0.161, 0.796 ± 0.160, 0.743 ± 0.161, 0.701 ± 0.162 seconds (Sup. Figure 5 d).

Across all datasets the maximum classification accuracy of the beta bursts technique when using
an incremental window was significantly higher than that of the beta band single filter and filter
bank pipelines (X2(4) = 326.81,  t(24587436) = 10.697,  p < 0.001 and t(24548972) = 13.705,  p <
0.001 respectively), but did not differ significantly from either technique exploiting both the mu and
beta bands (t(24904394) = 0.637, p = 0.9691 and t(24049399) = 1.777, p = 0.3873). The latency to
achieve  the  maximum  score  was  significantly  lower  for  the  beta  burst  convolution  pipeline
compared to both the single filtering techniques in the beta and mu-beta bands (X2(4) = 62.508,
t(24698263) =  -6.361,  p <  0.001  and  t(25032435) =  -5.769,  p <  0.001),  but  did  not  differ
significantly  compared to  the corresponding  filter  bank techniques  (t(24649522) =  -1.926,  p =
0.3034 and t(24151454) = -1.488, p = 0.5703). The logarithmic transform of the maximum ITR for
the beta bursts technique was significantly higher than the single filtering and filter bank techniques
in  both  the  beta  and  mu-beta  bands  (X2(4) =  309.58,  t(24722157) =  14.0967,  p <  0.001,
t(24671284) = 12.904,  p < 0.001 and t(25060057) = 5.127,  p < 0.001,  t(24173608) = 2.909,  p =
0.0298). The logarithmic transform of the latency to achieve maximum ITR was significantly lower
for the beta bursts technique compared to either single filtering pipeline in the beta and mu-beta
bands (X2(4) = 40.75, t(24777354) = -5.863, p < 0.001 and t(25130735) = -3.885, p = 0.001), but
did not significantly differ compared to the filter bank method in either band (t(24721433) = -2.071,
p = 0.2329 and t(24227058) = -1.545, p = 0.5329).

When using a sliding window, across all datasets the maximum classification accuracy of the beta
bursts technique was significantly higher than that of the beta band single filter and filter bank
pipelines (X2(4) = 237.95, t(24582761) = 10.072, p < 0.001 and t(24544732) = 10.055, p < 0.001
respectively), but did not differ significantly from either technique exploiting both the mu and beta
bands (t(24898964) = 0.956,  p = 0.8748 and  t(24045211) = -0.418,  p = 0.9936). Similarly,  the
latency  to  achieve  the  maximum  score  was  significantly  lower  for  the  beta  burst  convolution
pipeline compared to either filtering technique in the beta band (X2(4) = 25.552,  t(24736767) = -
3.890, p < 0.001 and t(24684274) = -4.281, p < 0.001), but did not differ significantly compared to
the mu-beta band (t(25086359) = -1.467, p = 0.5840 and t(24189739) = -1.762, p = 0.3961). The
logarithmic transform of the maximum ITR for the beta bursts technique was significantly higher
than both filtering techniques in the beta band and the single filtering in the mu-beta band (X2(4) = 



Figure 4: Population-level  statistical analysis based on linear mixed models when using an incremental
window per feature. (a) Average maximum decoding score. (b) Average maximum ITR. (c) Average latency
to reach the maximum decoding score. (d) Average latency to reach the maximum ITR. Error bars show 95%
confidence  intervals.  Hatches  indicate  the  use  of  a  filter  bank  technique.  Asterisks  indicate  statistically
significant differences among pairwise comparisons of the beta bursts and the rest of the features (* : p <
0.05. ** : p < 0.01, *** : p < 0.001). A lack of asterisks implies no statistically significant differences. Note that
the log transform of the the maximum ITR and latency to maximum ITR were used for the statistical analysis
(see Materials and Methods), but panels b and d depict results before applying the transformation for ease of
comparisons with panels a and c respectively.

162.26,  t(24732475) =  10.236,  p <  0.001,  t(24680636) =  9.172,  p <  0.001 and  t(25072582) =
4.499, p < 0.001) but did not significantly differ from the mu-beta filter bank (t(24183763) = 1.665, p
= 0.4559).  The logarithmic transform of  the latency to achieve maximum ITR was significantly
lower for the beta bursts technique compared to either single filtering pipeline in the beta and mu-
beta bands (X2(4) = 13.151,  t(24808114) = -3.069,  p = 0.0183 and  t(25164334) = -3.029,  p =
0.0207),  but  did  not  significantly  differ  compared  to  the  filter  bank  method  in  either  band
(t(24749694) = -1.796, p = 0.3756 and t(24255336) = -1.296, p = 0.6937).

Discussion

Standard techniques for  analyzing meso-  and macro-scale  neural  signals  recorded during the
execution  or  imagination  of  movements  typically  rely  on  signal  power  metrics  assuming  that
relevant changes in brain signals are reflected in amplitude modulation (Alayrangues et al., 2019;
Kilavik et al., 2013; Pfurtscheller, 1981; Pfurtscheller et al., 1997, 1996; Pfurtscheller and Lopes da
Silva, 1999). However, there has recently been a considerable paradigm shift towards considering
transient signal features on the single trial level (Chen et al., 2021; Coleman et al., 2024; Jones,
2016; Little et al., 2019; Lundqvist et al., 2024, 2016; Rayson et al., 2023; Shin et al., 2017; Szul et
al., 2023; Torrecillos et al., 2018; Vigué-Guix and Soto-Faraco, 2022; Wessel, 2020). Therefore,
considering  that  computational  models  describing  the  neuronal  generators  of  specific  burst
waveform shapes (Bonaiuto et al., 2021; Sherman et al., 2016; Szul et al., 2023) offer an improved
theoretical interpretability of the observed signal modulations, applications leveraging such signal
characteristics, like beta bursts, could potentially benefit from incorporating recent neuroscience
findings (Papadopoulos et al., 2022). 

In this work we analyzed the activity of seven open EEG MI datasets and focused on developing a
streamlined process for incorporating beta bursts into a BCI pipeline. We defined a modulation



index Im which  allowed  us  to  identify  beta  burst  waveforms  whose  rate  is  expected  to  be
modulated due to task demands. This was based on the assumption that maximal modulations of
the average waveform shape along specific PCA components are the result of a net imbalance of
the rates of bursts with different shapes driven by task demands. PCA constitutes a mathematically
tractable and interpretable way of analyzing the diversity of beta burst waveform shapes, but other
supervised  dimensionality  reduction  algorithms  could  better  disentangle  the  waveforms  by
imposing different constraints, e.g. taking into account trial labels.

We used these waveforms as kernels to convolve the raw signals in the time domain. We chose to
keep the number of kernels and the method for extracting them fixed based on insights from a
previous  study  (Papadopoulos  et  al.,  2024),  but  future  work  could  employ  a  formal  hyper-
parameter search so as to maximize classification accuracy. Similarly, we did not check for any
redundancy in the convolved signals due to selection of similarly shaped kernels, a point which
could  be addressed by  another  dimensionality  reduction  algorithm.  The implementation  of  the
convolution is virtually as computationally efficient as any filtering technique. However, we note that
the proposed methodology assumes the existence of data that can be analyzed offline in order to
first find the relevant beta burst waveforms to use as kernels. Moreover, this data needs to be
clean of artifacts as the beta burst detection algorithm may fail to detect transient activity in the
presence of high-power oscillations, instead detecting only the latter. For this reason, we believe
that  the  superlets  algorithm  is  the  only  time-frequency  decomposition  technique  providing
adequate time and frequency resolution in order to determine if the data is clean and to extract
burst waveforms.

This data-driven, neurophysiology-informed filtering of the signals resulted in a proxy of waveform-
resolved burst rate per kernel. We also performed a standard filtering in the mu (6 – 15 Hz) band,
beta (15 – 30 Hz) band, or a wider frequency range encompassing both the mu and beta (6 – 30
Hz) bands.  Finally,  we used CSP to extract  spatial  features for  classification.  We showed that
classification scores can be improved compared to a standard power-based analysis of the beta
band activity, requiring briefer recordings to do so and that, without explicitly considering the mu (6
– 15 Hz)  band activity  in  our  beta bursts  pipeline,  the corresponding classification scores are
equivalent to scores of state-of-the-art approaches again needing shorter recordings. Further, the
filter bank-based analysis allowed us to verify that the decoding improvements where not simply
the result of an increase in number of spatial features used for classification. Instead, beta burst
waveforms are more informative of the underlying MI task on the population level than beta band
power,  and equally informative to standard power-based techniques that  take into account  mu
activity modulations. A possible explanation for this is that  the beta burst kernels also capture
slower modulations of the underlying activity. Future work could explore the incorporation of novel
mu band features or a combination of mu power and beta burst features.

By employing both an incremental and a sliding window strategy for classification we can speculate
on the observed differences of decoding scores across classification features and datasets. First, it
appears that MI does not begin right after the go cue in all datasets but can be delayed possibly
due to differences in the task design or the instructions given to the participants. Second, relatively
sustained decoding performances when using a sliding window were translated into slow increases
of those performances when using an incremental window. In contrast,  a drop in performance
when using a sliding window was reflected in a plateau when using an incremental window. Taken
together these observations imply that finding an optimal decoding time window, especially for
online paradigms, is not trivial  and depends not only on the selected classification features or
algorithm but also on experimental design variables.

In order to assess the trade-off between decoding accuracy and speed, we used the classification



scores obtained by implementing each pipeline and computed the corresponding ITR. We showed
a statistically significant increase of the maximum ITR achieved using the beta burst kernel filtering
compared to  any other  method,  and a  statistically  significant  decrease of  the  time needed to
achieve this value compared to single filters.  These results suggest  that  beta bursts could be
particularly relevant for BCI applications that aim to minimize the recording time required before
issuing a command like in the case of real-time decoding of a switch control, although the non-
structured  nature  of  such  applications  still  poses  a  considerable  challenge  (Carrara  and
Papadopoulo, 2024).

This study focused on incorporating recent neurophysiology insights, specifically task dependent
waveform-specific modulation of beta burst rates, in a pipeline for decoding EEG signals during
imagined  movements.  We  proposed  a  simple  and  computationally  efficient  algorithm  that
leverages beta burst waveforms and transforms brain recordings in a way that is compatible with
other widely adopted algorithms. We demonstrated that classification results based on beta bursts
are superior to results based beta-band power alone, and are on-par with power-based results that
take into account the mu band. By computing the information transfer rate we showed that, often,
features based on beta bursts significantly improve the decoding speed-accuracy trade-off. We
also verified this finding using a sliding window decoding technique, a fact which further suggests
the feasibility for online decoding with this approach. Taking everything into account, we believe
that these findings can serve as an important step in the direction of improving online BCI decoding
paradigms.
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Supplementary Material

Sup. Figure 1: (a) Population average time-resolved decoding score and standard error for the beta burst
convolution (red), beta band (yellow) and mu-beta band (purple) filtering pipelines using a sliding window.
Due to the different duration of the task for each dataset we restricted the time to the minimum trial period
corresponding to 3 seconds. (b – h) Average, time-resolved decoding score and standard error per dataset
of the same features using a sliding window. For each panel, the left subplot depicts the decoding results
obtained using a single filter, while the right subplot depicts the results based on a filter bank technique. The
beta burst results are the same for the pair of each panel. The horizontal dashed line corresponds to the
expected chance level. Vertical dotted lines represent the onset and end of the trial period of each dataset.
Horizontal lines on the top of each subplot show the results of pair-wise permutation cluster tests between
the beta bursts and either filtering technique, with correction for multiple comparisons at significance level of
0.05. The color of the lines indicate which feature produces, on average, better results at any time point. A
lack of color indicates no statistically significant differences between the compared features.



Sup. Figure 2: (a) Population average time-resolved decoding score and standard error for the beta burst
convolution  (red)  and  mu  band (turquoise)  filtering  pipelines  using  an  incremental  window.  Due to  the
different  duration  of  the  task  for  each  dataset  we  restricted  the  time  to  the  minimum  trial  period
corresponding to 3 seconds. (b – h) Average, time-resolved decoding score and standard error per dataset
of the same features using an incremental window. For each panel, the left subplot depicts the decoding
results  obtained  using  a  single  filter,  while  the  right  subplot  depicts  the  results  based  on  a filter  bank
technique.  The  beta burst  results  are  the same for  the  pair  of  each  panel.  The  horizontal  dashed line
corresponds to the expected chance level. Vertical dotted lines represent the onset and end of the trial period
of each dataset. Horizontal lines on the top of each subplot show the results of pair-wise permutation cluster
tests between the beta bursts  and either  filtering technique, with correction for  multiple comparisons at
significance level of 0.05. The color of the lines indicate which feature produces, on average, better results at
any time point. A lack of color indicates no statistically significant differences between the compared features.



Sup. Figure 3: (a) Population average time-resolved decoding score and standard error for the beta burst
convolution (red) and mu band (turquoise) filtering pipelines using a sliding window. Due to the different
duration of the task for each dataset we restricted the time to the minimum trial period corresponding to 3
seconds. (b – h) Average, time-resolved decoding score and standard error per dataset of the same features
using a sliding window. For each panel, the left subplot depicts the decoding results obtained using a single
filter, while the right subplot depicts the results based on a filter bank technique. The beta burst results are
the same for the pair of each panel. The horizontal dashed line corresponds to the expected chance level.
Vertical dotted lines represent the onset and end of the trial period of each dataset. Horizontal lines on the
top of each subplot show the results of pair-wise permutation cluster tests between the beta bursts and either
filtering technique, with correction for multiple comparisons at significance level of 0.05. The color of the lines
indicate which feature produces, on average, better results at any time point. A lack of color indicates no
statistically significant differences between the compared features.



Sup. Figure 4: (a) Population average time-resolved information transfer rate (ITR) and standard error for
the beta burst convolution (red), beta band (yellow) and mu-beta band (purple) filtering pipelines using a
sliding window.  Due to  the different  duration of  the task for  each dataset  we restricted the time to  the
minimum trial period corresponding to 3 seconds.  (b – h) Average, time-resolved information transfer rate
(ITR) and standard error per dataset of the same features using a sliding window. For each panel, the left
subplot depicts the ITR results obtained using a single filter, while the right subplot depicts the results based
on a filter bank technique. The beta burst results are the same for the pair of each panel. Vertical dotted lines
represent the onset and end of the trial period of each dataset. Horizontal lines on the top of each subplot
show the results of pair-wise permutation cluster tests between the beta bursts and either filtering technique,
with correction for multiple comparisons at significance level of 0.05. The color of the lines indicate which
feature produces,  on average,  better  results  at  any time point.  A lack of  color  indicates no statistically
significant differences between the compared features.



Figure 5: Population-level statistical analysis based on linear mixed models when using a sliding window per
feature. (a) Average maximum decoding score. (b) Average maximum ITR. (c) Average latency to reach the
maximum decoding score. (d) Average latency to reach the maximum ITR. Error bars show 95% confidence
intervals.  Hatches  indicate  the  use  of  a  filter  bank  technique.  Asterisks  indicate  statistically  significant
differences among pairwise comparisons of the beta bursts and the rest of the features (* : p < 0.05. ** : p <
0.01, *** : p < 0.001). A lack of asterisks implies no statistically significant differences. Note that the log
transform of the the maximum ITR and latency to maximum ITR were used for the statistical analysis (see
Materials and Methods), but panels  b and d  depict results before applying the  transformation for ease of
comparisons with panels a and c respectively.
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