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* Remote sensing: drone, plane, earth observation satellites.



Remote sensing

* Remote sensing: drone, plane, earth observation satellites.

* Spectral signature.
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* Remote sensing: drone, plane, earth observation satellites
» Spectral signature.

* Development between 1970’s and 2020’s: spatial and temporal resolutions, spectral bands, free.
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Remote sensing: drone, plane, earth observation satellites.

Spectral signature.

Development between 1970’s and 2020’s: spatial and temporal resolutions, spectral bands, free.
Remote areas, areas lacking in-situ measurements, observing temporal dynamics, inter-site comparison.

Monitoring surface changes (deforestation, urbanization, land use/land cover, water surface, etc.), estimating
hydrometeorological parameters (air and water T°C, rainfall, humidity, etc.).
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* Concepts and principles for using remote sensing in health : 1970’s (Cline) // landscape epidemiology (Pavlovsky):
ecological processes associated with the landscape that influence the health of populations.
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Remote sensing and health

Concepts and principles for using remote sensing in health : 1970’s (Cline) // landscape epidemiology (Pavlovsky):
ecological processes associated with the landscape that influence the health of populations.

“many of the factors which relate to the distribution of the zoonoses can be measured remotely”.

NASA 1971-1976: Health application Office (Arp in 1976 on a livestock parasite, Giddings in 1976 on remote
sensing sources to contribute to the tsetse fly map).

Mid-2010’s : diversification of health applications linked to pollution and climate change.
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Nb. articles

The number of satellites and the number of articles found in the ISI Web of Science®
database, whose abstract, title or keywords contain the regular expression “(remote
sensing OR satellite data) AND (human health OR epidemiolog* )” (Hebreteau et al. 2018)



* Information on environmental indicators limiting distribution of pathogens (altitude threshold, T°C), on conditions
favorable to their presence (type of vegetation, humidity), or their development and proliferation (cumulative
rainfall, T°C, SPM, etc.).



Remote sensing and health

Information on environmental indicators limiting distribution of pathogens (altitude threshold, T°C), on conditions
favorable to their presence (type of vegetation, humidity), or their development and proliferation (cumulative
rainfall, T°C, SPM, etc.).
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(a) Dengue cases location on a true color image of Landsat 8 OLI; red dots show the reported dengue patients in hospitals, (b) distribution of Dengue incidence by LULC, and (c)

influence of UHI in dengue distribution by the ranges of LST; higher-temperature region shows the higher density of reported dengue patients, (d) population density in Dhaka
City with the number of reported dengue patients distribution, (e) dengue incidence density prepared by the interpolation methods, and (f) dengue risk map of Dhaka City
prepared using the various environmental components (Kamal et al. 2023).



Remote sensing and health

e At large scale: predict periods favorable to the transmission of diseases linked to the environment using
hydrometeorological indicators, land cover.
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The Normalized Difference Vegetation Index (NDVI) is a satellite measurement of the “greeness” of vegetation; NDVI anomalies reveal how much healthier (greener) vegetation is than
normal. Greener areas are usually wetter, suggesting better habitat for mosquitoes. Favorable conditions for mosquitoes in 2006 led to Rift Valley fever (RVF) outbreaks in eastern Africa.
The region greened again in 2015, but early warnings helped officials prevent the spread of RVF. (NASA Earth Observatory maps by Lauren Dauphin, using NDVI anomaly data from Terra
MODIS.) (Anyamba et al.)


https://modis.gsfc.nasa.gov/about/

Remote sensing and health
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Scientists use data from satellites and ground stations to predict the spread of chikungunya in a new project called CHIKRisk. The model forecasted an elevated risk

of chikungunya for July 2020 in India, Mexico, Indonesia, Malaysia, and Philippines. (NASA Earth Observatory map by Lauren Dauphin using data from Assaf
Anyamba, NASA GSFC.)



Satellite observation and malaria

* Connections between the environmental phenomena observed by satellite-borne sensors and different aspects
of the malaria transmission cycle.

Data from satellite observations
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Pathways through which satellite data provide information about malaria.
Satellite data can be used to predict geographic patterns and changes over
time in climate factors, mosquito habitats, and human land use. These
environmental variables influence malaria transmission through their effects
on mosquitoes, parasites, and humans.

Abbreviations: LST, land surface temperature; LULC, land use and land cover.

Wimberley et al. 2021



Satellite observation and malaria

* Connections between the environmental phenomena observed by satellite-borne sensors and different aspects
of the malaria transmission cycle.

Data from satellite observations
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Satellite observation and malaria
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Visualizations from the REACH map window showing examples of remote sensing data with
woreda boundaries: (a) precipitation, (b) NDWI6, (c) NDVI, and (d) daytime LST (environmental
data shown for 18 March 2021).

Wimberley et al. 2022



Satellite observation and malaria
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Example timeseries charts from an EPIDEMIA forecast report for 2019 week 42. The
top two series show the observed malaria incidence (solid lines) up to week 42 and
forecasted incidence (vertical bars) through week 2 2020 (12 weeks ahead) along
with expected malaria incidence (dashed lines) with alerts for early detection and
early warning of outbreaks (triangles). The bottom three timeseries show the
Wim berley et al. 2022 observed environmental variables from REACH (solid lines) with historical
interauartile ranaes (arav envelopes) and future extrapolations (circles).

Example maps showing (a) P. falciparum malaria incidence, climate anomalies for (b) rainfall, (c)
NDWI6, and (d) daytime LST for a four-week time period of week 39 through 42 2019. Incidence is
reported per 1000 population, and anomalies are defined as the departure of the observed values
from historical climate averages from 2002 to present.



Satellite observation and cholera

* Colwell et al. (1996): propose remote sensing observations for mapping V. cholerae in relation to environmental
conditions.

» Satellite-derived variables (T°C, salinity, sea surface height, chlorophyll concentration, and phytoplankton) to
understand the ecology of bacterial pathogens and assess health risk (Anas et al. 2021, Racault et al. 2019).
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Satellite observation and cholera

* Jutla et al. tested their cholera prediction modeling system, using satellite data (heavy rains and hot T°C).

* The team did not share its prediction because it had concerns about the accuracy of its model in the absence of

reliable health data.

e Jutla et al. collaborated with UNICEF and the UK Depart. for International Development to share weekly reports
on potential outbreaks in Yemen: to distribute hygiene and cholera treatment kits.

Yemen Cholera Forecast Risk (August 10 - September 6, 2020)
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NASA Earth Observatory map by Lauren Dauphin using
data from A. Jutla and M. Usmani, University of Florida.
The environmental data monitored include precipitation,
air temperature (MERRA-2 reanalysis product), and
population data.
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Diarrheal mortality rate (deaths per 100 000) in 2019 (GBD)

» 1.53 M deaths/year, 593 213 in Sub-Saharan Africa (GBp,
2019).
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1.53 M deaths/year, 593 213 in Sub-Saharan Africa (GBD,
2019).

High pollution of surface waters by pathogens.

Widespread use of untreated surface water for
domestic, washing, gardening and recreational uses.

Deficient hygiene and lack of nearby sanitation and
health infrastructures (Jmp, 2019).

Few studies in tropical environments:

= E. coli is considered to be the best FIB in temperate
areas => in muddy tropical surface water?
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Characterization of the E. coli environment in surface waters in West Africa
Context, Challenges and objectives

1.53 M deaths/year, 593 213 in Sub-Saharan Africa (GBD,
2019).

High pollution of surface waters by pathogens.

Widespread use of untreated surface water for
domestic, washing, gardening and recreational uses.

Deficient hygiene and lack of nearby sanitation and
health infrastructures (Jmp, 2019).

Few studies in tropical environments:

= FE. coli is considered to be the best FIB in temperate
areas => in muddy tropical surface water?

= Link between E. coli-FIB / environmental determinants /
diarrheal diseases ? Study to what extent the
environment plays a role in the transmission of
diarrheal diseases?

Number of Studies Number of studies on the relationships
~Jo between T°C, heavy rainfall, flood, droughts
- " and enteric pathogens (Levy et al. 2016)
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Characterization of the E. coli environment in surface waters in West Africa
Context, Challenges and objectives

—

» Tele-epidemiology: powerful tool to study climate- :&
environment-health relationship and to both
understand and predict the spatio-temporal
distribution of pathogens.
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Characterization of the E. coli environment in surface waters in West Africa
Context, Challenges and objectives

» Tele-epidemiology: powerful tool to study climate-
environment-health relationship and to both

understand and predict the spatio-temporal
distribution of pathogens.

All variables: R*= 0.66
A NIR band, SPM, rainfall: R*= 0.54
. * NIR band, rainfall: R*= 0.48

E. coli (log)
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Observed E. coli (black point) and predicted E. coli (green line for all
variables, orange line for NIR band, SPM and Rainfall variables, blue line for Robert et al.
satellite variables
2021
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» Tele-epidemiology: powerful tool to study climate-
environment-health relationship and to both
understand and predict the spatio-temporal
distribution of pathogens.

All variables: R%= 0.82

NIR band, SPM, E. coli, rainfall:

R?=0.80

NIR band, rainfall, NDVI: R2=
.76

All variables: R*= 0.66
NIR band, SPM, rainfall: R*= 0.54 -
NIR band, rainfall: R*= 0.48
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» Tele-epidemiology: powerful tool to study climate- &\
environment-health relationship and to both
understand and predict the spatio-temporal
distribution of pathogens.

All variables: R?= 0.82

NIR band, SPM, E. coli, rainfall:

R?=0.80

NIR band, rainfall, NDVI: R2=
.76

All variables: R%= 0.66
NIR band, SPM, rainfall: R*= 0.54 -
NIR band, rainfall: R*= 0.48
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‘ Tele-epideMiology of diArrheal Diseases in Muddy troplcal surface WAters in WesT Africa:
MAMIWATA project (2022-2026)



Characterization of the E. coli environment in surface waters in West Africa
Context, Challenges and objectives

| o % 4
» Tele-epidemiology: powerful tool to study climate- n'\\ . g

environment-health relationship and to both
understand and predict the spatio-temporal
distribution of pathogens.

» Global changes: increasing of diarrheal diseases
during the 21st century (Kolstad and Johansson, 2011)

= (Climate change is expected to impact water resources
both in quantity and quality

= Land uses changes and potential increase in SPM and
pathogens (survival, dissemination and in soils and
waters) (Collins et al. 2013 Rochelle-Newall et al. 2017,
Cecchi et al. 2020)

= Major changes in terms of demographic growths
especially in rural areas (Mecandalli & Losch, 2018)
and geopolitical insecurity.

‘ Tele-epideMiology of diArrheal Diseases in Muddy troplcal surface WAters in WesT Africa:
MAMIWATA project (2022-2026)



Characterization of the E. coli environment in surface waters in West Africa
Study area

/ In-situ \

* In-situ measurements : Daily (since 2020) or weekly (2 months during rainy
season), 5 days (beginning an end of the rainy season), 10 days (dry season)
= E. coli (microplate) since 2018 (BF), since 2022 (Niger)
= SPM (filtration method), since 2018 (BF), since 2022 (Niger)
= POC, DOC since 2022
\' T°C, pH, conductivity, 02 dissolved since 2020 (BF), since 2022 (Niger)

Remote sensing \

« Rainfall: GPM IMERGHHVO06 (Giovanni)
* NDVI: Sentinel-2 (Theia)

Nb of water pixels/flooded surface: Sentinel-2 (Theia)

Water level Jason 3 (Dahiti)

Solar irradiance, relative humidity and soil moisture, wind, runoff, pressure, air \ J
temperature: GLDAS MR 4
’ e = -
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MES/100 (mg/l), NDVI*100, Conductivité/10, Precip/2, 02, T°C eau, pH, COD, COP (mg/l)

Characterlzatlon of the E. coli environment in surface waters in West Africa
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Characterization of the E. coli environment in surface waters in West Africa
Kapore (one-to-one regressions)

Environmental variables Correlation
(Spearman rank’s)

SPM 0,8%**
02 -0,45***
Conductivity -0,59%**
pH -0,22*
POC 0,61***
NDVI 0,47**
NIR 0,61%**
NIR/Red 0,65***
NIR/Blue 0,72***
Rainfall 0,46***
Rainfall aggregated over a 7-day moving time window  0,58***
Soil moisture db 0,52%**
UV averaged over a 7-day moving time window -Q,3***
Runoff db 0,46%**
Humidity db 0,50***
%% corresponds to p-value < 0.0001, ** corresponds to p-value < 0.001

and * corresponds to p-value < 0.05



The two first components explains 70% of the variability

axis 2
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Satellite data can provide an important input to monitoring the environment and reproduce the dynamics of
pathogens and/or diseases, or even predict.

Such a tele-epidemiological approach is particular interest in regions where in situ measurements are scarce and
where the impacts of global and local changes are the most important.

Importance of prediction for prevention and also anticipation in the context of climate change.

Importance of in situ data: environmental, pathogen, epidemiological.
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Thank you for your attention




