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Abstract

This paper presents a homography-based approach for ricackulti-
ple planar templates with central catadioptric camerasdwnclude per-
spective cameras). We extend the standard notion of homplogr this
wider range of devices through the unified projection modette sphere.
To enforce the same movement of the camera for the differkameg, we
parametrise the homography by the Lie algebra of the spegdidean group
SE(3) and estimate the normal and depth for each plane. With thiteiwe
use a minimisation technique to obtain a close to secondr@uhvergence
rate with a complexity similar to a first-order approach. Pheposed method
takes into account the non-uniform resolution of the seasal proved ro-
bust to poor initial values for the plane normals. To asskes®tecision of
the approach, the developed algorithm was tested on thaagin of the
displacement of a mobile robot in a real application. We caraphe results
when the planes are tracked independently to the constraame. We show
that the proposed minimisation approach leads to betteitsem terms of
speed and precision than current tracking algorithms.

1 Introduction

The combination of a convex mirror with a camera can enhahedield of view and
improve tasks such as motion estimation, autonomous riisigand localisation. How-
ever to apply the results obtained in the field of projectigemetry, a single viewpoint is
needed. Inf], Baker and Nayar derive all the combinations of a singleoniand a cam-
era that have this desired property. Gey&i][and Barreto 4] have developed a unified
projection model for these devices using a sphere (as oddoseplane) as a projection
surface. Under certain conditions, this model can be useiisto-eye cameras’p].

The focus of research in omnidirectional cameras is cugregomotion estimation
[21, 11] and visual servoing15, 12]. Visual tracking, which is a fundamental step for
various computer vision applications, has seen very feiglastfor catadioptric systems,
[15, 19 being exceptions. Inl[9], the authors propose an approach for tracking single
planes by parameterising the homographies ®itli3).

The apparent difficulty of tracking with these devices corfnes the non-linear pro-
jection model resulting in changes of shape in the image rifeltes the direct use of



methods such as KLTL[/] nearly impossible. Parametric modeis3[ 20, 1] such as the
homography-based approach presented in this article ateadepted to this problem.
Previous related work using homography-based trackingéespective cameras include
[5] and [6] which extend the work proposed by HagéFE]. Homographies have also been
used for visual servoing with central catadioptric caméta$and share with this article
the notion of homographies for points belonging to the spluérthe unified projection
model. The single viewpoint property means it would be gaedb track in an unwarped
perspective view. This is however undesirable for the feiieg reasons : 1) it introduces
a discontinuity in the Jacobian (at least two planes areetké&arepresent the 36@ield

of view), 2) the non-uniform resolution is not taken into aant and 3) the approach is
inefficient (in terms of speed and memory usage).

The motivation for imposing the same camera euclidean mdtioeach tracked tem-
plate is to improve the motion estimation and simultaneottst tracking. [] imposes
this constraint but assumes that the plane equations havegsecomputed. Molton and
Davison P] estimate the normals of planes to improve the tracking ahat templates
but estimate the motion independently (“de-centralisqgiiraach). In [6], the authors
linearise the equations to apply a Kalman filter. In thiscéetiwe propose to estimate
the normals and depths on-line and impose the euclideariraorts directly during the
tracking. We also detail how to adapt the efficient secorttominimisation algorithm
proposed by MalisT€] in order to improve the convergence domain and speed oflatdn
first-order minimisation algorithmsi[/, 13, 20, 1]. We show how to take into account the
non-linear resolution and the distortion of the sensor. &e discuss the initialisation of
the plane normals. In the last section, we compare constidmunconstrained tracking
with the use of the odometry of a mobile robot as ground truth.

2 Lie-group homography parameterisation

2.1 Notations

Let R € SO(3) be the rotation of the camera ahd R? its translation.R can be written
asR = exp([r]x) wherer = uf (u and 6 being the axis and the angle of rotation re-
spectively). The camera displacement between two viewdearpresented by a (44)
matrix T € SE(3) (the Special Euclidean Group) :

R t
T[ ) 1] o)
The standard planar homography matrixs defined up to a scale factoH(T,n) ~

R+tn}" wherenj = n*/d* is the ratio between the normal vector to the plan¢a unit
vector) and the distana¥ of the plane to the origin of the reference frame.

2.2 The Lie Algebra of SE(3) and the exponential map

LetA;, withi € {1,2,...,6}, be a basis of the Lie Algebra(3) (i.e. the dimension of the
Lie Algebrase(3) is 6). Any matrixA € se(3) can be written as a linear combination of

the matriced\; :
6

A(X) = -;XiAi (2)



wherex = (x1, X2, ..., Xg) IS a (6x 1) vector and; is the i-th element of the base field.

Let the (3x 1) vectorsby = (1,0,0), by = (0,1,0) andb, = (0,0,1) be the natural
orthonormal basis oR2. Knowing that the dimension of the matricasis (4 x 4), the
generators for the translatioA{, ..., A3) and rotation A4, ..., Ag) are :

A= [8 %X} Ag= [gtg] Age [8 %} A [[bs]x 8] . {[bé]x 8} . {[b(z)]x 8}

®3)
wherel[bj],, is the antisymmetric matrix associated to the vetkofi.e. [bi], € so(3)).
The exponential map links the Lie Algebra to the Lie Groupp ex(3) — SE(3)

There exist an open cubeaboutO in se(3) and an open neighbourhodd of the
identity matrix| in SE(3) such that expv — U is smooth and one-to-one onto, with a
smooth inverse. The neighbourhoddof | is very large (i.e. the rotation angle must be
less thar). Consequently, a homography matkixis a function ofT that can be locally

parameterised as :
6
H(T(x)) =H <exp<zlmAi>> (4)

3 Generalised homography-based tracking

3.1 Unified projection model

For sake of completeness, we present here a slightly modiéesion of the projection
model of Geyer](] and Barreto{] (see Fig.1). The projection of 3D points can be done
in the following steps (the values for the parameteendn are detailed Tablé) :

1. world points in the mirror frame are projected onto thetwphere,(2") z,, —
(%s)ﬂm = ||;§H = (X&YSyZS)

2. the points are then changed to a new reference frame ednte#’, = (0,0,¢),
(%s)ﬁm%(%s)ﬁp = (XSaYSa Zs— E)

3. we then project the point onto the normalised planes (ZSX—_SE, ZSLj, 1) =h(Zs)

4. the final projection involves a generalised camera ptigjipenatrix K (with y the
generalised focal length{up, Vo) the principal point;s the skew and the aspect

ratio)
y ¥vs W
p=Km=] 0 yr vg | m=k(m)
0 0 1
1+H(1-£%) (x*+y?)
X4+y?+1
The function is bijective andi—1(m) = LH-&)0e+y?)
Xe4y+1
1+(1-82) (2 +y?)
X2+y2+1

We will call lifting the calculation of the point?”s corresponding to a given point
(or p according to the context).



Table 1: Unified model parameters

¢ y
Parabola 1 —2pf
daf —2pf
Hyperbola TR | JEiaz
: daf 2pt
Ellipse Jiag | JEag
Planar 0 -f
Perspective 0 f
d : distance between focal pointg
4p : latus rectum
f : camera focal length

Figure 2: Homography between

Figure 1: Unified image formation points on the sphere

3.2 Minimisation problem

Let .#* be the reference image. We will call reference tempjate region of sizey; of
#* corresponding to the projection of a planar regjoof the scene.

A homography is a projective transformation and is thusdvédir all central cata-
dioptric devices (this is an exact projective property aid an approximation). This
can be shown by considering two points on a plane related bgreaphomography :

2 =HZ". Projecting these points to the unit sphere leadsga®’s = p*H.2"%.

The following scheme, illustrated by figug shows the relationship between image

points in two different frames :

k—l h_l

p* -— m— %;
L, H (5)
P md g, P g

Let w be the application ofl followed by the normalisation and |t = ko & be the



transformation between the sphere and the image planel1(%’s). _
To track the templatg in the current image? is to find the transformatiohl (T, ﬁé)
that warps the lifting of that region to the lifting of the ezénce template of * :

Vi, :f(l‘l(w<H(T,ﬁé)><%isi*>)> = 7*(pjj) (6)

In other words, knowing an approximatidnof T andﬁé of ﬁ('j, the problem is to find the
incremental transformatiofi(x) andn;(x) that minimises the sum of squared differences
(SSD) over all the pixels and over theplanes X contains the 6 transformation parameters
and the 3x m parameters for the normals and depths) :

FOO =35 yitalifil® ,

f”:ﬂ(ﬂM<W?ﬂ@ﬁhﬂM@b<%y>Dfﬂﬂm) @

The minimal number of parameters in equati@ghi¢ in fact 6+ 3 x m— 1 because the
first homography has only 8 degrees of freedom. However thra ebegree of freedom
empirically gave better results probably due to the betaddioning of the Jacobian (all
the values for the normals have the same amplitude).

3.3 Obtaining fast convergence

Equation {) can be solved using a first-order approatti, [L3, 20, 1], however Benhi-
mane and Malis showed i]that the cost function can be written as :

1 J0)+I(x) _|°
0 =3 10+ 20520 x| 2 @
which leads to the following second-order local minimisgitly * indicating the pseudo-
inverse) :
+
i:_(“mzw@)fm) ©)

This does not however solve the problemlés,) generally depends dn (T, ﬁé) (or
equivalently on the unknowxy). We will now show how we can avoid this dependency
and calculate the second-order increment for central gat&it sensors.

The Jacobiangd(0) and J(xp), that correspond respectively to the current and the
reference Jacobians, can be written as :

J(0) =37 In [In;IT(0)  JIH,In(0)] (10)

J(X0) = J.7+ In [Ing I+ (X0)  IngIn+ (Xo)] (11)

with Hy the homography seen as a function of the transformafi@mdH,, the ho-
mography seen as a function of the plane nomgal

Despite the Jacobial{xp) generally depending on the unknowg thanks to the left-
invariance property of the vector fields 8fi(3), the following identity can be proven :

J1+(X0)Xo = JIT(0)Xo (12)



we also have Jp- (Xg)Xo = JIn(0)Xo.

If we assume thaitl (T, ) ~ H(T,R), in equation 9), we can use)(0)xo instead of
J(X0)Xo- The updat& of the second-order minimisation algorithm can then be aseb
as follows :

%= ((Jﬂ;’) I Brrr(0 JHnn<0>]>+f<0> (13)

The computational complexity is almost the same as for addéer algorithm be-
cause the reference Jacobibp: only needs to be calculated once and then added to the
current jacobian (the division by 2 can be taken out of theigednverse).

It is important to note that »+ andJ » are the Jacobians taken in the images (that can
be approximated with for example a Sobel filter). The noedinproperties of the central
catadioptric sensors are taken into account with the Jaoaii the projection function
Jn. We thus avoid transforming the image into a perspective.vie

We may also note that the matrix is sparse so the algorithmneale the most of
sparse linear algebra and avoid the full inversion of theBmn matrix [L4].

In comparison, the inverse compositiond) ipdate would beJ »- is constant) :

X=— (30 Prr1(0)  Inn(0)]) " (0) (14)

with the pseudo-inverse calculatetice and for all The normals and depths are
estimated at each step 9@, is not constantand this update step is incorrect (this is
explained more in detail in3]). If we re-calculate the pseudo-inverse, the algorithm be
comes correct but loses its advantage of low computatiarst! @ he proposed algorithm
is then more adequate : for a low computational overhead qtimeputation of] ) it
offers a close to second-order convergence rate and a keogeergence domain.

4 Experimental results : constrained and unconstrained
tracking and comparison of different minimisation
approaches

For the experiments, we used a central catadioptric canteraprised of a S80 parabolic
mirror from RemoteReality with a telecentric lens and pertjye camera with an im-
age resolution of 1024768. The camera was mounted on a mobile robot with precise
odometry that we will consider as ground truth.

Figure3 shows the templates tracked in the experiments. They aréewaud in coun-
terclockwise order from 1 to 3 starting top left. To fix the ksctactor, we measured the
distance from the camera to the third plane (0.5 m) (the pthaeproved the stablest
while tracking). The sizes of the rectangular patches drgtpthe selected regions from
1 to 3 where respectively 9469, 106x 93 and 102« 69.

The sequence is composed of 120 images. The mobile roboterbaedistance of
about 2 m. The initial values given for the normals with deptvas[1;0;0 (the same
results were obtained for valués; 1;0, [0;0;1], [0;0;1000 ...). These initial values are
far from the “real” values that can be deduced from Higjand Fig.12 (with d3 =0.5m) :

the camera was calibrated using a open-source toolbox blaila on
http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html


http://www-sop.inria.fr/icare/personnel/Christopher.Mei/Toolbox.html

Figure 3: Tracked templates

[-0.38;—-0.31;0, [-0.4;0.6;0 and[1.2;—1.6;0. The algorithm proved to be relatively
insensitive to the initial values when an extra degree edmn was given (as explained
in Section3.2). This can be explained from the normals appearing in thedgraphy as
a product with the translation. A more detailed study woudneeded to determine the
region of convergence.

The motion for the planes tracked independently was obdalnyeapplying the me-
dian over the rotation and translation recovered from thmdgraphies, we will call this
algorithmSPT.

The algorithm for the constrained tracking was tested witbravard compositional
minimisation MPT _FC) and with the proposed algorithnMPT _ESM). The inverse
compositional was also tested but failed after two itersignhich was to be expected
as the initial values for the normals are far from correctpplying only one update step
as appears in the Kalman filter(] also failed after two iterations even with the correct
normals.

Figures4 to 9 compare the odometry (in full lines) to the motion estimatigsing
the SPT, MPT_FC and MPT _ESM algorithms (lines with symbols). The number of
iterations needed to converge appears on the figure favitie_FC andMPT _ESM al-
gorithms in a black dotted line with the number of iteratiamdicated on the right Y-axis.
Figure 10 shows the templates at different stages in the tracking/(flmmlMPT _ESM).
The normals estimated on-line are represented in Figiliré he distances estimated for
planes 1 and 2 are detailed in Figur2

MPT _ESM which is a close to second-order approach gave slightly rpageise re-
sults tharMPT _FC (first-order approach) and in less iterations : 7 iterativese needed
for MPT _ESM compared to 13 foMPT _FC (median value over the first 60 images). We
will now compareMPT _ESM to SPT.

The motion estimation was precise except between itemffé&rand 100 where a re-
flection (that can be seen on the tracked templates in Fiyon the poster of template
3 generated errors in the normal estimates but also in thandis estimates. We used a
non-robust minimisation approach which is not able to cagegaately with illumination
errors. However the tracking was able to recover afterii@nal 10. When the templates
where tracked independently (i.e. the motion and normainesés were extracted di-
rectly from the homography), the patches did not give a safittamount of information
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Figure 11: Normals estimated for planes 1 toVBT _ESM)
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Figure 12: Estimation of the plane dis-Figure 13: Robot's motion in the XY-
tances for planes 1 and RIPT _ESM) plane forSPTandMPT _.ESM

to enable a good estimate of the motion. With the illuminatwoblem arising on the
stablestestimated plane, the motion estimation becomes erratic {FRind Fig.7).

The MPT _ESM gave a translation estimate with a maximum error of [16,P83
for [x,y,z] and an absolute mean error of [2.6, 2.0, 1.6] con,the rotation the maximum
error was of [1.85, 0.43, 0.64] deg over the [X,y,z] rotatixis with a mean error of [1.14,
0.22, 0.22] deg. Estimating the distance proved sensitigetall errors, the variance over
the sequence was respectivelyof 23.6 cm ando = 7.33 cm for planes 1 and 2.

Figure 13 shows the motion of the robot in the XY-plane ffPT _ESM with the
odometry depicted in full lines and the estimated motiorhvsibnnected crosses. The
planes are also represented in the image from the estinidiesangle between the corri-
dor walls were quite precisely estimated with 92.9 deg betwglanes 1 and 2 and 87.3
deg between planes 1 and 3. The results obtained @&#igdepicted using connected
circles in Fig.13did not give a satisfying estimate.

5 Conclusion

We have presented in this article an approach to trackingjpleitemplates to estimate the
motion of the camera but also the normals and depths of thkedaplanes. Through the
unified projection model, we obtain a generic algorithm thlab applies to the motion
estimation of perspective cameras (and fish-eye lenses gedain conditions). This
algorithm takes into account the non-uniform resolutiod distortion of the sensor and
avoids unwarping the images to perspective views. We hawersthat linking the motion
improves the quality of the estimates. Further improvemenuld be made to make the
algorithm robust to illumination changes and partial osua [L3]. Knowing when to
estimate the normals would also improve the quality and stimss of the tracking.
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