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Abstract

This paper presents a homography-based approach for tracking multi-
ple planar templates with central catadioptric cameras (which include per-
spective cameras). We extend the standard notion of homography to this
wider range of devices through the unified projection model on the sphere.
To enforce the same movement of the camera for the different planes, we
parametrise the homography by the Lie algebra of the specialeuclidean group
SE(3) and estimate the normal and depth for each plane. With this model, we
use a minimisation technique to obtain a close to second-order convergence
rate with a complexity similar to a first-order approach. Theproposed method
takes into account the non-uniform resolution of the sensorand proved ro-
bust to poor initial values for the plane normals. To assess the precision of
the approach, the developed algorithm was tested on the estimation of the
displacement of a mobile robot in a real application. We compare the results
when the planes are tracked independently to the constrained case. We show
that the proposed minimisation approach leads to better results in terms of
speed and precision than current tracking algorithms.

1 Introduction

The combination of a convex mirror with a camera can enhance the field of view and
improve tasks such as motion estimation, autonomous navigation and localisation. How-
ever to apply the results obtained in the field of projective geometry, a single viewpoint is
needed. In [2], Baker and Nayar derive all the combinations of a single mirror and a cam-
era that have this desired property. Geyer [10] and Barreto [4] have developed a unified
projection model for these devices using a sphere (as opposed to a plane) as a projection
surface. Under certain conditions, this model can be used for fish-eye cameras [22].

The focus of research in omnidirectional cameras is currently egomotion estimation
[21, 11] and visual servoing [15, 12]. Visual tracking, which is a fundamental step for
various computer vision applications, has seen very few articles for catadioptric systems,
[15, 19] being exceptions. In [19], the authors propose an approach for tracking single
planes by parameterising the homographies withSL(3).

The apparent difficulty of tracking with these devices comesfrom the non-linear pro-
jection model resulting in changes of shape in the image thatmakes the direct use of



methods such as KLT [17] nearly impossible. Parametric models [13, 20, 1] such as the
homography-based approach presented in this article are well adapted to this problem.
Previous related work using homography-based tracking forperspective cameras include
[5] and [6] which extend the work proposed by Hager [13]. Homographies have also been
used for visual servoing with central catadioptric cameras[12] and share with this article
the notion of homographies for points belonging to the sphere of the unified projection
model. The single viewpoint property means it would be possible to track in an unwarped
perspective view. This is however undesirable for the following reasons : 1) it introduces
a discontinuity in the Jacobian (at least two planes are needed to represent the 360o field
of view), 2) the non-uniform resolution is not taken into account and 3) the approach is
inefficient (in terms of speed and memory usage).

The motivation for imposing the same camera euclidean motion for each tracked tem-
plate is to improve the motion estimation and simultaneously the tracking. [7] imposes
this constraint but assumes that the plane equations have been precomputed. Molton and
Davison [9] estimate the normals of planes to improve the tracking of planar templates
but estimate the motion independently (“de-centralised” approach). In [16], the authors
linearise the equations to apply a Kalman filter. In this article, we propose to estimate
the normals and depths on-line and impose the euclidean constraints directly during the
tracking. We also detail how to adapt the efficient second-order minimisation algorithm
proposed by Malis [18] in order to improve the convergence domain and speed of standard
first-order minimisation algorithms [17, 13, 20, 1]. We show how to take into account the
non-linear resolution and the distortion of the sensor. We also discuss the initialisation of
the plane normals. In the last section, we compare constrained to unconstrained tracking
with the use of the odometry of a mobile robot as ground truth.

2 Lie-group homography parameterisation

2.1 Notations

Let R ∈ SO(3) be the rotation of the camera andt ∈ R
3 its translation.R can be written

as R = exp([r ]×) wherer = uθ (u and θ being the axis and the angle of rotation re-
spectively). The camera displacement between two views canbe represented by a (4×4)
matrix T ∈ SE(3) (the Special Euclidean Group) :

T =

[
R t
0 1

]
(1)

The standard planar homography matrixH is defined up to a scale factor :H(T,n)∼
R+ tn∗⊤d wheren∗d = n∗/d∗ is the ratio between the normal vector to the planen∗ (a unit
vector) and the distanced∗ of the plane to the origin of the reference frame.

2.2 The Lie Algebra ofSE(3) and the exponential map

Let A i , with i ∈ {1,2, ...,6}, be a basis of the Lie Algebrase(3) (i.e. the dimension of the
Lie Algebrase(3) is 6). Any matrixA ∈ se(3) can be written as a linear combination of
the matricesA i :

A(x) =
6

∑
i=1

xiA i (2)



wherex = (x1, x2, ..., x6) is a (6×1) vector andxi is the i-th element of the base field.
Let the (3× 1) vectorsbx = (1,0,0), by = (0,1,0) andbz = (0,0,1) be the natural

orthonormal basis ofR3. Knowing that the dimension of the matricesA i is (4×4), the
generators for the translation (A1, ...,A3) and rotation (A4, ...,A6) are :

A1=

[
0 bx

0 0

]
,A2=

[
0 by

0 0

]
,A3=

[
0 bz

0 0

]
,A4=

[
[bx]× 0

0 0

]
,A5=

[
[by]× 0

0 0

]
,A6=

[
[bz]× 0

0 0

]

(3)
where[bi ]× is the antisymmetric matrix associated to the vectorbi (i.e. [bi ]× ∈ so(3)).

The exponential map links the Lie Algebra to the Lie Group : exp : se(3)→ SE(3)
There exist an open cubev about0 in se(3) and an open neighbourhoodU of the

identity matrix I in SE(3) such that exp :v→U is smooth and one-to-one onto, with a
smooth inverse. The neighbourhoodU of I is very large (i.e. the rotation angle must be
less thanπ). Consequently, a homography matrixH is a function ofT that can be locally
parameterised as :

H(T(x)) = H

(
exp

(
6

∑
i=1

xiA i

))
(4)

3 Generalised homography-based tracking

3.1 Unifıed projection model

For sake of completeness, we present here a slightly modifiedversion of the projection
model of Geyer [10] and Barreto [4] (see Fig.1). The projection of 3D points can be done
in the following steps (the values for the parametersξ andη are detailed Table1) :

1. world points in the mirror frame are projected onto the unit sphere,(X )Fm −→
(X s)Fm = X

‖X ‖ = (Xs,Ys,Zs)

2. the points are then changed to a new reference frame centered in C p = (0,0,ξ ),
(X s)Fm−→(X s)Fp = (Xs,Ys,Zs−ξ )

3. we then project the point onto the normalised plane,m = ( Xs
Zs−ξ , Ys

Zs−ξ ,1) = ℏ(X s)

4. the final projection involves a generalised camera projection matrixK (with γ the
generalised focal length,(u0,v0) the principal point,s the skew andr the aspect
ratio)

p = Km =




γ γs u0

0 γr v0

0 0 1



m = k(m)

The functionℏ is bijective andℏ−1(m) =





−ξ−
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
x

−ξ−
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
y

−ξ−
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
+ξ





We will call lifting the calculation of the pointX s corresponding to a given pointm
(or p according to the context).



Table 1: Unified model parameters

ξ γ
Parabola 1 −2p f

Hyperbola d f√
d2+4p2

−2p f√
d2+4p2

Ellipse d f√
d2+4p2

2p f√
d2+4p2

Planar 0 -f
Perspective 0 f
d : distance between focal points

4p : latus rectum
f : camera focal length

m

πm

p

Xs

~zm
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~zs

~ym

ξ

1

Fm
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Figure 1: Unified image formation
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Figure 2: Homography between
points on the sphere

3.2 Minimisation problem

Let I ∗ be the reference image. We will call reference templatej, a region of sizeq j of
I ∗ corresponding to the projection of a planar regionj of the scene.

A homography is a projective transformation and is thus valid for all central cata-
dioptric devices (this is an exact projective property and not an approximation). This
can be shown by considering two points on a plane related by a planar homographyH :
X = HX

∗. Projecting these points to the unit sphere leads to :ρX s = ρ∗HX
∗
s.

The following scheme, illustrated by figure2, shows the relationship between image
points in two different frames :

p∗ k−1
−→ m ℏ

−1
−→ X

∗
s

↓ H

p k←− m ℏ←− X s

X

‖X ‖←− X

(5)

Let w be the application ofH followed by the normalisation and letΠ = k◦ℏ be the



transformation between the sphere and the image plane :p = Π(X s).
To track the templatej in the current imageI is to find the transformationH(T,n j

d)
that warps the lifting of that region to the lifting of the reference template ofI ∗ :

∀i, j : I

(
Π(w<H(T,n j

d)><X
i j∗
s >)

)
= I

∗(pi j ) (6)

In other words, knowing an approximation̂T of T andn̂ j
d of n j

d, the problem is to find the

incremental transformationT(x) andn j
d(x) that minimises the sum of squared differences

(SSD) over all the pixels and over themplanes (x contains the 6 transformation parameters
and the 3×mparameters for the normals and depths) :

{
F(x) = 1

2 ∑m
j=1 ∑

q j
i=1‖f i j ‖2

f i j = I

(
Π(w<H(T̂T(x), n̂ j

d +n j
d(x))><X

i j∗
s >)

)
−I ∗(pi j )

(7)

The minimal number of parameters in equation (7) is in fact 6+3×m−1 because the
first homography has only 8 degrees of freedom. However the extra degree of freedom
empirically gave better results probably due to the better conditioning of the Jacobian (all
the values for the normals have the same amplitude).

3.3 Obtaining fast convergence

Equation (7) can be solved using a first-order approach [17, 13, 20, 1], however Benhi-
mane and Malis showed in [5] that the cost function can be written as :

F(x) =
1
2

∥∥∥∥f(0)+
J(0)+J(x)

2
x

∥∥∥∥
2

+R(‖x‖3) (8)

which leads to the following second-order local minimiser (with + indicating the pseudo-
inverse) :

x̂ =−
(

J(0)+J(x0)

2

)+

f(0) (9)

This does not however solve the problem asJ(x0) generally depends onH(T,n j
d) (or

equivalently on the unknownx0). We will now show how we can avoid this dependency
and calculate the second-order increment for central catadioptric sensors.

The JacobiansJ(0) and J(x0), that correspond respectively to the current and the
reference Jacobians, can be written as :

J(0) = JI JΠ [JHT JT(0) JHnJn(0)] (10)

J(x0) = JI ∗ JΠ [JH∗T JT∗(x0) JH∗n Jn∗(x0)] (11)

with HT the homography seen as a function of the transformationT andHn the ho-
mography seen as a function of the plane normalnd.

Despite the JacobianJ(x0) generally depending on the unknownx0, thanks to the left-
invariance property of the vector fields onSE(3), the following identity can be proven :

JT∗(x0)x0 = JT(0)x0 (12)



we also have :Jn∗(x0)x0 = Jn(0)x0.
If we assume thatH(T,n) ≈ H(T̂, n̂), in equation (9), we can useJ(0)x0 instead of

J(x0)x0. The updatêx of the second-order minimisation algorithm can then be computed
as follows :

x̂ =−
((

JI +JI ∗

2

)
JΠ [JHT T(0) JHnn(0)]

)+

f(0) (13)

The computational complexity is almost the same as for a first-order algorithm be-
cause the reference JacobianJI ∗ only needs to be calculated once and then added to the
current jacobian (the division by 2 can be taken out of the pseudo-inverse).

It is important to note thatJI ∗ andJI are the Jacobians taken in the images (that can
be approximated with for example a Sobel filter). The non-linear properties of the central
catadioptric sensors are taken into account with the Jacobian of the projection function
JΠ. We thus avoid transforming the image into a perspective view.

We may also note that the matrix is sparse so the algorithm canmake the most of
sparse linear algebra and avoid the full inversion of the Jacobian matrix [14].

In comparison, the inverse compositional [1] update would be (JI ∗ is constant) :

x̂ =−(JI ∗JΠ [JHT T(0) JHnn(0)])+ f(0) (14)

with the pseudo-inverse calculatedonce and for all. The normals and depths are
estimated at each step soJHnn is not constantand this update step is incorrect (this is
explained more in detail in [3]). If we re-calculate the pseudo-inverse, the algorithm be-
comes correct but loses its advantage of low computational cost. The proposed algorithm
is then more adequate : for a low computational overhead (thecomputation ofJI ) it
offers a close to second-order convergence rate and a largerconvergence domain.

4 Experimental results : constrained and unconstrained
tracking and comparison of different minimisation
approaches

For the experiments, we used a central catadioptric camera1 comprised of a S80 parabolic
mirror from RemoteReality with a telecentric lens and perspective camera with an im-
age resolution of 1024×768. The camera was mounted on a mobile robot with precise
odometry that we will consider as ground truth.

Figure3 shows the templates tracked in the experiments. They are numbered in coun-
terclockwise order from 1 to 3 starting top left. To fix the scale factor, we measured the
distance from the camera to the third plane (0.5 m) (the planethat proved the stablest
while tracking). The sizes of the rectangular patches englobing the selected regions from
1 to 3 where respectively 94×69, 106×93 and 102×69.

The sequence is composed of 120 images. The mobile robot covered a distance of
about 2 m. The initial values given for the normals with depths was[1;0;0] (the same
results were obtained for values[0;1;0], [0;0;1], [0;0;1000] ...). These initial values are
far from the “real” values that can be deduced from Fig.11and Fig.12(with d3 = 0.5 m) :

1the camera was calibrated using a open-source toolbox available on
http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html

http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html


Figure 3: Tracked templates

[−0.38;−0.31;0], [−0.4;0.6;0] and[1.2;−1.6;0]. The algorithm proved to be relatively
insensitive to the initial values when an extra degree of freedom was given (as explained
in Section3.2). This can be explained from the normals appearing in the homography as
a product with the translation. A more detailed study would be needed to determine the
region of convergence.

The motion for the planes tracked independently was obtained by applying the me-
dian over the rotation and translation recovered from the homographies, we will call this
algorithmSPT.

The algorithm for the constrained tracking was tested with aforward compositional
minimisation (MPT FC) and with the proposed algorithm (MPT ESM). The inverse
compositional was also tested but failed after two iterations (which was to be expected
as the initial values for the normals are far from correct). Applying only one update step
as appears in the Kalman filter [16] also failed after two iterations even with the correct
normals.

Figures4 to 9 compare the odometry (in full lines) to the motion estimation using
the SPT, MPT FC and MPT ESM algorithms (lines with symbols). The number of
iterations needed to converge appears on the figure for theMPT FC andMPT ESM al-
gorithms in a black dotted line with the number of iterationsindicated on the right Y-axis.
Figure10 shows the templates at different stages in the tracking (only for MPT ESM).
The normals estimated on-line are represented in Figure11. The distances estimated for
planes 1 and 2 are detailed in Figure12.

MPT ESM which is a close to second-order approach gave slightly moreprecise re-
sults thanMPT FC (first-order approach) and in less iterations : 7 iterationswere needed
for MPT ESM compared to 13 forMPT FC (median value over the first 60 images). We
will now compareMPT ESM to SPT.

The motion estimation was precise except between iterations 75 and 100 where a re-
flection (that can be seen on the tracked templates in Fig.10) on the poster of template
3 generated errors in the normal estimates but also in the distance estimates. We used a
non-robust minimisation approach which is not able to cope adequately with illumination
errors. However the tracking was able to recover after iteration 110. When the templates
where tracked independently (i.e. the motion and normal estimates were extracted di-
rectly from the homography), the patches did not give a sufficient amount of information
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Figure 4: Estimation of the
robot’s translation (SPT)
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Figure 5: Estimation of
the robot’s translation
(MPT FC)
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Figure 6: Estimation of
the robot’s translation
(MPT ESM)
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Figure 7: Estimation of the
robot’s rotation (SPT)
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Figure 8: Estimation
of the robot’s rotation
(MPT FC)
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Figure 9: Estimation
of the robot’s rotation
(MPT ESM)

Figure 10: Reprojection of the templates for iterations 0,25,50,75,100,120 in the reference
image using the estimated homography (MPT ESM)
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Figure 11: Normals estimated for planes 1 to 3 (MPT ESM)
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Figure 12: Estimation of the plane dis-
tances for planes 1 and 2 (MPT ESM)
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Figure 13: Robot’s motion in the XY-
plane forSPT andMPT ESM

to enable a good estimate of the motion. With the illumination problem arising on the
stablestestimated plane, the motion estimation becomes erratic (Fig. 4 and Fig.7).

The MPT ESM gave a translation estimate with a maximum error of [16,23,3] cm
for [x,y,z] and an absolute mean error of [2.6, 2.0, 1.6] cm, for the rotation the maximum
error was of [1.85, 0.43, 0.64] deg over the [x,y,z] rotationaxis with a mean error of [1.14,
0.22, 0.22] deg. Estimating the distance proved sensitive to small errors, the variance over
the sequence was respectively ofσ = 23.6 cm andσ = 7.33 cm for planes 1 and 2.

Figure 13 shows the motion of the robot in the XY-plane forMPT ESM with the
odometry depicted in full lines and the estimated motion with connected crosses. The
planes are also represented in the image from the estimates.The angle between the corri-
dor walls were quite precisely estimated with 92.9 deg between planes 1 and 2 and 87.3
deg between planes 1 and 3. The results obtained usingSPT depicted using connected
circles in Fig.13did not give a satisfying estimate.

5 Conclusion

We have presented in this article an approach to tracking multiple templates to estimate the
motion of the camera but also the normals and depths of the tracked planes. Through the
unified projection model, we obtain a generic algorithm thatalso applies to the motion
estimation of perspective cameras (and fish-eye lenses under certain conditions). This
algorithm takes into account the non-uniform resolution and distortion of the sensor and
avoids unwarping the images to perspective views. We have shown that linking the motion
improves the quality of the estimates. Further improvements could be made to make the
algorithm robust to illumination changes and partial occlusion [13]. Knowing when to
estimate the normals would also improve the quality and robustness of the tracking.
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