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ABSTRACT

Context. Observations of ionic, atomic, or molecular lines are performed to improve our understanding of the interstellar medium (ISM). However,
the potential of a line to constrain the physical conditions of the ISM is difficult to assess quantitatively, because of the complexity of the ISM
physics. The situation is even more complex when trying to assess which combinations of lines are the most useful. Therefore, observation
campaigns usually try to observe as many lines as possible for as much time as possible.
Aims. We have searched for a quantitative statistical criterion to evaluate the full constraining power of a (combination of) tracer(s) with respect
to physical conditions. Our goal with such a criterion is twofold. First, we want to improve our understanding of the statistical relationships
between ISM tracers and physical conditions. Secondly, by exploiting this criterion, we aim to propose a method that helps observers to make their
observation proposals; for example, by choosing to observe the lines with the highest constraining power given limited resources and time.
Methods. We propose an approach based on information theory, in particular the concepts of conditional differential entropy and mutual infor-
mation. The best (combination of) tracer(s) is obtained by comparing the mutual information between a physical parameter and different sets of
lines. The presented analysis is independent of the choice of the estimation algorithm (e.g., neural network or χ2 minimization). We applied this
method to simulations of radio molecular lines emitted by a photodissociation region similar to the Horsehead Nebula. In this simulated data,
we considered the noise properties of a state-of-the-art single dish telescope such as the IRAM 30m telescope. We searched for the best lines to
constrain the visual extinction, Atot

V , or the ultraviolet illumination field, G0. We ran this search for different gas regimes, namely translucent gas,
filamentary gas, and dense cores.
Results. The most informative lines change with the physical regime (e.g., cloud extinction). However, the determination of the optimal (combina-
tion of) line(s) to constrain a physical parameter such as the visual extinction depends not only on the radiative transfer of the lines and chemistry
of the associated species, but also on the achieved mean signal-to-noise ratio. The short integration time of the CO isotopologue J = 1 − 0 lines
already yields much information on the total column density for a large range of (Atot

V , G0) space. The best set of lines to constrain the visual ex-
tinction does not necessarily combine the most informative individual lines. Precise constraints on the radiation field are more difficult to achieve
with molecular lines. They require spectral lines emitted at the cloud surface (e.g., [CII] and [CI] lines).
Conclusions. This approach allows one to better explore the knowledge provided by ISM codes, and to guide future observation campaigns.

Key words. Astrochemistry - Methods: numerical - Methods: statistical - ISM: clouds - ISM: lines and bands

1. Introduction

The effect of the feedback of a newborn star on its parent molec-
ular cloud is to this day poorly understood. The newborn star
overall dissipates the parent cloud, leading to a decrease in its
star-forming capability. However, it also causes a local compres-
sion of the gas, which may trigger a gravitational collapse. Both
spatially resolved observations of star-forming regions and re-
fined numerical models are needed to better understand the phys-
ical phenomena involved. A difficulty for interstellar medium
(ISM) studies is that observing many lines in the infrared or mil-
limeter domains is expensive and can require several successive
observations with different instrument settings. It appears that
using statistical arguments to determine the most relevant tracer

* Equal contribution.

to observe in order to estimate a given physical parameter (e.g.,
the cloud visual extinction, the gas volume density, or the ther-
mal pressure) received only limited attention from the ISM com-
munity. This work provides a general approach based on infor-
mation theory to compare the information provided by different
tracers and sets of tracers.

This paper is the first of a series of two on applications of
information theory concepts to ISM studies. This paper has two
goals. First, it aims to show that tools from information theory
can be exploited to visualize and better understand the complex
statistical relationships between physical conditions and noisy
observations. Second, it aims to provide a tool to guide future
observations in choosing the best lines to observe, and for how
long, to accurately estimate physical parameters such as the gas
column density (or visual extinction), the intensity of the inci-
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dent UV field, and the thermal pressure. The results of such a
study heavily depend on the signal-to-noise ratio (S/N) for each
line; that is, on the instrument properties, on the integration time,
and on the observed environment. To achieve these two goals, we
defined a general method and applied it to data simulated with
a fast, accurate emulation of the Meudon PDR code (Le Petit
et al. 2006; Palud et al. 2023) and a realistic noise model. The
proposed approach is applicable to any ISM model combined
with any noise model. The next paper will use real data from the
ORION-B Large Program (co-PIs: J. Pety & M. Gerin, Pety et al.
2017), with a focus on photodissociation regions (PDRs).

Selecting the most informative lines to estimate a physi-
cal parameter (e.g., visual extinction or gas volume density)
is an instance of a machine learning problem called feature
selection (Shalev-Shwartz & Ben-David 2014, chapter 25). A
straightforward and common approach is to evaluate the Pear-
son’s correlation coefficient between individual lines and indi-
vidual physical parameters of interest. The lines with the highest
correlation with a given physical parameter would then be se-
lected. This method is common in ISM studies (see, e.g., Pety
et al. 2017). However, it suffers from three main drawbacks.
First, it is restricted to one-to-one relationships, while one might
be interested in selecting multiple lines to predict multiple phys-
ical parameters at once. Second, it is restricted to linear relation-
ships, and cannot fully capture nonlinear dependencies between
lines and physical parameters. Third, by considering tracers in-
dividually, it neglects their complementarity – that is, the possi-
bility for a group of lines to be more informative than any single
emission line from the group – while such complementarities are
already known and studied with line ratios or line combinations.
For instance, (Kaufman et al. 1999) studies line combinations
and ratios in order to disentangle several physical parameters
whose estimates would be degenerate with a single tracer.

The canonical coefficient analysis (Härdle & Simar 2007)
enables considering correlations between multiple lines and mul-
tiple physical parameters. It alleviates the one-to-one relation-
ship restriction and enables one to account for many-to-many
relationships, and thus to include line complementarities. This
approach provides multiple correlation coefficients in the many-
to-many case. The difficulty with this method is that ranking
lines based on multiple correlation coefficients is not trivial. As
is shown in the following, these coefficients can be combined
into one number that is interpretable if both observed lines and
physical parameters are normally distributed.

Predictor-dependent methods can address the linear and
Gaussian limitations. Such methods rely on a regression
model; for example, random forests or neural networks. The
greedy selection algorithm (Shalev-Shwartz & Ben-David 2014,
sect. 25.1) would iteratively select tracers to reduce the error
of a type of regression model. Similarly, the greedy elimina-
tion method would iteratively remove tracers. For instance, Bron
et al. (2021) applied numerous random forest regressions to pre-
dict ionization fraction using only one tracer at a time. Then, they
defined the best tracers as those leading to the minimum sum of
residual squares. Other statistical methods exploit specificities
of a predictor class to explain the predictions of a model and re-
move unused features. For instance, (Gratier et al. 2021) used
feature importance from random forests to assess the predictive
power of individual lines or on the H2 column density. However,
the tracer subsets obtained with these approaches heavily depend
on the considered type of regression model.

Finally, explainable AI methods such as SHAP values (Lund-
berg & Lee 2017) can be used to understand a numerical model
and identify its most important features. This kind of approach

was already applied in ISM studies; for instance, in Heyl et al.
(2023) and Ramos et al. (2024). However, this class of meth-
ods only addresses deterministic methods, and is thus not able to
handle noisy observations. Besides, it is limited to one-to-one re-
lationships and scales poorly with the number of features. Some
fast variants exist, such as Kernel SHAP (Lundberg & Lee 2017),
but require the features to be independent, which is strongly vi-
olated with ISM lines.

In this work, we propose to exploit entropy and mutual in-
formation (Cover & Thomas 2006, sect. 8.6). Mutual infor-
mation has already been exploited in astrophysics tasks (see,
e.g., Pandey & Sarkar 2017), although not in the ISM community
to the best of our knowledge. It does not depend on the choice of
a regression model, handles at once multiple lines and multiple
physical parameters, does not assume any distribution for lines
or physical parameters, and accounts for nonlinearities and line
complementarities. The methodology proposed in this work can
be adapted to other problems with the associated Python pack-
age called InfoVar1, which stands for “informative variables.”
The results in this paper are produced using a dedicated Python
package2, which is based on InfoVar and designed for the gen-
eration and the statistical analysis of synthetic line observations.
All the scripts used to generate these results are freely available3.

Section 2 reviews the three information theory quantitative
criteria our method builds upon, namely entropy, conditional en-
tropy and mutual information. Section 2.7 formalizes the line
selection problem and introduces an approximate solution that
accounts for numerical uncertainties. Section 3 sets up an appli-
cation of the proposed method to PDRs with the Meudon PDR
code on IRAM’s EMIR instrument. Section 4 presents and ana-
lyzes global results of this application. Section 5 applies the line
selection method to different environments. Section 6 provides
some concluding remarks.

2. Information theory toolkit

This section reviews the information theory concepts that the
proposed approach builds upon. We first define the considered
physical model. Secondly, Shannon and differential entropies are
introduced. Entropy is the building block of mutual information,
which allows us to compare how informative subsets of lines
are. Table 1 summarizes the information theory quantities to be
introduced in sections 2.4 to 2.6.

In a nutshell, the physical parameters and the line intensities
are considered as dependent random variables. The entropy of
physical parameters characterizes their distribution uncertainty
before any measurements. The mutual information between a
physical parameter and a set of line intensities quantifies the in-
formation gain on the physical parameter when observing line
intensities. A high value of mutual information for a given line
thus indicates that an observation would constrain well the in-
ferred value of the physical parameter.

2.1. Physical model

A physical model links physical conditions θ with observables
y by combining an ISM model f and a observation simulator
A that includes all sources of noise. In this work, we use it
to generate a realistic set of (θ, y) pairs, called sets of physi-
cal models. We consider an ISM model f that predicts the true

1https://pypi.org/project/infovar/
2https://github.com/einigl/iram-30m-emir-obs-info
3https://github.com/einigl/informative-obs-paper
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Table 1: Overview of the information theory quantities used in this work.

Quantity Notation Domain Relationship with other quantities Interpretation

Differential entropy h (Θ) ] −∞,+∞[ – uncertainty on Θ before any measurement

Conditional diff. entropy h (Θ |Y) ] −∞,+∞[ h (Θ |Y) = h (Θ,Y) − h (Y) remaining uncertainty on Θ when Y is known

Mutual information I (Θ, Y) [0,+∞[ I (Θ, Y) = h (Θ) − h (Θ |Y) statistical dependence between Θ and Y

value f(θ) = ( fℓ(θ))L
ℓ=1 of L observables from a limited number

of D ≲ 10 physical parameters θ = (θd)D
d=1. For instance, in its

version 7 released in 2024, the Meudon PDR code (Le Petit et al.
2006) computes the integrated intensity of 5 375 emission lines
from the thermal pressure (or gas volume density), the intensity
of the incident UV radiative field, the cloud visual extinction,
the cosmic ray ionization rate, grain distribution properties, etc.
The model f is assumed to simulate accurately the physics of
the ISM. This means that for a given set of physical conditions
θ and a line of index 1 ≤ ℓ ≤ L, the predicted value fℓ(θ) is
considered to be the one a telescope would measure in the ab-
sence of noise. In the remainder of this work, the considered ob-
servables y are integrated intensities of emission lines associated
with ionic, atomic or molecular quantum transitions. However,
the approach we propose could be applied with any kind of ob-
servable, such as line ratios, raw line profiles or other summary
values such as the line width or maximum value.

The noise, as well as other observational effects, are included
through the observation simulatorA. Observed integrated inten-
sities y = (yℓ)L

ℓ=1 can thus be associated with physical condi-
tions θ using

yℓ = A ( fℓ(θ)) . (1)

This observation simulator can include, for instance, additive
Gaussian noise for thermal effects or photon counting error, or
multiplicative lognormal noise for calibration error. To model
the uncertainties due to the noise, we resort to random variables
denoted Θ and Y for physical conditions and observations, re-
spectively. For instance, for a subset s of K ∈ {1, . . . , L} lines, the
observation simulator in Eq. 1 defines a probability distribution
on observation Y (s) for a physical condition Θ = θ. This random
variable is fully described with a probability density function
(PDF) π (·|θ), which is a function such that for any physical con-
dition vector θ ∈ RD and observation y(s) ∈ RK , π

(
y(s)|θ

)
≥ 0

and
∫
π
(
y(s)|θ

)
dy(s) = 1. Common probability distributions on

multivariate random variables include the uniform distribution
Unif(C) on a set C and the normal distribution N(µ,Σ) with µ
the mean of the distribution and Σ its covariance matrix – also
called Gaussian distribution. This paper will also resort to the
lognormal distribution that corresponds to the exponential of a
normally distributed random variable. In other words, if a ran-
dom variable follows a lognormal distribution logN(µ,Σ), then
its log follows a Gaussian distribution of parameters µ and Σ.

This work aims at determining the subset of K lines that best
constrains the physical parameters Θ. We expect the most infor-
mative lines to differ depending on the type of physical regime.
For instance, a line that can quickly become optically thick may
be most informative on the visual extinction Atot

V in translucent or
filamentary conditions, before it saturates. We thus define differ-
ent types of regime, characterized by different priors π(θ), and
determine the most informative subset of K emission lines in
each of these regimes.

2.2. Two-dimensional illustrative example

We now introduce a simple synthetic example that will illustrate
the information theory concepts defined below. We use the sim-
plest case where a physical process, controlled by a physical
parameter Θ, yields one value of Y per value of Θ. Sources of
uncertainty such as the presence of noise or hidden control vari-
ables can however blur the relationship between Θ and Y . This
implies that inferring the physical parameters from the observed
quantity yields uncertain values. By representing Θ and Y as de-
pendent random variables, the concepts of information theory
allow us to quantify the uncertainty on the physical parameter Θ
before and after measuring Y .

The distribution chosen to represent the couple (Θ,Y) is a
two-dimensional lognormal distribution. Its parameters corre-
spond to the mean vector and covariance matrix in the logarith-
mic scale. They are set to obtain unit expectations, a standard
deviation such that a 1σ error corresponds to a factor of 1.3,
and a ρ = 0.9 correlation coefficient in linear scale. Appendix A
gathers details on the associated computations.

The top panel of Fig. 1 shows the PDF of the joint distri-
bution π(θ, y). The bottom panel compares the prior distribution
π(θ) (i.e., the distribution of the physical parameter before any
observation) with three conditional distributions π(θ|y) (i.e., each
distribution of the physical parameter values consistent with one
observed value Y = y). Each represented conditional distribution
is tighter and has lighter tails than the prior distribution, which
indicates that observing Y reduces the uncertainty onΘ. Besides,
among the three considered observed values of Y , the lower ones
lead to the tightest conditional distribution, and thus to lower un-
certainty onΘ. The information theory concepts to be introduced
in the next sections quantify this notion of uncertainty.

2.3. Entropy for discrete random variables

The notion of entropy was first introduced by Boltzmann and
Gibbs in the 1870s as a measure of the disorder of a system. It
plays a key role in the second law of thermodynamics, which
establishes the irreversibility of the macroscopic evolution of an
isolated particle system despite the reversibility of microscopic
processes. In a large system where particles can only be in a
finite set X of Ω ≥ 1 states, the state of one particle can be
modeled as a discrete random variable X. This random variable
is fully described with a probability mass function, π; that is, a
function such that for any state x ∈ X, π(x) ≥ 0 and

∑
x∈X π(x) =

1. In this setting, π(x) is the probability for a particle to be in the
state x. The entropy is then defined as (Wehrl 1978)

S = −kB

∑
x∈X

[ln π(x)] π(x), (2)

with kB the Boltzmann constant.
In information theory, the entropy refers to that introduced

in Shannon (1948). Informally, it measures the uncertainty or
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Fig. 1: A simple synthetic example of a joint distribution on
the couple (Θ,Y). Top: contour levels of the PDF of the joint
distribution with lognormal marginals and a clear correlation.
Three observed values are indicated with horizontal lines. Bot-
tom: comparison of the distribution on Θ before any observation
(prior, in dashed black) and for the three y values (conditional
distributions, in colors).

lack of information in a probability distribution. The entropy of
a discrete random variable X is defined by (Cover & Thomas
2006, chapter 2)

H(X) = EX
[
− log2 π(X)

]
= −

∑
x∈X

[
log2 π(x)

]
π(x). (3)

The two definitions are equivalent up to the considered units.
The base-2 logarithm in Eq. 3 leads to entropy values in bits.

The entropy is bounded and always positive. The entropy
equals exactly 0 when π(x) = 1 for a single state x ∈ X and 0 for
all the others. In this first case, the probability distribution does
not contain any uncertainty. For a particle system, this case cor-
responds to all particles being in the same state x. Conversely,
both definitions are maximized with the uniform distribution;
that is, when for all states x ∈ X, π(x) = 1/Ω. In this second case,
the uncertainty is indeed maximum, in the sense that none of the
states is favored. This uniform distribution limit corresponds to
a macroscopic thermodynamic equilibrium, where Eq. 2 reduces
to the well known formula (often called the Boltzmann equation)
S = kB lnΩ or, equivalently, Eq. 3 reduces to H(X) = log2Ω.

Shannon used the entropy to prove that there exists a code
that can compress the data for storage and transmission. Shan-
non not only proposed the algorithm, but also quantified the op-
timal performances that can be reached. In this context, Shannon

entropy in base 2 corresponds to the average minimum length of
a binary message to encode an information. A fundamental prop-
erty of entropy, namely the additivity of independent sources of
information, states that, for any couple of independent random
variables X1, X2, H(X1, X2) = H(X1) + H(X2). In other words,
the minimum length of a message containing two uncorrelated
parts is the sum of the lengths required to encode each of the
parts. More generally, the uncertainty of a couple of independent
random variables is the sum of their individual uncertainties.

2.4. Differential entropy for continuous random variables

As was introduced in Sect. 2.1, this work relies on continuous
random variables, namely subsets of lines Y (s) ∈ RK and physical
parameters Θ ∈ RD; for example, visual extinction or incident
UV radiative field intensity. For continuous random variables,
the information theory notion of entropy is generalized with the
differential entropy (Cover & Thomas 2006, chapter 8):

h (Θ) = EΘ
[
− log2 π(Θ)

]
= −

∫ [
log2 π(θ)

]
π(θ) dθ, (4)

with π(θ) the PDF ofΘ. The differential entropy h (Θ) is the limit
of the discrete entropy H of a quantized variable Θ∆, where ∆ is
a quantization step (Cover & Thomas 2006, theorem 8.3.1)

h (Θ) = lim
∆→0

H
(
Θ∆

)
+ log2 ∆. (5)

Unlike the finite case, the differential entropy can take negative
values, as log2 ∆ < 0 when ∆ < 1. Table 2 lists the differential
entropy formulae of a few common parametric distributions. For
instance, the entropy of a Gaussian distribution only depends on
its variance and not on its mean. The entropy of a uniform dis-
tribution on a compact set is the logarithm of the set volume.

For the example from Sect. 2.2, using the lognormal formula
from Table 2, the uncertainty on Θ before any observation is
h (Θ) = 0.07 bits. This corresponds to the uncertainty contained
in a uniform distribution on an interval of size 20.07 = 1.05, or in
a Gaussian distribution of standard deviation σ = 0.25.

The entropy can also be computed for couples of random
variables. For instance, when considering the problem of infer-
ring Θ from Y (s), we can now introduce the differential entropy
on the couple

(
Θ,Y (s)

)
that is defined as

h
(
Θ,Y (s)

)
= EΘ,Y (s)

[
− log2 π

(
Θ, Y (s)

)]
(6)

= −

∫ [
log2 π

(
θ, y(s)

)]
π
(
θ, y(s)

)
dθ dy(s), (7)

where π
(
θ, y(s)

)
is the joint PDF of the couple

(
Θ,Y (s)

)
.

2.5. Conditional differential entropy: Effects of observations

Observations are performed in order to infer physical parame-
tersΘ. In Sect. 2.1, we described observations that include noise.
Observing a vector y(s) thus does not permit one to determine the
physical conditions Θ with infinite precision. However, it can re-
duce the uncertainty on the physical parameters Θ.

The conditional differential entropy h
(
Θ |Y (s)

)
quantifies the

expected uncertainty remaining on Θ when Y (s) is known; that
is, after a future observation. It is defined as

h
(
Θ |Y (s)

)
= EΘ,Y (s)

[
− log2 π

(
Θ |Y (s)

)]
(8)

= −

∫ [
log2 π

(
θ | y(s)

)]
π
(
θ, y(s)

)
dθ dy(s). (9)
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Table 2: Differential entropy for a few common distributions.

Distribution on Θ Differential entropy h (Θ)

General
Θ ∈ RD

D ≥ 1

N(µ,Σ)
µ ∈ RD, Σ ∈ RD×D

1
2

log2

[
(2πe)D |Σ|

]
Unif (C)
C ⊂ RD log2 VolC

logN(µ,Σ)
µ ∈ RD, Σ ∈ RD×D

1
2

log2

[
(2πe)D |Σ| e2

∑D
d=1 µd

]

Univariate
Θ ∈ R

D = 1

N(µ, σ2)
µ ∈ R, σ > 0

1
2

log2

[
2πe σ2

]
Unif (a, b)

a < b
log2 [b − a]

logN(µ, σ2)
µ ∈ R, σ > 0

1
2

log2

[
2πe σ2 e2µ

]
Notes. As is introduced in Sect. 2.1,N denotes a Gaussian distribution,
Unif a uniform distribution and logN a lognormal distribution. Vol(C)
is the volume of a set C, |Σ| is the determinant of a covariance matrix Σ.

The conditional differential entropy h
(
Θ |Y (s)

)
is a mean value

characterizing all the possible joint realizations of the observa-
tions and the physical parameters. It is therefore not a function
of a specific realization y(s) of the Y (s) random variable. Instead,
it quantifies how a future observation y(s) of Y (s) would affect the
uncertainty on the physical conditions Θ on average. This aver-
age is computed with respect to the joint distribution of physical
parameters Θ and observations Y (s). The conditional differential
entropy can thus be evaluated prior to any observation and esti-
mation. It can be shown that

h
(
Θ |Y (s)

)
= h

(
Θ,Y (s)

)
− h

(
Y (s)

)
. (10)

This means that the remaining uncertainty on Θ, once Y (s) is
known, is the information jointly carried by both Θ and Y (s) mi-
nus the information brought by Y (s) alone. In other words, know-
ing Y (s) provides additional information to estimate Θ. This im-
plies that the conditional differential entropy is always lower or
equal to the differential entropy:

h
(
Θ |Y (s)

)
≤ h (Θ) . (11)

This inequality becomes an equality if and only if Θ and Y (s)

are independent. This can occur for instance in the low S/N
regime, when additive noise completely dominates the line in-
tensity. Conversely, if there exists a bijection between Θ and Y (s)

(e.g., in the absence of noise and with a bijective f in Eq. 1), then
h
(
Θ |Y (s)

)
is equal to −∞.

The example of Sect. 2.2 shows how different values of Y
yield different uncertainties on Θ. The lower panel in Fig. 1
shows that, among the three observed y, lower values of y lead to
a tighter distribution and thus to lower uncertainties on Θ. The
remaining uncertainty on Θ is −2.01, −1.11, or −0.58 bits after
observing y = 0.5, 1, or 1.5, respectively. The conditional differ-
ential entropy h (Θ |Y) averages over all possible observations y.
Using Eq. 9 and the lognormal formulae from Table 2, in this
case, h (Θ |Y) = −1.08 − 0.07 = −1.15 bits. The latter value is
the mean uncertainty on Θ when observing Y , averaged on all
possible values of Y (s).

Fig. 2: Venn diagram representation of the differential entropy
h (Θ) (and h (Y)), of the conditional differential entropy h (Θ |Y)
(and h (Y |Θ)), and of the mutual information I (Θ, Y).

The differential entropy h (Θ |Y) is related to the error in es-
timating Θ from the Y data, and in particular to the root mean
squared error. For instance, in an estimation procedure, decreas-
ing the entropy by 1 bit improves the precision4 by a factor of
two in the Gaussian case. Appendix B illustrates the notion of a
difference of one bit between two probability distributions. An
interpretation valid in the general case will be presented in the
second paper of this series.

2.6. Mutual information

The mutual information I
(
Θ, Y (s)

)
(Cover & Thomas 2006, sect.

8.6) is often preferred for a simpler interpretation. It quantifies
the information on Θ that is gained by knowing Y (s):

I
(
Θ, Y (s)

)
= h (Θ) − h

(
Θ |Y (s)

)
. (12)

Figure 2 shows a Venn diagram that illustrates the relationships
between differential entropy, conditional differential entropy and
mutual information. It illustrates Eq. 10 and Eq. 12.

Mutual information is always positive, as implied by Eq. 11.
A high mutual information indicates that knowing Y (s) consider-
ably lowers the uncertainty on Θ. If we consider different distri-
butions of a given physical parameter (e.g., corresponding to dif-
ferent physical regimes), represented by different random vari-
ables Θ, the mutual information is delicate to compare as it de-
pends on the initial uncertainty. Indeed, it is easier to provide
information on the physical parameter if the latter is highly un-
certain than if it is already precisely constrained.

The mutual information is invariant to invertible transforma-
tions ofΘ or Y (s) separately. Its value is thus identical whether in-
tegrated intensities are considered in linear scale, logarithm scale
or with a asinh transformation as in Gratier et al. (2017). Con-
versely, non-bijective transformations result in a loss of informa-
tion, and thus decrease the mutual information. For instance, an
integrated intensity is obtained with a non-invertible integration
of the associated line profile, and thus contains less information.

In the example from Sect. 2.2, the value of mutual infor-
mation is I (Θ, Y) = 1.22 bits; that is, the difference between
h (Θ) = 0.07 bits and h (Θ |Y) = −1.15 bits. This means that
observing Y increases the information on Θ by 1.22 bits on aver-
age. Equivalently, observing Y improves the precision on Θ by a
factor of 21.22 ≃ 2.3, on average.

4In this paper, the precision is considered to be homogeneous with
the inverse of a standard deviation. This differs from the traditional def-
inition in statistics, where it corresponds to the inverse of a variance.
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2.7. Finding the lines that best constrain physical parameters

Constraining a physical parameter is commonly defined as re-
ducing the uncertainty associated with it. In information theory,
this uncertainty is quantified by the conditional entropy h (Θ |Y).
The best subset sK of K lines for a given physical regime is then
the solution of the discrete optimization problem

sK = arg min
s∈SK

h
(
Θ |Y (s)

)
, (13)

with SK the set of all possible subsets of K lines. Using the rela-
tionship h

(
Θ |Y (s)

)
= h (Θ) − I

(
Θ, Y (s)

)
, the problem can be re-

stated as maximizing mutual information such that an equivalent
formulation is

sK = arg max
s∈SK

I
(
Θ, Y (s)

)
. (14)

This optimization problem is solved by comparing mutual infor-
mation values for all subsets s ∈ SK . The entropy and mutual in-
formation values are heavily dependent on the choice of prior on
the Θ distribution. Solving Eq. 14 requires the ability to evaluate
the mutual information for each pair

(
Θ, Y (s)

)
. In real-life appli-

cations, the shape of the distribution on
(
Θ,Y (s)

)
can be complex

or unknown. In such cases, the mutual information does not have
a simple closed-form expression, unlike the simple cases listed in
Table 2. It then needs to be evaluated numerically with a Monte
Carlo estimator ÎN

(
Θ, Y (s)

)
from a set of N pairs

(
θn, y(s)

n

)
.

The Monte Carlo estimator ÎN

(
Θ, Y (s)

)
considered in the re-

mainder of this work is the “Kraskov estimator” (Kraskov et al.
2004). This estimator does not make assumptions on the shape of
the joint distribution on

(
Θ,Y (s)

)
. It can thus capture both linear

and nonlinear relationships between lines Y (s) and physical pa-
rameters Θ. See Appendix C for more details on this estimator
and the derivation of the associated error bars.

The set of N pairs
(
θn, y(s)

n

)
can be made up of real observa-

tions or simulated observations. This paper considers simulated
observation. The considered approach involves 3 steps: i) draw-
ing N physical parameters vectors θn from a distribution π(θ), ii)
evaluating the ISM model f on each physical parameter θn for all
lines, iii) applying the noise model A to obtain simulated noisy
observations yn. In the second paper of this series, the method is
applied to a set of real observations.

3. Application to simulated photodissociation
regions observed with IRAM 30m EMIR

Mutual information, introduced in Sect. 2, allows one to evaluate
the constraining power of ionic, atomic and molecular lines. The
general method presented in Sect. 2.7 allows one to determine
which lines are the most informative to constrain the physical
properties of an emitting object. This method can be applied to
any astrophysical model that computes line intensities from a
few input parameters; for example, radiative transfer codes sim-
ulating interstellar clouds, emission lines from protoplanetary
disks, or stellar spectra synthesis models. It can also be applied
to any other spectroscopic observations.

In this section, we introduce two synthetic cases of PDRs.
In both cases, we resort to a fast and accurate emulator of the
Meudon PDR code, and simulate noise using the characteristics
of the EMIR receiver at the IRAM 30m. With these two cases,
we shall show how mutual information can provide insights for

ISM physics understanding, and apply the proposed line selec-
tion method. As the results of the proposed approach heavily
depend on various aspects (e.g., the instrument properties, the
integration time, or the observed environment), we depict these
two cases in detail.

The Meudon PDR code is first presented along with a fast
and accurate emulator. Then, the details of the generation of the
sets of models are introduced, namely, the physical parameter
distribution and the observation simulator. Overall, we consider
two situations with distinct physical parameter distributions.

3.1. The Meudon PDR code

The Meudon PDR code5 (Le Petit et al. 2006) is a one-
dimensional stationary code that simulates a PDR; that is, neutral
interstellar gas illuminated with a stellar radiation field. It per-
mits the investigation of the radiative feedback of a newborn star
on its parent molecular cloud, but it can also be used to simulate
a variety of other environments.

The user specifies physical conditions such as the ther-
mal pressure, Pth, the intensity of the incoming UV radiation
field, G0 (scaling factor applied to the Mathis et al. 1983 standard
field), and the depth of the slab of gas expressed in visual extinc-
tions, Atot

V . The code then solves multiphysics coupled balance
equations of radiative transfer, thermal balance, and chemistry
for each point of an adaptive spatial grid of a one-dimensional
slab of gas. First, the code solves the radiative transfer equation,
considering absorption in the continuum by dust and in the lines
of key atoms and molecules such as H and H2 (Goicoechea &
Le Bourlot 2007). Then, from the specific intensity of the radi-
ation field, it computes the gas and grain temperatures by solv-
ing the thermal balance. The code accounts for a large number
of heating and cooling processes, in particular photoelectric and
cosmic ray heating, and line cooling. Finally, the chemistry is
solved, providing the densities of about 200 species at each posi-
tion. About 3 000 reactions are considered, both in the gas phase
and on the grains. The chemical reaction network was built com-
bining different sources including data from the KIDA database
(Wakelam et al. 2012) and the UMIST database (McElroy et al.
2013) as well as data from articles. For key photoreactions, cross
sections are taken from Heays et al. (2017) and from Ewine van
Dishoeck’s photodissociation and photoionization database. The
successive resolution of these three coupled aspects is iterated
until a global stationary state is reached.

The code yields 1D-spatial profiles of density of many chem-
ical species and of temperature of both grains and gas as a func-
tion of depth in the PDR. From these spatial profiles, it also com-
putes the line integrated intensities emerging from the cloud that
can be compared to observations. As of version 7 (released in
2024), thousands line intensities are predicted from species such
as H2, HD, H2O, C+, C, CO, 13CO, C18O, 13C18O, SO, HCO+,
OH, HCN, HNC, CH+, CN or CS. Although the Meudon PDR
code was primarily designed for PDRs, it can also simulate the
physics and chemistry of a wide variety of other environments
such as diffuse clouds, nearby galaxies, damped Lyman alpha
systems and circumstellar disks.

3.2. Neural network-based emulation of the model

The numerical estimation of the mutual information requires
drawing thousands of physical parameters θn and evaluating the
associated integrated intensities fℓ(θn) in order to achieve satis-

5https://ism.obspm.fr
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fying precisions for line ranking (see, e.g., the experiment from
App. C). A single full run of the Meudon PDR code is compu-
tationally intensive and typically lasts a few hours for one input
vector θ. Generating such a large set of models with the original
code would therefore be very slow. This is a recurrent limitation
of comprehensive ISM models that received a lot of attention
recently. The most common solution is to derive a fast approxi-
mation of a heavy ISM code using an interpolation method (Gal-
liano 2018; Wu et al. 2018; Ramambason et al. 2022), a machine
learning algorithm (Bron et al. 2021; Smirnov-Pinchukov et al.
2022) or a neural network (de Mijolla et al. 2019; Holdship et al.
2021; Grassi et al. 2022; Palud et al. 2023).

In this work, we use the fast, light (memory-wise) and ac-
curate neural network approximation of the Meudon PDR code
proposed in Palud et al. (2023). This approximation is valid for
log10 Pth ∈ [5, 9], log10 G0 ∈ [0, 5], log10 Atot

V ∈ [0, log10(40)]. As
neural networks can process multiple inputs at once in batches,
the evaluation of 103 input vectors θ with this approximation
lasts about 10 ms on a personal laptop. With the original code,
performing that many evaluations would require about a week
using high performance computing; that is, about 60 million
times longer even with much more computing power. For the
lines studied in this paper, the emulator results in an average er-
ror of about 3.5% on the validity intervals, which is three times
lower than the average calibration error at the IRAM 30m. The
error on mutual information values due to using the emulator in-
stead of the original code is thus negligible. For this reason and
to simplify notation in the remainder of this paper, we denote f
this neural network approximation.

3.3. Generating sets of models

To demonstrate the power of the approach presented in Sect. 2.7,
we apply it to a simulation of lines observed by the EMIR (Eight
MIxer Receiver) heterodyne receiver. This receiver operates in
the 3 mm, 2 mm, 1.3 mm and 0.9 mm bands at the IRAM 30m
telescope (Carter et al. 2012). This application also includes the
far infrared (FIR) [CI] 370 µm, [CI] 609 µm and [CII] 157 µm
lines. These three lines are relevant for this application as their
behavior is well understood within PDRs (Kaufman et al. 1999),
especially their dependency on G0.

However, choosing which lines to include in the study is not
the only critical choice. Indeed, the values of mutual informa-
tion and therefore the result of the optimization problem heavily
depend on the prior distribution π (θ) on the physical parameters
– which, in particular, specifies the expected physical regime –
and the observation simulator.

3.3.1. Physical regimes and distribution of parameters

The distribution, π(θ), on physical parameters represents the ex-
pected proportions of pixels in each physical regime within an
observation. This distribution has a crucial influence on ISM
model predictions and thus on the mutual information values and
line ranking. It should therefore be carefully chosen. In this pa-
per, we study two situations, summarized in Table 3.

First, we consider a loguniform distribution over the whole
validity space of the emulated ISM model. As this option does
not favor any physical regime, it is a common choice in ISM
studies (see, e.g., Behrens et al. 2022; Blanc et al. 2015; Thomas
et al. 2018; Holdship et al. 2018; Joblin et al. 2018). In other
words, it assumes that all kinds of environments are equally
likely, which is not the case in general in observed environ-

Table 3: Summary of the parameter distribution for the two stud-
ied situations.

Situation
Parameters Parameters

bounds distribution

Full parameter
space

1 ≤ Atot
V ≤ 40

1 ≤ G0 ≤ 105

105 ≤ Pth ≤ 109

Loguniform
Loguniform
Loguniform

Horsehead
Nebula

3 ≤ Atot
V ≤ 24

101 ≤ G0 ≤ 103

105 ≤ Pth ≤ 5 · 106

Power law (α = −2.24)
Power law (α = −1.05)

Loguniform

ments. However, choosing the distribution of maximal entropy
on log Atot

V and log G0 averages the lines informativity over dif-
ferent physical conditions without introducing any bias.

Second, we consider a physical environment similar to the
Horsehead pillar. Real life observations of molecular clouds such
as Orion B (Pety et al. 2017) or OMC-1 (Goicoechea et al. 2019)
typically contain more pixels corresponding to translucent gas
than dense cores. This is due to the fact that translucent gas fills
a larger volume than dense cores in a galaxy. To incorporate this
physical knowledge in our study, we fit a power law distribution
on Atot

V and G0 (Hennebelle & Falgarone 2012). The associated
exponents are adjusted on ORION-B data, following the method
described in Clauset et al. (2009).

For a given situation, one can choose to simulate obser-
vations only within a particular environment (e.g., translucent
clouds with 3 ≤ Atot

V ≤ 6). This physical a priori can then be used
to refine the results. In practice, any available physical knowl-
edge is useful to integrate into the parameters prior distribution
or the observation simulator.

3.3.2. Observation simulator

Eq. 1 involves an abstract noise modelA. In this experiment, the
considered noise model combines two sources of noise for each
of the considered lines: one additive Gaussian and one multi-
plicative lognormal. The additive noise corresponds to thermal
noise, whereas the multiplicative noise corresponds to the cali-
bration uncertainty. For all lines, we compute the integrated line
intensity over a velocity range of 10 km s−1. Overall, for the nth

element of the dataset (1 ≤ n ≤ N) and the ℓth line, the observa-
tion simulator reads

ynℓ = ε
(m)
nℓ fℓ (θn) + ε(a)

nℓ , (15)

with
ε(a)

nℓ ∼ N(0, σ2
a,ℓ),

ε(m)
nℓ ∼ logN

(
−
σ2

m

2
, σ2

m

)
.

(16)

The standard deviation of the multiplicative noise, σm, was set
so that a 1σ uncertainty interval corresponds to a given percent-
age for the calibration error. For instance, a 5% calibration error
leads to σm = log(1.05). For EMIR lines, this percentage is as-
sumed to be identical for the lines within the same band: 5 %
at 3 mm, 7.5 % at 2 mm and 10 % at both 1.3 mm and 0.9 mm.
For the time being, the additive noise RMS levels σ2

a,ℓ are set
according to the ORION-B Large Program observations (Einig
et al. 2023). To do this, we resort to the IRAM 30m software that
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Fig. 3: Violin plots of the S/N of the spectral lines considered in this study, with the S/N defined as fℓ(θ)/σa,ℓ. The EMIR lines are
displayed in blue on the left, while the [CI] and [CII] lines are shown in orange on the right. Top: S/N distributions for a loguniform
distribution on the full validity intervals on the physical parameters. The considered line filter only keeps lines that have a 99%
percentile S/N greater than 3. This threshold is indicated with the horizontal dashed black line, and the actual 99% percentile S/N
is shown with a short black line for each line. Bottom: S/N distributions in an environment similar to the Horsehead pillar, for the
same lines. The lines are ranked by decreasing median S/N, indicated in red.

delivers the telescope sensitivity as a function of frequency. We
consider standard weather conditions at Pico Veleta and set the
integration time per pixel to 24 seconds. An increase in the inte-
gration time would amount to dividing the additive noise RMS
σa,ℓ by the square root of the increase factor.

For FIR lines, we assume that the [CII] line is observed with
SOFIA and has an additive noise RMS of 2.25 K per channel in
addition of a 5 % calibration error (Risacher et al. 2016; Pabst
et al. 2017). We also assume that both [CI] lines are observed
at Mount Fuji observatory with an RMS of 0.5 K and a 20 %
calibration error (Ikeda et al. 2002). For all lines, the integration
range is assumed to be 10 km s−1.

Important observational effects such as the beam dilution or
the cloud geometry are disregarded in Eq. 15. As a consequence,
we propose an alternative observation simulator that accounts for
such observational effects through a scaling factor, κ. This factor
is assumed common to all lines such that

∀1 ≤ ℓ ≤ L, ynℓ = ε
(m)
nℓ κn fℓ (θn) + ε(a)

nℓ . (17)

Beam dilution decreases line intensities, while an edge-on ge-
ometry increases line intensities compared to a face-on orienta-
tion. Therefore, we consider that log10 κ follows a uniform dis-
tribution on [−0.5, 0.5], which seems realistic when looking at
extended sources like Orion B. See Sheffer & Wolfire (2013)
for a more thorough description of this scaling parameter. This
approach of including these effects in the observation simulator
is a first order approximation. In particular, the hypothesis of a
shared κ among all lines is only valid for optically thin lines.

In the remainder of this work, unless explicitly specified, the
considered observation simulator is Eq. 15 – without the κ term.

3.3.3. Considered lines

In the simulated observations, the intensity of some lines is com-
pletely dominated by the additive noise. The intensity of these
lines is thus nearly independent of physical parameters Θ and
has a near-zero mutual information with them. To avoid useless
mutual information evaluations, we filter out uninformative lines
based on their S/N. We thus only study lines that have an S/N
greater than 3 for at least 1% of the full parameter space. In total,
L = 36 lines are considered: 33 millimeter lines – with multiple
lines in each of the four frequency bands – and the 3 lines from
atomic and ionized carbon. For lines with hyperfine structure,
the Meudon PDR code considers the transitions independently.
To simplify our systematic comparison, only the brightest tran-
sition is retained. Summing the integrated intensities of all the
transitions might lead to a more realistic approximation of the
overall line.

Figure 3 shows the distribution of S/N level across the con-
sidered parameter space for each of the L = 36 considered lines.
These lines include the first three low-J transitions of 12CO,
13CO, C18O, the first four of HCO+, five of the first seven of
12CS, six lines of 12CN, two lines of HNC, three lines of HCN,
and four lines of C2H. The first row contains S/N violin plots for
a loguniform distribution on the validity intervals for the physi-
cal parameters θ. It shows that all the considered lines can have
very low S/Ns for some regimes of the explored physical pa-
rameter space. Below an S/N of 1–2, signal becomes difficult to
distinguish from noise. The second row contains S/N violin plots
for a parameter space restricted to the range found in the Horse-
head pillar. In this use case, the line S/Ns cover fewer orders
of magnitude. For instance, in this case, the lines corresponding
to the last 18 blue violin histogram have a very low S/N, and
are thus unlikely to be informative. This shows that the subset
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of informative lines could be further reduced in this case. While
dedicated filters could be performed for each use case, we main-
tain the same subset of L = 36 lines in all the studied use cases
to simplify interpretations.

The considered noise properties of the EMIR receiver, of
SOFIA, and of the Mt. Fuji observatory are not identical for all
lines. For instance, Fig. 3 shows similar range of S/N values for
the ground state transition of 12CO and 13CO. This might be sur-
prising, since the ground state transition of 12CO is known to be
brighter than that of 13CO (Pety et al. 2017). In this case, the
additive noise standard deviation σa,ℓ of 12CO (1 − 0) is much
larger than that of 13CO (1 − 0) because 12CO (1 − 0) is located
on the upper limit of the band at 3 mm. This results in their com-
parable S/Ns. The same observation can be done for the [CII]
line: although this line is usually much brighter than all the other
considered lines, its S/N is close to 1 due to the considered noise
properties of SOFIA. Appendix G provides the full list of con-
sidered lines and the associated noise characteristics.

4. Simulation results and general applications

In this section, we show general results and insights of our ap-
proach in the considered setting. To do so, we evaluate the mu-
tual information between the integrated intensity of a few ISM
tracers with either the visual extinction Atot

V or the UV radiative
field G0. First, we consider the impact of integration time, and
thus of S/N, on the mutual information value. Second, we show
how the mutual information between line intensities and Atot

V or
G0 changes with the values of Atot

V and G0, in order to better un-
derstand the physical processes that control the informativity of
these lines. Third, we illustrate how combining different lines
can impact their mutual information with Atot

V .
The goal of this section is to demonstrate the approach poten-

tial and consistency with already known results. Therefore, we
restrict the analysis to two variables – for visualization purposes
– and choose the two variables for which astrophysicists have the
best intuition, namely the visual extinction Atot

V or the UV field
intensity G0. In particular, we do not present mutual information
values for the thermal pressure, Pth, although the proposed ap-
proach and code can perform these computations. In addition,
we restrict the experiment to univariate physical parameters as
this greatly simplifies physical interpretations. In other words,
we compute mutual information for only one physical parameter
(Atot

V or G0) at a time, although the proposed approach and code
can evaluate the mutual information for both Atot

V and G0 simulta-
neously. Analyzing less understood physical parameters such as
the thermal pressure, Pth, or evaluating the mutual information
for multiple physical parameters at once is left for future work.

4.1. Signal-to-noise ratio for a line to deliver its full physical
potential

The mutual information I (Θ, Yℓ) between a line intensity Yℓ and
a given physical parameter Θ not only depends on the intrinsic
physical sensitivity of the lines with the considered physical pa-
rameter, but also on the mean S/N of the studied observation. For
a given line, the mean S/N is influenced by 1) the correspond-
ing species and its quantum transition, 2) the physical conditions
(e.g., kinetic temperature and volume density), and 3) the inte-
gration time with an observatory to reach a given noise level6.

6The noise level for a given integration time depends on additional
parameters such as the weather conditions for a ground observatory.

Figure 4 shows the influence of the mean S/N (left column)
and the integration time (right column) on I

(
Atot

V , Yℓ
)

for sev-
eral transitions of HCO+, HCN, and HNC. The considered dis-
tribution π(θ) on physical parameters is the one similar to the
Horsehead Nebula (see Table 4), restricted to filamentary gas
(6 ≤ Atot

V ≤ 12). The dotted vertical line in the right column
shows the typical integration time per pixel in the ORION-B
dataset. For each line, the mutual information varies with mean
S/N and time following an S-shape. Low S/N values lead to zero
mutual information because the line intensity is dominated by
additive noise. The inflection point of the S-curve is located at
S/N about 3. A given line reaches its full informativity potential
when the curve starts to saturate; for instance at S/N ∼ 10 for
all lines in this case. For large S/N, the mutual information con-
verges to a value that depends on the line micro-physical charac-
teristics. This value is finite because each Atot

V value is combined
with many values of thermal pressure and UV illumination.

Using the proposed method, the integration time can be set
to achieve a target mean S/N and mutual information. For in-
stance, according to Fig. 4, I

(
Atot

V , Yℓ
)

has already reached its
maximum value for HCO+ (1 − 0) in the filamentary gas part
of ORION-B dataset. An increase in the integration time would
thus not increase the informativity of this line; in other words,
it would not improve the precision in an estimation of Atot

V
from HCO+ (1 − 0). Conversely, a 100-fold increase in the in-
tegration time would improve the mutual information for the
HCN (1 − 0) and HNC (1 − 0) lines by 0.7 and 0.5 bits, respec-
tively, and would lead to maximum precision in an estimation of
Atot

V with these lines. Higher energy transitions of HCO+ could
also be fully exploited with such an increase in the integration
time. As a reference, the next generation of multibeam receivers
currently foreseen in millimeter radio astronomy are expected to
bring a 25-fold sensitivity improvement without increasing the
integration time. The same figures of evolution of mutual infor-
mation with the integration time for the 36 considered lines are
available online7. They also display results with respect to the
intensity of the UV radiative field G0 for translucent gas, fila-
mentary gas and dense cores.

Figure 5 shows how I
(
Atot

V , Yℓ
)

evolves with mean S/N for
HCO+ (1 − 0) in the Horsehead Nebula (see Table 4) in three
physical subregimes: translucent, filamentary, and dense core
gas. The inflection point of the S-shape curve happens at an S/N
of about 2, 5, and 10, respectively. Comparing the maximum
value of mutual information for different regimes is hazardous
here because the distribution of the Atot

V values (and thus the as-
sociated entropy) intrinsically depends on the studied physical
regime. If a considered physical regime is broad, the mutual in-
formation between a given line and Atot

V is likely to be higher
than for another more localized regime even if the line is a better
tracer of Atot

V in the latter.

4.2. The physical regimes in which a given line is informative

In this section, we show how mutual information can provide
insights for ISM physics understanding. We showed in Fig. 5
that the mutual information between a physical parameter and
a line intensity may significantly vary with the physical regime.
The three large physical regimes used in the previous section
were defined based on a priori astronomical knowledge. This
may result in the omission of processes that occur in smaller
and intermediate regimes. To overcome this issue, we introduce

7https://doi.org/10.5281/zenodo.13805976
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Fig. 4: Evolution of mutual information between the visual
extinction Atot

V and integrated line intensities as a function of
S/N (left column) and integration time (right column), for
6 ≤ Atot

V ≤ 12 (filamentary clouds). The top row shows the com-
parison between some chemical species, while the bottom row
shows the comparison between the three lower energy transi-
tions of HCO+.

Fig. 5: Evolution of mutual information between the visual ex-
tinction Atot

V and integrated line intensities as a function of S/N
(left column) and integration time (right column) for different
Atot

V regimes, using the example of the HCO+ (1 − 0) line.

the notion of maps of the mutual information between a physi-
cal parameter (either Atot

V or G0) and line intensities as a func-
tion of both Atot

V and G0. To do this, we filter the (log10 Atot
V ,

log10 G0) space with a sliding window of constant width, and
consider loguniform distribution for each parameter. This width
corresponds to a factor of two for Atot

V and a factor of about 5.2
for G0; that is, seven independent windows (without overlap) for
each parameter. Then, we compute the mutual information be-
tween the line intensities, simulated with parameters in the slid-
ing window, and either Atot

V or G0. The additive noise in the sim-
ulated spectra corresponds to the integration time corresponding
to the ORION-B observations; that is, 24 seconds per pixel. Af-
ter describing the obtained maps of mutual information with Atot

V
and G0, we explain them with maps of line intensities fℓ(θ).

Here, the values of mutual information can be compared
from one value of the (Atot

V , G0) space to another because the
sampling of this space is regular and the size of the sliding win-
dow is kept fixed. For the same reasons, the values of mutual
information can also be compared from one line to another at a

constant value of (Atot
V , G0). Similarly, for a given line and value

of (Atot
V , G0), I

(
Atot

V , Yℓ
)

and I (G0, Yℓ) can be compared.
The considered prior π(θ) for each parameter is always lo-

guniform in this section. In this very special case, a mutual in-
formation value of 1 bit for one physical parameter may be in-
terpreted as a division of the standard deviation on the estima-
tion of log Atot

V or log G0 by a factor of two. For instance, if the
considered physical parameter is G0 and its mutual information
I
(
log G0, y

)
with some line y is 1 bit, then the standard devia-

tion of the conditional distribution π(log G0|y) is a factor of two
lower than the one of the prior π(log G0). For more general prior
distributions, this interpretation does not hold. The second paper
of this series will provide an interpretation for the general case.

4.2.1. Relevance of individual ISM lines in constraining Atot
V

We here wish to identify 1) which lines are the most relevant
to estimate the visual extinction Atot

V , and 2) in which part of
the (log10 Atot

V , log10 G0) space. Figure 6 shows maps of mutual
information between the intensity of 20 individual lines and Atot

V .
The size of the sliding window is shown in the 12CO map as a red
rectangle while the range of the parameters within the Horsehead
Nebula is represented with a white rectangle as a reference.

Among the presented lines, the most informative ones for es-
timating Atot

V on average are the lines of 13CO and C18O followed
by HCO+. The lines of 12CO, HCN, 12CS, and [CI] are also in-
formative but on more restricted regions of the (Atot

V , G0) space.
The J = 2 − 1 transitions have systematically lower mutual in-
formation with Atot

V than the J = 1 − 0 transitions, which is due
to a lower mean S/N – as shown on Fig. 3.

The three CO isotopologues give high values of the mutual
information for most of the (Atot

V , G0) space. For translucent
clouds, the first two 13CO lines are the most informative. For
dense clouds (large Atot

V ), the first two 13CO and C18O lines are
the most informative. Finally, the fine structure [CI] lines and the
ground state transition of 12CO have the highest mutual informa-
tion values (even though these values are low) for the upper left
corner, which corresponds to highly illuminated diffuse clouds.

Although the ground state transitions of HCN and HNC
are among the most informative lines in the high-Atot

V , low-G0
regime, we might have expected them to be even more informa-
tive in this physical regime since they are used as tracers of the
dense cores. Their relatively low informativity is explained by
low mean S/N values. As was shown in Fig. 4, the integration
time is too short to exploit the full potential of these lines.

We also observe that the mutual information with Atot
V is

roughly constant with respect to the ratio G0
0.15/Atot

V for mul-
tiple lines. This ratio corresponds to a straight line in the
(log Atot

V , log G0) space, and is displayed in Fig. 6. That is par-
ticularly clear for the 12CO, 13CO and C18O lines. In the upper
left corner, where the G0

0.15/Atot
V ratio is maximum, the mutual

information is low. It increases as this ratio decreases, reaches a
maximum and then decreases.

4.2.2. Relevance of individual ISM lines in constraining G0

We now apply the same approach on the UV radiative field G0.
Figure H.1 shows maps of mutual information between the in-
tensity of the same 20 individual lines and G0. For most molecu-
lar lines except those of 12CO, the mutual information values are
lower for G0 than for Atot

V . This indicates that the considered lines
are more informative for Atot

V than for G0; that is, that achieving

Article number, page 10 of 27



Lucas Einig et al.: Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds

Fig. 6: Maps of mutual information of individual lines with the visual extinction in function of the actual visual extinction Atot
V and

intensity of the UV radiative field G0. The results are computed for the pressure following a loguniform distribution between 105

and 5 × 106 K cm−3. The red rectangle on the first panel shows the dimensions of the sliding window, while the white rectangle
delimits the parameter space characterizing the Horsehead Nebula. The dashed black line on the 13CO (1 − 0) panel corresponds to
a constant G0

0.15/Atot
V ratio.

a good precision on G0 is harder than on Atot
V . This result is con-

sistent with Gratier et al. (2021).

For most of the (Atot
V , G0) space, the most informative lines

are [CII], 12CO lines and, to a lesser extent, [CI] lines. This is
due to the fact that these five lines have a high mean S/N – with
the considered noise properties – and are mostly emitted at the
surface of the cloud, thus being sensitive to G0. For highly illu-
minated clouds (G0 ∈ [103, 104]), especially at low Atot

V , the most
informative transitions are the ones of HCO+. This is probably
related to the fact that HCO+ is easily excited by electrons at
the surface of the clouds. The mutual information of the HCN
and HNC (1 − 0) intensities with G0 reach high values compared
to other species (more than 0.8 bits) for G0 around 2 × 103 and
Av > 20. Finally, the 12CS transitions are the most informative
in the upper right corner; that is, at both high Atot

V and G0.

4.2.3. Underlying reasons

In order to better understand these mutual information maps,
Fig. I.1 shows the integrated intensities fℓ(θ) as a function
of Atot

V and G0. These predicted intensities are computed for
Pth = 105 K cm−3, while the mutual information maps are com-
puted for a pressure following a loguniform distribution on the
[105, 5 × 106] K cm−3 interval. However, they capture the main
physical phenomena that drive mutual information. In a nutshell,
this figure shows that to be informative for a physical parameter,
a line needs both a good S/N and a large gradient with respect to
the physical variable of interest. Since the gradient information
might not be visible on Fig. I.1, Appendix I provides maps of the
gradients of the log integrated intensities.

While the [CII] line (last row) is the brightest of all, it has
near-zero mutual information with Atot

V in all regimes. As [CII]
mostly exists at the surface of the cloud, the predicted integrated
intensity almost does not depend on visual extinction. It only has
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a slight dependency at Atot
V ∼ 1 mag, which is the typical visual

extinction where carbon becomes mostly neutral in a PDR (Röl-
lig et al. 2007) (it is then included in molecules such as CO).

After the [CII] line, the two [CI] lines are the brightest.
Their intensity first increases as G0

0.15/Atot
V decreases in the top

left corner (shallow and highly illuminated clouds) as the cloud
progressively forms more atomic carbon, and then saturates as
carbon mostly exists in molecules in darker clouds. This ex-
plains why the [CI] lines have a 0.2 − 0.3 bit mutual informa-
tion with Atot

V in this region, and lower mutual information values
(0.1 − 0.2) for G0. Out of this top left corner, like [CII], atomic
C mostly exists at the surface of the cloud, which is why the
predicted integrated intensities of the two [CI] lines almost do
not depend on visual extinction and have a near-zero mutual in-
formation value with Atot

V . However, the intensity of [CI] lines
increases slightly with G0, and the intensity of [CII] increases
quickly with G0, because 12CO is photodissociated and C is ion-
ized as G0 increases. This explains why these three lines have a
high mutual information value with G0.

In the upper left corner (shallow and highly illuminated
clouds), most of the molecular lines are very faint and have a
large gradient orthogonal to the G0

0.15/Atot
V direction. In this high

G0
0.15/Atot

V regime, a small positive change in Atot
V or negative

change in G0 results in a large increase in the integrated inten-
sities. Increasing Atot

V favors the formation of molecules in the
deeper parts of the cloud, and decreasing G0 decreases photodis-
sociation. In this regime, the mutual information with Atot

V or G0
is near-zero for most lines as they are drowned in noise. There
are two exceptions. First, the 12CO lines have the highest mean
S/N as 12CO is the first molecule to form in such clouds. Second,
the HCO+ lines are just below the noise standard deviation for
Pth = 105 K cm−3 but are brighter for higher pressures.

The first two 12CO lines show a similar pattern over the full
(Atot

V , G0) space: their intensities first increase as G0
0.15/Atot

V de-
creases, as the molecules form in the cloud, and then saturates
as they become optically thick for large enough Atot

V . The tran-
sition between the high intensity gradient due to the increase in
the formation of the molecule, and the saturation due to optical
thickness occurs at relatively low S/N. These two lines thus have
highest informativity on Atot

V in regions at low values of Atot
V along

G0
0.15/Atot

V . The precision in inferring Atot
V remains low because

of the relatively low S/N. The saturation value then slightly de-
pends on G0, which is why the mutual information between these
two lines and G0 (out of the upper left corner) is nonzero.

As 13CO is less abundant than 12CO, the intensities of its
first two lines become bright enough and then saturate for larger
values of Atot

V . There is a wide Atot
V interval for which these two

lines have simultaneously a high S/N and a large gradient, which
yields a high mutual information. The first two C18O lines show
a similar pattern for darker clouds. All this combined shows that
combining the first lines of these three CO isotopologues can
yield high mutual information with Atot

V over most of the (Atot
V ,

G0) space. Finally, the sensitivity of the HCO+, HCN, and HNC
lines to large G0 values is related to their large gradient of inten-
sities combined to a high enough S/N in these regions.

4.3. Influence of combining lines

The previous section shows how mutual information between
individual line intensities and one physical parameter can be
understood from a physical viewpoint. However, using maps
of predicted integrated intensities to determine informativity
quickly becomes tedious for combinations of lines or combina-

Table 4: Summary of the considered use cases.

Use case with κ × integ. time
Reference no 1

Deeper integration no 10
Uncertain geometry yes 1

Notes. These use cases are introduced in Sect. 3.3. They are settings
in which our line selection approach is applied to highlight specific as-
pects. The κ parameter (Eq. 17) includes observational uncertainties.
The integration time factor is the ratio between the actual integration
time and the one of the ORION-B dataset, used as a reference.

tions of physical parameters. In particular, which lines to com-
bine to improve informativity, or how informative a combination
of lines can be, is unclear with such a simple scheme. Mutual
information allows one to effortlessly and quantitatively answer
these questions.

Figure 7 shows maps of mutual information for two lines
of the three main CO isotopologues, first individually and then
combined. It also shows the highest mutual information for in-
dividual lines per physical regime. As this value is always lower
or equal than the mutual information provided by the line com-
bination, it permits estimating an information gain, which is the
amount of additional information that is obtained by combining
lines. The two first rows show the two first transitions of 13CO
and C18O. Here again, the values of mutual information can be
compared at constant (Atot

V , G0) values as the distribution of the
physical parameter remains the same for all maps.

For 13CO, the second transition becomes informative at
higher G0

0.15/Atot
V values (toward lower Atot

V values) than the first
transition, and is thus complementary as it does not trace the
same regimes. Therefore, combining the two low-J lines leads
to a significant increase in the mutual information with Atot

V . This
confirms the physical insight that higher J lines of 13CO allow us
to better constrain the excitation conditions and thus the column
density (see Roueff et al. 2024).

Similarly, the first two lines of C18O are informative in dis-
tinct regimes. Although the C18O low-J lines considered individ-
ually provide little information on very dark cloud conditions,
their combination doubles this information (from about 0.5 to
more than 1 bit for Atot

V > 10 mag). This can be related to the fact
that the C18O lines ratio is sensitive to the molecule excitation
temperature which is close to the kinetic temperature for such a
low dipole moment molecule.

The last row of Fig. 7 shows the combination of the
13CO (1 − 0) and C18O (1 − 0) lines. It reveals that this combina-
tion brings much information on Atot

V in dense regions, up to al-
most 1 bit. This example shows that combining lines can extend
the space of parameters where these lines are useful to constrain
a given parameter. Similar figures for combinations of other lines
(including [CI] and [CII] lines) are available online8. They can
be used to quantify the value of jointly observing certain lines
for a variety of physical regimes.

5. Line selection on the Horsehead Nebula

In this section, we apply the line selection method introduced in
Sect. 2.7 to determine the best (combination of) lines to constrain
Atot

V or G0. For simplicity, we restrict ourselves to the space of pa-
rameters present in the Horsehead Nebula (see Table 3), mostly

8https://doi.org/10.5281/zenodo.13805976
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Fig. 7: Mutual information maps between Atot
V and CO isotopologues lines. The first and second columns show the maps for indi-

vidual lines while the third and fourth columns show the pixel-wise maximum and the combination maps, respectively. The last
column shows the difference between the last two maps and corresponds to the amount of information gained by combining lines
instead of considering only the most informative individual line.

observed with EMIR at the IRAM 30m telescope. We first ana-
lyze which lines are the most sensitive to Atot

V in the case where
the S/N is set by the integration time per pixel achieved in the
ORION-B Large Program. Hereafter, we refer to this framework
as the “reference use case.” Secondly, we consider how the line
ranking changes when integrating ten times longer. We then as-
sess the importance of additional causes of uncertainty such as
the inclination of the source on the line of sight or the beam di-
lution when trying to infer G0. Finally, we quantify the gain of
analyzing two lines with respect to just analyzing their ratio. To
make these studies, we generate three sets of simulated observa-
tion (θn, yn)N

n=1 with N = 104, as is described in Sect. 2.7. Table 4
lists the detailed characteristics of the considered use cases.

The results are discussed for all the values of Atot
V present

in the Horsehead (3 ≤ Atot
V ≤ 24), and for three physical sub-

regime, namely translucent clouds with 3 ≤ Atot
V ≤ 6, filamentary

gas with 6 ≤ Atot
V ≤ 12, and dense cores with 12 ≤ Atot

V ≤ 24. In
contrast with the results presented in the previous section, the
values of mutual information cannot be easily compared from
one physical regime to the other because the distribution of Θ
differs from one regime to the other. However, the values of mu-
tual information can be compared within one regime, for indi-
vidual lines or combination of lines and for Atot

V and G0.

5.1. Best lines to infer Atot
V for the reference use case

Figure 8 shows the mutual information between the visual ex-
tinction Atot

V and the intensity of either one line or a line cou-

ple, ranked by decreasing order of the mutual information. Only
the first 15 most informative lines or couples are displayed for
readability. Red error bars on the mutual information allow one
to assess the significance of the line ranking (see App. C and
App. E.2 for details on their computation).

In the case of the Horsehead Nebula featuring large varia-
tions of Atot

V (3 ≤ Atot
V ≤ 24 mag), the most informative individual

lines are the ground state transitions of 13CO, HCO+ and C18O,
followed by the second transition of C18O and 13CO. The 12CO
lines are individually poorly informative. These results are con-
sistent with the mutual information maps from Fig. 6. The most
informative couples of lines here simply combine the single most
informative individual line – the ground state transition of 13CO
– with another line. In particular, the most informative couple of
lines (ground state transitions of 13CO and HCO+) combines the
two most informative individual lines. However, this combina-
tion only improves the mutual information by about 0.2 bits. In
other words, using only 13CO (1 − 0) to infer Atot

V instead of any
line couple results in a limited loss of information.

Figures 8b, 8c and 8d show the line rankings for the three
sub-regimes of Atot

V . In each of these sub-regimes, the ground
state transition of 13CO is among the top two most informa-
tive individual lines, but it falls behind C18O for the highest
Atot

V as it becomes optically thick. Conversely, the ground state
transition of C18O improves its ranking as Atot

V grows, because
its S/N increases and it remains optically thin. In the translu-
cent regime, one of the most informative couple of lines is(

13CO (1 − 0), 12CO (1 − 0)
)
, even though 12CO (1 − 0) is indi-
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(a) (b)

(c) (d)

Fig. 8: Line selection for Atot
V in an environment similar to the Horsehead pillar, for the reference use case (reference integration

time and no scaling factor, κ, in the observation simulator). The analysis is performed for different regimes of Atot
V : all environments

(3 ≤ Atot
V ≤ 24, panel a), translucent gas (3 ≤ Atot

V ≤ 6, panel b), filamentary gas (6 ≤ Atot
V ≤ 12, panel c), and dense cores

(12 ≤ Atot
V ≤ 24, panel d). For better visualization, for couples of lines, we set the lower limit to the highest mutual information of

individual EMIR lines. The figure thus shows the information gain achieved by combining lines compared to individual lines.

vidually relatively uninformative in this regime. This can be ex-
plained by the fact that, for a single line, the excitation of the
line shows a degeneracy between column density and gas tem-
perature. A highly optically thick line, such as 12CO (1 − 0), pro-
vides information on the gas temperature, and thus helps lifting
this degeneracy (Roueff et al. 2021, 2024).

These results are consistent with Gratier et al. (2021). We
both obtain that for the Horsehead Nebula, the three most in-
formative line to trace the extinction include 13CO (1 − 0) and
HCO+ (1 − 0) for translucent gas. We also both find that they in-
clude the 13CO (1 − 0) and C18O (1 − 0) for filamentary gas.

Article number, page 14 of 27



Lucas Einig et al.: Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds

5.2. Best lines to infer G0 for the reference use case

Figure J.1 shows the mutual information between the incident
UV radiative field intensity G0 and the intensity of individual
or couples lines, sorted by decreasing mutual information. The
mutual information with G0 is always lower than 0.65 bits.

The seven most informative lines are the [CII], [CI] and 12CO
lines. While Atot

V is related to the cloud depth, G0 is a physical
quantity defined at the cloud surface. It is therefore intuitive that
the most informative lines for G0 are those that exist in the outer
layers of the cloud. At the ionization front, the carbon is mostly
in ionized state, and after the photodissociation front converts to
C and then to mostly CO.

When mixing all kinds of gas, the [CII] line is the most in-
formative one. The mutual information of 12CO lines increases
with the regime of Atot

V , and 12CO (1 − 0) becomes the most in-
formative line to infer G0 toward dense cores. In this regime, the
12CO (1 − 0) line is optically thick. The intensity at which it satu-
rates mostly depends on the kinetic temperature (Kaufman et al.
1999), and thus on G0. However, looking at pairs of lines, some
combinations of molecular lines are more informative than any
combination of the [CII] and [CI] lines. This result is encourag-
ing for ISM studies since [CII] and [CI] lines can no longer be
observed with Herschel and SOFIA. In particular, to the best of
our knowledge, there is currently no instrument that can observe
the [CII] line, and this should not change in the coming years.

5.3. Effect of integration time on the best lines to infer Atot
V

We here check the impact of a ten-fold increase in the integra-
tion time (deeper integration use case) on the line ranking. For
concision, only the results for Atot

V are analyzed.
Figure J.2 compares the mutual information between the line

intensities and Atot
V for the reference and the deeper integration

use case. As was expected, the mutual information increases or
saturates with the integration time. Saturation is almost reached
for the 13CO, HCO+, and 12CS lines, when they are considered
alone. In contrast, this increase is larger for combinations of two
lines than for individual lines. Moreover, the mutual information
increase varies as a function of the line or couple of lines.

For individual lines, the S/N improvement mostly benefits
the ground state transition of C18O, HNC, HCN, as well as
HCO+ (2 − 1), with an approximate 0.5 bits increase in mutual
information. These lines all have a median S/N of about 1 in
the reference case, as is shown in Fig. 3. Improving the S/N
thus has a strong impact on their informativity. Conversely, the
ground state transition of 13CO, HCO+, and 12CO, along with
12CS (2 − 1), only have an improvement of about 0.1 bits. These
lines all have a median S/N of at least 10 in the reference case.
Despite these differences, the three overall most informative in-
dividual lines remain the ground state transition of 13CO, HCO+
and C18O. At higher S/Ns, some higher energy transitions, such
as those of HCO+ and 12CS, provide more information than the
lowest one. This justifies the use of the 2 mm and 1 mm atmo-
spheric bands.

For couples of lines, the top three most informative cou-
ples remain identical in all regimes, except in dense cores
where the ranking completely changes. Indeed, combinations in-
volving HCN (1 − 0) or HNC (1 − 0) and HCO+ (1 − 0), or the(
HCN (1 − 0), 12CS (5 − 4)

)
couple, gain more than 0.7 bits of

mutual information and become some of the most informative
couples. This can be explained by the fact that 1) HNC and HCN
become more abundant in dense cores, 2) these lines have large
values of critical densities (higher than 106 cm−3, see Tielens

Fig. 9: Comparison between the amount of information on G0
provided by the five best couples of lines in Fig. J.3 (colored
bars) and their line ratio (hatched bars).

2005, table 2.4), and 3) the significant increase in integration
time enables these lines to become informative. Significantly in-
creasing the integration time, and therefore the S/N, is thus use-
ful to increase the informative potential of lines, even though
they were already detected in the reference case.

5.4. Effect of uncertain geometry on the best lines to infer G0

The geometry in ISM clouds is uncertain. The impact of this
uncertainty is more important for physical parameters defined at
the surface of the cloud, such as G0, than for quantities integrated
along the line of sight, such as the visual extinction. We thus only
consider the effect of the uncertain geometry in inferring G0. We
simply use a scaling factor (see Eq. 17) to take into account the
uncertainty about the geometry, such as beam dilution effect and
cloud surface orientation. As a reminder, log10 κ is assumed to
be uniformly distributed between -0.5 and 0.5.

Figure J.3 compares the mutual information between the line
intensities and G0 for the reference case and in this uncertain
geometry use case. It shows that the best tracers of G0 remain
surface tracers in all Atot

V regimes; that is, the [CII] line or the
combination of the [CII] and [CI] lines. We note that for translu-
cent gas, the combination of the 12CO and 13CO molecular lines
is formally ranked before the [CII] and [CI] lines. However, this
ranking might be due to estimation error, as the error bars are
larger than the difference of estimated mutual information. Over-
all, while nonzero, the mutual information with G0 is low; that
is, a precise estimation of G0 is difficult. It thus is all the more
important to select the best tracers. In addition, couples of lines
bring significantly higher information on G0 than single lines.

5.5. Using line ratios leads to a loss of information

Using line intensity ratios in the analysis of spectral data of in-
terstellar clouds is common in ISM studies to eliminate obser-
vational uncertainties such as the dependency with the cloud ge-
ometry (see, e.g., Cormier et al. 2015; Kaplan et al. 2021). As-
suming that the geometry effects impact the line intensities in
similar ways, this allows observers to get rid of the scaling fac-
tor, κ, from Eq. 17 for a high enough S/N. Besides, as line ratios
reduce the dimensionality from two or more to one, they allow

Article number, page 15 of 27



A&A proofs: manuscript no. main

for simpler visualizations and thus a simpler understanding of
ISM properties (Kaufman et al. 1999). Similarly to line selec-
tion, assessing the relevance of a large set of line ratios to select
the best ones was already done before. For instance, Bron et al.
(2021) uses random forests to select the line ratio that best traces
the ionization fraction. As was mentioned in Sect. 2.1, the line
selection method presented in Sect. 2.7 can be applied with line
ratios. This section illustrates an important specificity of line ra-
tios to have in mind when evaluating their physical relevance.

Figure 9 compares the mutual information between G0 and
either a couple of lines or their line ratios. We perform this com-
parison for the five most informative line couples for filamentary
gas (6 ≤ Atot

V ≤ 12) and with a random scaling factor, κ. In all
cases, the mutual information with the line couple is larger than
with the line ratio. This can be explained theoretically. Com-
puting a line ratio goes from two dimensions or more (the inte-
grated intensities of the two or more lines) to only one (the ratio)
and is thus not a bijective operation. As is stated in Sect. 2.6,
a non-bijective transformation results in a loss of information.
However, this loss of information differs from one line couple to
another. On the figure, two classes of line combinations appear.

For couples of [CI] and [CII] lines, the joint analysis yields
much larger mutual information values than analyzing the asso-
ciated line ratio; that is, using a line intensity ratio instead of the
two lines intensities results in a large loss of information. The
[CII] line being a cooling line emitted from the cloud surface,
its intensity contains a lot of information on G0, which is par-
tially lost when using a ratio. For molecular line combinations,
here combining a low-J 12CO line and another millimeter line,
this loss of information is much smaller, almost negligible. In
this specific example, studying how G0 depends on a line ratio
instead of the original line couple is both simpler and equivalent
in terms of informativity.

More generally, line ratios can be valuable tools to inspect
ISM properties. For a given set of lines, noise characteristics
and physical regime, mutual information can permit observers to
identify lines ratios that are most informative on a physical pa-
rameter or combination of physical parameters. However, work-
ing with line ratios instead of the original set of lines can lead to
a significant loss of information. Therefore, for tasks that seek
to exploit as much information as possible from a costly dataset
such as inference, considering the original set of lines should be
more relevant than line ratios.

6. Conclusion

In this work, we showed how information theory concepts such
as mutual information (Cover & Thomas 2006, sect. 8.6) can be
used to evaluate quantitatively capability of line observations to
constrain physical parameters such the visual extinction Atot

V or
the UV radiative field G0. Such a quantitative criterion opens a
new perspective to visualize and understand the statistical rela-
tionships between physical parameters and tracers. In particular,
mutual information relies on few and nonrestrictive assumptions
on the considered probability distributions. Therefore, conclu-
sions drawn from it only depend on the underlying physics and
the noise properties of the observations. In addition, mutual in-
formation can also be used to determine the best lines to observe
in a future observation campaign given an instrument specifica-
tions, and to recommend a target integration time. To illustrate
the potential of the proposed method, we applied it to lines ob-
servable with the EMIR instrument at the IRAM 30m radio tele-
scope for physical regimes similar to those found in the Horse-
head Nebula. The results for this case are as follows.

– The determination of the optimal combination of lines to es-
timate a physical parameter depends heavily on the achieved
S/N and thus on the integration time for single-dish tele-
scopes. For instance, the HCN and HNC (1 − 0) lines achieve
their full potential as dense cores tracers only for a S/N >∼ 20.

– The line intensity has to vary significantly as a function of
the physical parameters to get a high precision during the
inference. This implies that the capability of a line to in-
fer a physical parameter such as the visual extinction de-
pends on the physical regime. For instance, the best lines
in the Horsehead Nebula – for an integration time similar
to that of the ORION-B Large Program – are 13CO and
HCO+ (1 − 0) for translucent gas (3 ≤ Atot

V ≤ 6, 13CO, HCO+

and C18O (1 − 0) for filamentary gas (6 ≤ Atot
V ≤ 12, and

13CO and C18O (1 − 0) for dense cores (12 ≤ Atot
V ≤ 24).

– The low-J lines of the CO isotopologues are key tracers of
the gas column density for a wide range of the (Atot

V , G0)
space.

– Surface tracers such as the [CII] line, the [CI] lines, or 12CO
lines are the most useful tracers of G0. However, G0 is much
more difficult to estimate than Atot

V .
– The best combination does not always combine the best indi-

vidual lines. Considering the combination of the K ≥ 2 best
individual lines as the best subset of K lines may thus lead to
a suboptimal choice.

The proposed methods are general enough to be applicable to
any ISM model or even observational dataset. The latter appli-
cation will be the subject of the second paper in this set. The
Python software that implements the general method we pro-
posed is available in open access9. The simulator of line obser-
vations based on Meudon PDR code predictions is also avail-
able10. It allows us to simulate observations from the EMIR re-
ceiver at the IRAM 30m radio telescope, but can be adapted to
any other instruments (including those operating in other fre-
quency ranges). In this case, the user would only need to specify
the noise and calibration properties. Finally, the scripts that re-
produce the exact results presented in this paper are available in
another repository11.

To simplify the presentation and interpretations, this work
focused on constraining physical parameters individually. For an
observation campaign, the lines to be observed will be used to
constrain multiple physical parameters – such as visual extinc-
tion Atot

V and the intensity of the UV radiative field G0 at once.
In this case, mutual information should be used to search for the
line combinations that best constrain the combination of these
physical parameters. In particular, this method has the poten-
tial to indicate that combinations of physical parameters may be
constrained by a given set of lines, even though each individual
parameter is not constrained by the same set of lines.

Finally, this work focused line integrated intensities as these
are the quantities predicted by the considered ISM model, the
Meudon PDR code. However, the proposed approach could be
applied with any observable. For instance, radio telescopes yield
full line profiles. Since integrating these line profiles is a non-
bijective transformation, considering the integrated intensity in-
stead of the line profile results in a loss of information. Future
work could quantify this loss exploiting mutual information.

9https://github.com/einigl/infovar
10https://github.com/einigl/iram-30m-emir-obs-info
11https://github.com/einigl/informative-obs-paper
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Appendix A: Details on the two-dimensional
illustrative example

Section 2.2 introduces a joint distribution on (Θ,Y) that follows
a two-dimensional lognormal distribution. Its parameters, µ and
Σ, correspond to the mean vector and covariance matrix in the
logarithmic scale, respectively. They are set to obtain expecta-
tions of 1, a standard deviation such that a 1σ error corresponds
to a factor of 1.3, and a ρ = 0.9 correlation coefficient in linear
scale. One can show that the associated distribution parameters
are

µ = −
1
2

(
(ln 1.3)2

(ln 1.3)2

)
≃

(
−0.0344
−0.0344

)
and (A.1)

Σ =

(ln 1.3)2 ln
[
1 + 0.9

(
e(ln 1.3)2

− 1
)]

ln
[
1 + 0.9

(
e(ln 1.3)2

− 1
)]

(ln 1.3)2

 ≃ (
0.0688 0.0622
0.0622 0.0688

)
.

In this simple case, one can show that Θ |Y ∼ logN(µ, σ2) with
µ = −

1
2
Σ1,1 +

Σ1,2

Σ1,1

(
ln y +

1
2
Σ1,1

)
σ2 = Σ1,1 −

Σ2
1,2

Σ1,1

(A.2)

Appendix B: What is a bit of information?

Figure B.1 illustrates six probability distributions on a fictitious
two-dimensional physical parameter: four uniform distributions
on compact sets and two Gaussian distributions. The two com-
pact sets on the top left have the same area, denoted c. By
construction, the three distributions on the left share the same
differential entropy, namely h (Θ) = log2 c bits. For the two-
dimensional normal distribution,

h (Θ) = log2

[
2πeσ2

]
+

1
2

log2

(
1 − ρ2

)
for Σ =

(
σ2 ρσ2

ρσ2 σ2

)
.

Using σ2 = c/(2πe), the first term in the sum simplifies
to log2 c bits. The correlation coefficient is ρ2 = 0, so that
1
2 log2(1 − ρ2) = 0 bit and h (Θ) = log2 c bits. The three distribu-
tions on the right are transformed versions of the left column.
Each transformation results in a decrease in the entropy of 1 bit.
Indeed, the two compact sets on the top right have a c/2 area
and the entropy of the associated uniform distributions is thus
h (Θ) = log2(c/2) = log2 c − 1 bits. For the two-dimensional
Gaussian, the correlation coefficient is ρ2 = 3/4 in the right col-
umn, leading to 1

2 log2(1 − ρ2) = −1 bit. It should be noted that
the use of the binary base to express values in bits provides a sim-
ple interpretation when comparing entropy values: a difference
of 1 bit of information corresponds to a factor of two of standard
deviation. Therefore, in an estimation procedure, decreasing the
entropy by 1 bit results in improving the precision by a factor of
two.

Appendix C: Estimating the mutual information

Several Monte Carlo estimators ÎN

(
Θ, Y (s)

)
of mutual informa-

tion exist – see Walters-Williams & Li (2009) for a review. In
this section, we compare two such estimators: the nonparametric
“Kraskov estimator” (Kraskov et al. 2004) (used in this work),
and an estimator based on the assumption that the joint PDF of(
Θ,Y (s)

)
is Gaussian.

Fig. B.1: Entropy definition illustration for different example dis-
tributions on θ. The first two rows show the PDF of uniform
distributions on different sets, and the last row of Gaussian dis-
tributions. The distributions in one column have an equal differ-
ential entropy h (Θ) whose value depends on a positive constant
c. Each arrow indicates a gain of 1 bit of information, i.e., a de-
crease in the entropy of 1 bit. In the last row, the variance in both
horizontal and vertical directions is denoted σ2, and the correla-
tion coefficient ρ.

The Kraskov estimator is based on nearest neighbors (NN) –
see Appendix D for more details on this approach. It is notably
used by the SciPy Python package12. It does not make assump-
tions on the shape of the joint distribution on

(
Θ,Y (s)

)
. It can thus

capture both linear and nonlinear relationships between lines Y (s)

and physical parameters Θ. It is asymptotically unbiased; that is,
it converges to the exact mutual information in the large num-
ber of observations limit N → ∞. To reduce the bias that can
occur at small N, we apply the Gaussian reparametrization strat-
egy from Holmes & Nemenman (2019), which bijectively trans-
forms each marginal distribution to a Gaussian. Appendix E.1
provides more details on this bias reduction technique.

Under the assumption that the joint PDF of
(
Θ,Y (s)

)
is Gaus-

sian, the mutual information is simply a function of the canon-
ical correlations (CC, Schreier 2008). Since canonical correla-
tion can be estimated based on second order empirical moment,
our second mutual information estimator is obtained by injecting
the estimated canonical correlation coefficient in the analytical
entropy formula for a Gaussian distribution after application of
the Gaussian reparametrization strategy (Holmes & Nemenman
2019). The “CC estimator” has shorter computation time than
the Kraskov estimator, because it only requires evaluations of
second order moments. However, as imposing the Gaussianity
of marginal is generally not sufficient to match the multivariate

12https://scipy.org/
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Fig. C.1: Comparison of four mutual information estimators ap-
plied on the simple lognormal bivariate distribution presented
in Sect. 2.1. The dashed black line corresponds to the theoreti-
cal value. The 1σ interval is not shown for the simple canonical
correlation-based estimator as it appears to be asymptotically bi-
ased. The Kraskov estimator (in blue) converges to the correct
value for a large number of simulated observations N. The CC
estimator is used with three preprocessing: no preprocessing, log
and Gaussian reparametrization. As the joint distribution is non-
Gaussian, the no-preprocessing case does not converge to the
theoretical value. However, the other two preprocessing trans-
form it to a Gaussian, the associated CC estimators converge to
the theoretical value for large values of N.

Gaussian assumption, the “CC estimator” is only asymptotically
unbiased in the general case. Appendix F provides more details
on this estimator.

For both estimators, the variance evolution with different
sample sizes N allows us to assess their accuracy and to estimate
error bars. To do this, we follow a method introduced in Holmes
& Nemenman (2019), and summarized in Appendix E.2.

Figure C.1 quantitatively shows the behavior of both estima-
tors as a function of the number of N for the bivariate lognormal
case introduced in Sect. 2.2. The Kraskov estimator is biased for
a low number of observations N but is very close to the theo-
retical value for N ≥ 103. The canonical estimator is combined
with three different transformations of the marginal distributions
of Y (s) and Θ: 1) no preprocessing, 2) taking the logarithm of
the random variables, and 3) the Gaussian reparametrization de-
scribed above. In the no preprocessing case, the CC estimator
does not converge to the true value, because the samples are log-
normally distributed instead of being normally distributed as re-
quired by the estimator. For instance, for N = 103, the mean error
on the estimation in the no preprocessing case is about twice its
standard deviation, while it is 3 and 5 times lower than its stan-
dard deviation for the Kraskov estimator, and the CC estimator
with Gaussian reparameterization, respectively.

Astrophysical models produce complex and nonlinear rela-
tionships between lines Y (s) and physical parameters Θ. The pre-
vious discussion shows that the canonical estimator is potentially
useful when the sample size is small. Applying a marginal Gaus-
sian reparametrization is a simple solution to reduce the bias,
even though this transformation does not always yield normal
joint distributions on

(
Θ,Y (s)

)
. Using this strategy, the Kraskov

estimator seems to give adequate results for N ≥ 104, and does
not require any Gaussianity assumption.

In the remainder of this work, we use the Kraskov estima-
tor to evaluate the mutual information. This estimator is evalu-
ated with the NPEET Python package13. This package handles
many-to-many relationships; that is, it permits the evaluation of
the mutual information between combinations of lines and com-
binations of physical parameters. Conversely, as of today, the
more common implementation from SciPy only handles one-to-
one relationships.

Appendix D: Nearest neighbors-based estimators

D.1. Naive estimation of entropy

Calculating entropy involves estimating the variable’s PDF. Tra-
ditionally, this is done using a histogram (Beirlant et al. 1997).
However, this approach creates widely skewed probability den-
sities, leading to biases in the entropy estimator. Moreover, this
approach suffers in high dimensions (Miller 1955), due to the
so-called curse of dimensionality (Kouiroukidis & Evangelidis
2011).

A popular alternative is to estimate the PDF using the nearest
neighbors method (Beirlant et al. 1997). Indeed, intuitively, if
the k-th nearest neighbor of a point is close to it, then the PDF of
the random variable in its neighborhood is high (see Fig. D.1).
The PDF of the variable X in the neighborhood of Xi is then
approximated by the expression

π̂X(xi) =
k/N

Vd

(
ϵ(i)

k

) (D.1)

where N is the total number of samples, ϵ(i)
k the distance from

xi to its k-th nearest neighbor and Vd(r) the volume of a ball of
radius r in Rd. This then allows the entropy to be estimated by
the following Monte Carlo estimator,

ĥ(X) = −
1
N

N∑
i=1

log π̂X(xi). (D.2)

Combining equations 1 and 2, and using the fact that the vol-
ume of a d-ball of radius r is Vd(r) = rd Vd, where Vd is the
volume of the unit d-ball; that is, the d-ball of radius 1, we ob-
tain the following expression of the estimator,

ĥ(X) = log N − log k + log Vd +
d
N

N∑
i=1

log ϵ(i)
k . (D.3)

D.2. Kozachenko-Leonenko estimator of entropy

The previous estimator is prone to high bias, especially when the
number of neighbors k or the number of samples N are small. To
address this issue, Kozachenko & Leonenko (1987) proposed the
following estimator,

hKL(X) = ψ(N) − ψ(k) + log Vd +
d
N

N∑
i=1

log ϵ(i)
k , (D.4)

where ψ is the digamma function. The digamma function be-
haves similarly to the logarithm for high values. On the other
hand, it differs for small values (see Fig. D.2).

The digamma function acts as a correction term and ensures
that this estimator remains asymptotically unbiased, which is
only the case for the naive one if k and N are high. More details
about how the digamma function appears in the Kozachenko-
Leonenko estimator are provided in Kraskov et al. (2004).

13https://github.com/gregversteeg/NPEET
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Fig. D.1: Illustration of the k-NN estimators for k = 3. For each
green point, the distance to its third nearest neighbor, denoted ϵd,
is represented. A low distance implies a locally high density.

Fig. D.2: Graph of the digamma function ψ on R∗+, and compar-
ison with the natural logarithm. The digamma function is equiv-
alent to the latter for x→ ∞.

D.3. Kraskov estimator of mutual information

A naive mutual information estimator could be based directly
on the Kozachenko-Leonenko estimator from the relationship
I (X, Y) = h (X) + h (Y) − h (X,Y). Kraskov et al. (2004) argued
that this solution would be highly biased. Instead, they proposed
the following estimator,

IKSG(X,Y) = ψ(k) − 1/k −
〈
ψ(nx(k)) + ψ(ny(k))

〉
+ ψ(N), (D.5)

where nx(k) is the number of points j such that
∥∥∥x j − xi

∥∥∥ ≤ ϵ(i)
x /2,

ny(k) is the number of points j such that
∥∥∥y j − yi

∥∥∥ ≤ ϵ(i)
y /2 and

⟨·⟩ denotes the average value over all points i. This approach to
calculating mutual information is illustrated in Fig. D.3.

Nearest neighbors entropy estimates, and in a lower extent
Kraskov’s estimate of mutual information, are sensitive to dupli-
cates in the data. In fact, it means that ϵ(i)

k = 0 for at least one
i, which leads to an infinitely negative entropy. This result is not
absurd: it is the theoretical value we would expect to obtain for a
distribution containing one or more diracs. If duplicates are not
handled properly, for example by adding noise or reparameteriz-
ing, they can lead to a significant bias in estimates.

Appendix E: Bias and variance of the estimator

E.1. Bias of the estimator

The bias of an estimator quantifies the systematic error in the
estimation, which is the difference between the true value and

Fig. D.3: Illustration of the k-NN estimator of mutual informa-
tion for k = 3. In the first panel, the mutual information is high
so nx and ny are close to k. In the second panel, the mutual infor-
mation is low so nx and ny are much higher than k.

the average estimated value over many datasets drawn from the
same distribution. Kraskov et al. (2004) identify that non-skewed
distribution, in particular Gaussian distribution, led to a lower
bias and suggests that reparameterizing the marginal distribu-
tions into Gaussians could be a way of controlling the bias.
Holmes & Nemenman (2019) proposed the following formula
to transform any univariate distribution into a Gaussian one

x′i =
√

2 erf−1
(

2ri − 1
N

− 1
)
. (E.1)

where 1 ≤ ri ≤ N is the rank of the sample xi in a sorted array
(regardless of whether it is in ascending or descending order).
This formula consists of two parts. First, the 2ri−1

N transforma-
tion is used to transform any distribution into a uniform distribu-
tion over the [0, 1] segment. Secondly, the Gaussian cumulative
distribution function (CDF) Φ,

Φ(x) =
1
2

[
1 + erf−1

(
x
√

2

)]
, (E.2)

is used to transform the uniform distribution into a reduced-
centered normal distribution. It should be noted that, by chang-
ing the CDF Φ, we could reparametrize the data in any distribu-
tion which has an analytic CDF. We emphasize that even though
this reparametrization transforms all the marginal distributions
to Gaussians, the obtained joint distribution is not a multivariate
normal in general.

It appears that the bias becomes substantial when calculat-
ing the mutual information between several lines and physical
parameters. The intuitive reason is that it then becomes more
difficult to identify the statistical relationships, which can be ar-
bitrarily complex. If the number of observations is small, these
can be missed, resulting in a significant underestimation of the
mutual information.

E.2. Variance of the estimator

The variance of an estimator quantifies the dispersion of estima-
tions for different numbers of samples from the same population.
Knowing this dispersion is important in determining how reli-
able a single estimate is. However, the variance of the nonpara-
metric mutual information estimator does not have a closed-form
formula. Usually, this problem is solved by bootstrapping, which
is a method of resampling with replacement (Johnson 2001).
However, this is not possible here because the estimate is not
linear in the probability distribution (e.g., duplicate data does not
count twice). As was proposed by Holmes & Nemenman (2019),
estimating the variance of the Kraskov estimator can be achieved
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Fig. E.1: Comparison between the estimation of variances for
different numbers of samples for a bivariate normal distribution
with ρ = 0.8. Red markers: variances estimated with several dif-
ferent datasets. Black markers: variances estimated with subsam-
pling of a single dataset. Black line: regression line to predict the
variance for any number of samples. The limit of saturation in-
dicated by a dashed line corresponds to the number of samples
for which the relationship of Eq. E.3 no longer holds.

by considering that the variance is inversely proportional to the
sample size. This is a property shared by many estimators, such
as the mean estimator. In the case of the Kraskov estimator, the
variance can then be expressed as

Var
(
ÎN

)
=

B
N
, (E.3)

where B is a model fitting parameter to the empirical variances
that remains to be estimated and depends on the data distribution.

To estimate the value of B, we calculate the variance for dif-
ferent numbers of samples. To do this, we separate the data into
several subsets of equal size. For example, for a total number of
1 000 samples, it is possible to create 10 subsets of 100 samples,
or 20 subsets of 50 samples. Once the variance is computed for
several numbers of samples, the B value can be estimated by fit-
ting a line curve. More precisely, Holmes & Nemenman (2019)
proposed to estimate B as

B̂ =
N

∑
i

ni−1
ni
σ̂2(Ni)∑

i ni − 1
. (E.4)

This method is illustrated in Fig. E.1. Empirically, the value of
B is usually between 1 and 3.

Appendix F: Canonical correlations-based
estimation of mutual information

Under the assumption that the joint distribution of observations
and parameters (X, θ) is a multivariate normal distribution, the
mutual information between observations and parameters can be
expressed as follows

ICC = −
1
2

∑
i

log
(
1 − λ2

i

)
(F.1)

where the {λi}i are called the canonical correlations of (X, θ).
They satisfy the constraint ∀i, 0 ≤ λi ≤ 1 and are the singu-
lar values of the normalized correlation matrix MXθ defined as

MXθ = C−
1
2

XX CXθ C−
1
2

θθ (F.2)

where C denotes the empirical correlation matrix and C−
1
2 the in-

verse of the matrix square root. These coefficients are the basis of
the method known as “canonical correlation analysis.” Notably,
the coefficient λ1 can be interpreted as the highest possible corre-
lation coefficient between any linear combination of observables
and any linear combination of lines.

Compared with the Kraskov estimator, the estimator
in Eq. F.1 is much faster to compute. However, when the joint
distribution is different from a multivariate normal distribution,
the mutual information estimate may be asymptotically biased.
A critical case occurs when the data are decorrelated yet statisti-
cally dependent (e.g., θ = X2 + ϵ). The correlation coefficient is
then zero, resulting in a zero CC estimate of the mutual informa-
tion while in the limit ϵ → 0 the analytical mutual information
tends toward infinity.

Appendix G: Considered lines

In this section, we describe in more detail the 36 lines retained in
Sect. 3.3. They are used for mutual information maps (Sect. 4.2)
and line selection (Sect. 5). Table G.1 gathers the additive and
multiplicative noise levels for each of the 33 millimeter lines,
and provides the fraction of the full parameter space for which
the S/N is greater than 3. The millimeter lines selected are those
for which this fraction is greater than 1%. Table G.2 gathers the
same information for the three [CI] and [CII] lines.

Figure G.1 displays the considered lines in each of the four
frequency bands of the EMIR receiver, namely the 3 mm, 2 mm,
1 mm and 0.9 mm bands. It also shows the additive noise for the
reference integration time.
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Table G.1: Description of retained EMIR lines

Species Transition
Frac. > 3σa Cal. err. Integ. noise σa

(%) (%) (erg cm−2 s−1 sr−1)

12CO

J = 1 − 0 90.6 5.0 1.22 × 10−9

J = 2 − 1 92.8 10.0 6.57 × 10−9

J = 3 − 2 91.5 10.0 6.92 × 10−8

13CO

J = 1 − 0 81.4 5.0 5.27 × 10−10

J = 2 − 1 84.5 10.0 5.59 × 10−9

J = 3 − 2 57.0 10.0 1.42 × 10−7

C18O

J = 1 − 0 58.3 5.0 5.12 × 10−10

J = 2 − 1 61.7 10.0 5.53 × 10−9

J = 3 − 2 3.3 10.0 2.69 × 10−7

HCO+

J = 1 − 0 61.9 5.0 2.52 × 10−10

J = 2 − 1 42.6 7.5 1.36 × 10−8

J = 3 − 2 45.8 10.0 1.20 × 10−8

J = 4 − 3 15.6 10.0 1.12 × 10−7

12CS

J = 2 − 1 70.8 5.0 3.25 × 10−10

J = 3 − 2 67.6 7.5 1.17 × 10−9

J = 5 − 4 53.4 10.0 8.22 × 10−9

J = 6 − 5 37.8 10.0 2.14 × 10−8

J = 7 − 6 22.3 10.0 6.71 × 10−8

HCN

J = 1 − 0 46.5 5.0 2.49 × 10−10

J = 2 − 1 10.6 7.5 8.28 × 10−9

J = 3 − 2 26.3 10.0 1.15 × 10−8

HNC
J = 1 − 0 39.8 5.0 2.62 × 10−10

J = 3 − 2 18.0 10.0 1.27 × 10−8

12CN

n = 1 − 0, J = 1
2 −

1
2 10.1 5.0 7.11 × 10−10

n = 1 − 0, J = 3
2 −

1
2 17.5 5.0 7.51 × 10−10

n = 2 − 1, J = 3
2 −

1
2 8.6 10.0 6.17 × 10−9

n = 2 − 1, J = 5
2 −

3
2 15.3 10.0 6.18 × 10−9

n = 3 − 2, J = 5
2 −

3
2 2.6 10.0 6.31 × 10−8

n = 3 − 2, J = 7
2 −

5
2 6.3 10.0 6.31 × 10−8

C2H

n = 2 − 1, J = 5
2 −

3
2 1.0 7.5 4.33 × 10−9

n = 3 − 2, J = 5
2 −

3
2 6.3 10.0 1.08 × 10−8

n = 3 − 2, J = 7
2 −

5
2 9.6 10.0 1.08 × 10−8

n = 4 − 3, J = 9
2 −

7
2 4.0 10.0 7.69 × 10−8

Table G.2: Description of FIR lines

Species λ Frac. > 3σa Cal. err. Integ. noise σa

(µm) (%) (%) (erg cm−2 s−1 sr−1)

[CI]
158 77.2 83.0 1.93 × 10−7

609 66.3 73.8 8.59 × 10−7

[CII] 370 50.2 5.0 2.20 × 10−5

Fig. G.1: 33 selected molecular lines by EMIR band.
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Appendix H: Mutual information maps between
lines and incident UV field

This section contains a figure, namely Fig. H.1, that is analyzed
in the main text in Sect. 4.2.2. It is similar to Fig. 6, analyzed in
Sect. 4.2.1. It shows that, for a given parameter subspace, the in-
formative lines are different from those for Atot

V . Some lines such
as the [CII] and 12CO lines are informative in a large fraction of
the parameter space, while the 13CO and C18O lines are almost
never useful. Overall, the mutual information values are much
smaller than those for Atot

V , which means that G0 is more difficult
to constrain based on these line intensities.

Fig. H.1: Maps of mutual information of individual lines with the UV radiative field in function of the actual visual extinction Atot
V

and intensity of the UV radiative field G0. The results are computed for the pressure following a loguniform distribution between
105 and 5 × 106 K cm−3. The red rectangle on the first panel shows the dimensions of the sliding window, while the white rectangle
delimits the parameter space characterizing the Horsehead Nebula.
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Appendix I: Predicted log intensities and
associated gradients

This section contains a figure analyzed in the main text in
Sect. 4.2.3. Figure I.1 shows the integrated intensities fℓ(θ) as a
function of Atot

V and G0. It explains the mutual information maps
on Atot

V in Fig. 6 and on G0 in Fig. H.1. The predicted intensities
are computed for Pth = 105 K cm−3, while the mutual informa-
tion maps are computed for a pressure following a loguniform
distribution on the [105, 5 × 106] K cm−3 interval. However, they
capture the main physical phenomena that drive mutual informa-
tion. In a nutshell, this figure shows that to be informative for a
physical parameter, a line needs both a good S/N and a large
gradient with respect to the physical variable of interest. As the
gradient information might not be clearly visible, we provide14

two figures that represent the absolute value of the partial deriva-

14https://doi.org/10.5281/zenodo.13805976

tive of the predicted log integrated intensities with respect to Atot
V

and G0, respectively. In other words:

one displays

∣∣∣∣∣∣∂ log fℓ
∂Atot

V

∣∣∣∣∣∣ while the other displays
∣∣∣∣∣∂ log fℓ
∂G0

∣∣∣∣∣ . (I.1)

When compared with the mutual information maps in Fig. 6
and H.1, they highlight the fact that a high mutual information
requires both a large S/N and a large gradient. This is easy to see
for Atot

V and the first two transitions of 12CO, 13CO and C18O, for
instance. For 12CO, the gradient quickly goes to zero, as the two
lines become optically thick and saturate. To achieve a S/N > 1,
13CO lines require larger values of Atot

V . They eventually also be-
come optically thick and saturate, but for much larger values of
Atot

V than 12CO. Lines of C18O never saturate: their partial deriva-
tive is always greater than 10−2.

Fig. I.1: Predicted integrated intensities fℓ(θ) as a function of Atot
V or G0, with Pth = 105 K cm−3. The white full line represents the

standard deviation of the additive noise, σa,ℓ, from Eq. 15 for the ORION-B observations (Pety et al. 2017). The dashed white line
indicates the standard deviation with a ten times longer integration time (deeper integration use case). The regions with integrated
intensities lower than 10−12 erg cm−2 s−1 sr−1 are shown in white for better visibility of the higher intensities. The white rectangle
on the first panel delimits the parameter space characterizing the Horsehead Nebula.
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Appendix J: Additional line selection results
This section contains three figures described in the main text
which are similar to Fig. 8, analyzed in Sect. 5.1. Each of them
allows for a similar analysis applied either to another physical
parameter (G0 instead of Atot

V ) or to a different observation simu-

lator. Figure J.1 is analyzed in Sect. 5.2. It performs the analysis
on G0 and shows that the most informative lines are different
from those for Atot

V . In particular, the [CI] and [CII] lines are
among the most informative.

(a) (b)

(c) (d)

Fig. J.1: Line selection for G0 in an environment similar to the Horsehead pillar, for the reference use case (reference integration
time and no scaling factor, κ, in the observation simulator). The analysis is performed for different regimes of Atot

V : all environments
(3 ≤ Atot

V ≤ 24, panel a), translucent gas (3 ≤ Atot
V ≤ 6, panel b), filamentary gas (6 ≤ Atot

V ≤ 12, panel c), and dense cores
(12 ≤ Atot

V ≤ 24, panel d). Orange bars correspond to [CI] and [CII] lines.
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(a) (b)

(c) (d)

Fig. J.2: Line selection for Atot
V in an environment similar to the Horsehead pillar, for the deeper integration use case (ten times

longer observing duration and no scaling factor, κ, in the observation simulator). The analysis is performed for different regimes of
Atot

V : all environments (3 ≤ Atot
V ≤ 24, panel a), translucent gas (3 ≤ Atot

V ≤ 6, panel b), filamentary gas (6 ≤ Atot
V ≤ 12, panel c), and

dense cores (12 ≤ Atot
V ≤ 24, panel d). The hatched bars correspond to the results obtained for the reference use case, i.e., with the

reference integration time (see Fig. 8).

Figure J.2 is analyzed in Sect. 5.3. It shows how increasing
the integration time affects the mutual information with Atot

V dif-
ferently for all lines and couples of lines, and changes the rank-
ing. Figure J.3 is analyzed in Sect. 5.4. It shows how includ-
ing additional uncertainty sources in the observation simulator
from Eq. 1 affects the mutual information of the considered lines
with G0, and also changes the ranking. The two latter cases show

that the simulator choice is critical to draw valid conclusions.
In particular, they demonstrate the importance of using a model
as realistic as possible. Additional results, including results for
thermal pressure, Pth, which is not described in this paper, are
available online15.

15https://doi.org/10.5281/zenodo.13805976
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(a) (b)

(c) (d)

Fig. J.3: Line selection for G0 in an environment similar to the Horsehead pillar, for the uncertain geometry use case (reference
integration time and addition of a scaling factor, κ, in the observation simulator). The analysis is performed for different regimes of
Atot

V : all environments (3 ≤ Atot
V ≤ 24, panel a), translucent gas (3 ≤ Atot

V ≤ 6, panel b), filamentary gas (6 ≤ Atot
V ≤ 12, panel c), and

dense cores (12 ≤ Atot
V ≤ 24, panel d). The blue and orange bars correspond to the results obtained for the reference use case, i.e.,

without scaling factor (see Fig. J.1).
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