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Abstract

Kriging is the most widely used spatial interpolation method in geo-
statistics. For many environmental applications, kriging may have to sat-
isfy the stationarity and isotropy hypothesis, and new techniques using
machine learning suffer from a lack of labeled data. In this paper, we pro-
pose to use Deep Image Prior, which is a U-net-like deep neural network
designed for image reconstruction, to perform spatial interpolation and
conditional map generation without any prior learning. This approach al-
lows to overcome the assumptions for kriging, as well as the lack of labeled
data, while proposing uncertainty and probability above a certain thresh-
old. The proposed method is based on a convolutional neural network
that generates a map from random values by minimizing the difference
between the output map and the observed values. From this new method
of spatial interpolation, we generate n maps to have a map of uncertainty
and a map of probability of exceeding the threshold. The conducted ex-
periments demonstrate the relevance of the proposed methods for spatial
interpolation, on both the well-known digital elevation model data and the
more challenging case of pollution mapping. The obtained results with
the three datasets demonstrate the competitive performance compared
with state-of-the-art methods.
Keywords: geostatistics deep learning environmental data kriging soil
pollution Geostatistical conditional simulation
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1 Introduction

Spatial interpolation is an inverse problem that consists in estimating new val-
ues from the spatial description of observed values. Geostatistics was founded
in 1960 by the mathematician and geologist Matheron (1963). He formalized
mathematically the work of Danie G. Krige who, in the 1950’s, demonstrated
that the variability of ore grade can be explained statistically (Krige, 1951).

Ordinary Kriging is the most widely used method in spatial interpolation
for environmental data (Li et al., 2022b; Cui et al., 2016; Shad et al., 2009).
However, kriging is a linear unbiased estimator often associated with Gaussian
processes. This technique provides optimal results under assumptions of sta-
tionarity and isotropy. Those assumptions do not hold for environmental data,
since they often have a sparse distribution, such as in groundwater contaminant
plumes (Rivest et al., 2012). Even though some solutions have been proposed,
such as log-normal transformation which transforms a skewed distribution into
a normal distribution as demonstrated by the authors in Cressie (2006) and
non-parametric models (Gribov and Krivoruchko, 2012), these methods do not
generalize well in practice. Moreover, in environmental science, the problem is
to estimate new values from the available observations that are spatially (Lu
et al., 2015; Choi et al., 2022) or spatio-temporally distributed (Ahmed et al.,
2018; van Zoest et al., 2020). These observation data are often relatively small
as underlined by Carlon et al. (2001). Furthermore, the environmental data
often have a right-skewed distribution due to the over-representation of values
close to zero, namely pollution is often concentrated spatially.

Spatial interpolation methods can be roughly divided into three categories:
non-geostatistical, geostatistical and hybrid approaches (Li and Heap, 2014).
In the non-geostatistical methods for spatial interpolation, recent advances in-
vestigate generative networks (Goodfellow et al., 2020), allowing to ignore the
stationarity assumption and to be scalable for large-scale dataset (Zhu et al.,
2020; Gao et al., 2020). The deep learning approach also allows for the incorpo-
ration of auxiliary information to improve spatial interpolation, as demonstrated
by Kirkwood et al. (2022). The image-driven approach is widely used in deep
learning for spatial interpolation, as evidenced by studies such as (Suto et al.,
2021; Yang et al., 2022). However, these methods require an important quantity
of data. Another solution proposed by Sekulić et al. (2020) relies on a random
forest to perform spatial interpolation, where the notion of spatial correlation
is added using additional covariates defined by the n-nearest locations. The
geostatistical methods consist in improving the processes of kriging. One of
the most recent methods uses a dense neural network to adjust the variogram,
allowing it to outperform the other variogram models (Li et al., 2022a). But
although this method allows to automate the variographic analysis, this oper-
ation is time-consuming; Moreover, this method fails from freeing itself from
the constraints related to the kriging. Hybrid approaches involve combining
geostatistical and non-geostatistical methods, as demonstrated by Kartal and
Sekertekin (2022). However, these approaches do not generalize well and their
performances highly depend on the existing data.
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For conditional map generation, the two main methods used in environmen-
tal science are Sequential Gaussian simulation (SGS) and sequential indicator
simulation, as demonstrated in studies such as (Zhu et al., 2021; Huang et al.,
2016). There also exist multivariate approaches, as shown by Emery and Silva
(2009) and Madenova and Madani (2021). However, these approaches require
significant computing capacities and require a Gaussian anamorphosis for the
SGS when the data do not have a normal distribution.

In this paper, we propose to use an inpainting approach, which is well-suited
for Deep Learning, to perform spatial interpolation. Both spatial interpolation
and image inpainting are inverse problems that involve estimating new values
based on observed values. Studies, such as (Keaomanee et al., 2020; Sapkal
et al., 2016), have used kriging for image inpainting. The new spatial interpo-
lation method that we propose uses a U-net-like convolutional neural network
(CNN) inspired from recent advances in machine learning for inpainting, Deep
Image Prior (DIP), proposed by Ulyanov et al. (2018), where the U-net ar-
chitecture allows to reconstruct images from the remaining pixels without any
backward learning. This is particularly important in our application domain
because we do not have access to labeled training data. The proposed method
is distribution-free, can bypass the assumption of stationarity, can handle a
large-scale dataset, and is able to make interpolation from very limited num-
bers of samples. Moreover, using this U-net CNN as a main building block, we
also propose a new method of conditional map generation, in the same spirit
of conditional geostatistical simulations (Journel, 1974). To this end, we ex-
ploit the fact that the map output by the U-net architecture varies according to
the randomly initialized convolution weights, as well as the random input. We
therefore demonstrate how to generate the maximum, minimum and average
maps, the map of the probability of exceeding a given threshold, as well as the
pseudo-uncertainty map. These maps can be of great interest in environmental
science.

In order to demonstrate the relevance of the proposed method for spatial
interpolation, as well as the proposed conditional map generation, we provide
comprehensive experiments by comparing our work with state-of-the-art meth-
ods on 3 datasets: The first one is a real data of digital elevation model (DEM)
used in (Li et al., 2022a), the second one is from a hyperspectral analysis of
hydrocarbon polluted soil cores, and the last one is a synthetic dataset gener-
ated from statistics and spatial descriptions of a real case of soil pollution with
hydrocarbons. Our method has competitive results compared to the state-of-
the-art techniques, including the ordinary kriging, log-normal ordinary kriging
and the method with a variogram adjusted by a dense neural network.

The main contributions of this paper can be summarized as follows:

• We propose to perform a spatial interpolation by revisiting the DIP archi-
tecture proposed by Ulyanov et al. (2018) for image inpainting. To this
end, we consider a U-net convolutional architecture that reconstructs the
distribution of the variable of interest from the observed values. As we use
deep learning, this allows us to free ourselves from the kriging constraints
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related to the stationarity assumption and quantity of data. Moreover,
deep learning also offers the possibility of doing calculations on GPU.

• Of great interest in environmental applications, we present a new method
that generates multiple maps conditioned by the observations database.
It allows to generate the maximum map, the minimum map, the aver-
age map, the map of the probability of exceeding a given threshold, and
the pseudo-uncertainty map. The purpose of this approach is similar to
conditional geostatistical simulations, which consists in doing a sequential
simulation based on the probability density function and the variogram
model of the variable of interest to have several maps as shown by Journel
(1974).

• The proposed methods for spatial interpolation and conditional map gen-
eration do not rely on any assumption on the distribution of the data,
making it of great interest for environmental applications. This is not the
case of other methods that rely on some assumptions, such as kriging and
sequential Gaussian simulation where a transformation of non-Gaussian
data is necessary to have optimal results, under the assumption that the
transformed data becomes Gaussian.

• This paper introduces two datasets for soil pollution analysis. The first
dataset is from a hyperspectral analysis of hydrocarbon polluted soil cores.
The second one is a synthetic dataset generated from statistics and spatial
descriptions of a real case of soil pollution with hydrocarbons.

The rest of the paper is organized as follows. Next section presents the main
contributions of this paper, which are divided into two subsections. Subsection
2.1 presents the new spatial interpolation method with the DIP U-net convo-
lutional network as well as the details of this neural network architecture, and
then, we develop in Subsection 2.2 the process steps of the new method of con-
ditional map generation. In Section 3, we present the datasets in Subsection 3.1
before we provide extensive experimental results in Subsection 3.3, we show how
we chose the hyperparameters in Subsection 3.2. Finally, Section 4 concludes
this paper.

2 The proposed framework

The proposed framework is illustrated in Figure 1, divided into two main blocks:
the proposed method for spatial interpolation and the conditional map gener-
ator. The proposed method for spatial interpolation is motivated by recent
advances in image reconstruction techniques based on deep learning. The idea
is to transform the spatial interpolation problem into an image reconstruction
problem and to consider each point on the map as a pixel. The method, as
proposed by Ulyanov et al. (2018), consists in generating a map X̂ of the distri-
bution of the variable of interest with a generative U-net neural network f from
a random input z with similar dimension RH × W with W as width and H as
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Figure 1: Illustration of the two methods proposed in this paper: the Deep
Image Prior Spatial Interpolation (step 1) and the conditional map generation
(step 2 to step 5). The U-net DIP SI architecture has a random input map
z and X̂ as output map with the same spatial resolution RW×H with W as
width and H as height. The U-net function f is learned according to the mask
m ∈ {0, 1}W×H and the samples value map X ∈ RW×H . The DIP SI can
generate several maps, as seen in step 2, and from these maps we can derive, as
described in step 3, the maximum map, minimum map, average map, the map
of the probability of exceeding a given threshold, and the map of the pseudo-
uncertainty (steps 3, 4 and 5).

height, such that X̂ = f(z). During the learning process, the generated map X̂
is adjusted according to the observed values map X with a loss function. The
result of the map generation depends on the random input and the convolution
weights ω, which is randomly initialized. We propose in this paper to generate
multiple maps which allows us to have a map of the mean, minimum, and max-
imum of the interpolated values. The n maps generated in this way give us a
pseudo-uncertainty map by computing the standard deviation of each point in
the n maps and the probability of exceeding the threshold by taking the number
of times the point has exceeded the threshold among the n maps.

In the following, we describe in detail these two methods, namely the DIP
U-net spatial interpolation method and the geostatistical conditional simulation
based on it.

2.1 Spatial interpolation method

As shown in Figure 1, the foundation of the two proposed methods is the func-
tion f in the DIP Spatial Interpolation step. The architecture we used is similar
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Figure 2: Convolutional U-net-like architecture for 2D spatial interpolation

to a U-net architecture.
The U-net is a CNN architecture essentially used for biomedical image seg-

mentation (Ronneberger et al., 2015; El Jurdi et al., 2020). It is considered
as an evolution of fully convolutional networks (Long et al., 2015), because it
allows to work with less training images and provides more precise segmentation
with a reduced computational complexity. The concept of using CNN layers to
capture the spatial configuration of the map has been recently corroborated by
Jo and Pyrcz (2022) to automatically adjust the variogram, showing that the
kernel that moves through the whole map in each convolution layer can learn
the spatial variability from the samples. While a classical U-net has as input
an image and as output the segmentation of this image, we propose a different
formalism in our case, namely for spatial interpolation: We have a random input
z and the estimated map X̂ as output.

As illustrated in Figure 2, the hourglass architecture of the proposed U-net
can be divided into two parts: The contracting path (i.e., encoder part), which
consists in reducing the dimension of the input z until obtaining the so-called
latent vector, and the expansive path (i.e., decoder part), which consists in
making the inverse operations to get the output map X̂. Consequently, the
hourglass architecture is similar to an autoencoder; However, our conducted
operations aim to provide a generative neural network, which is not the case of
autoencoders that learn to regenerate the input at the output.

2.1.1 The contracting path or encoder

The contracting path consists in a reduction of the dimension of the random
input z, while increasing the feature information, to encode all the information
in the output latent vector. To do this, we use a CNN composed of convolution
and pooling layers. Convolution layers, each followed by a rectified linear unit
(ReLU), act as a filter with a kernel that moves through the entire map. The
transfer of information through the kernel between each convolution layer is
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well suited to learn the spatial configuration, as corroborated recently by Jo
and Pyrcz (2022). Pooling consists in shrinking the size of the map. There are
two kinds of pooling: max pooling and average pooling.

2.1.2 The expansive path or decoder

In opposition to the contracting path, the expansive path or decoder increases
the spatial dimension while decreasing the feature information. The expansive
path is also composed of convolution layers but, instead of pooling operations,
we have upsampling layers; Moreover, skip connections allow to concatenate
them with high-resolution features from the concatenating path. Due to the
nonlinearity introduced by the activation functions between the convolution
layers, some information may be lost or distorted as the network progresses.
The residual connection therefore makes it possible to preserve this complex in-
formation between different spatial scales, as recently corroborated by Tran and
Yang (2022), resulting in a more accurate interpolated map with finer details.

Unlike image reconstruction tasks where the upsampling function with the
best results is often the nearest function, this is not the case in our situation.
Indeed, we have chosen to use the bicubic function1, as opposed to bilinear or
nearest interpolation, for many reasons. While the nearest upsampling method
uses only the near values without any calculation and the bilinear method uses
a linear polynomial to estimate the missing values, the bicubic method uses
either Lagrange polynomials, cubic splines, or cubic convolution algorithm to
perform a smoother surface interpolation. Thus, the bicubic interpolation gives
smooth results like the ordinary kriging. This visual proximity of the results of
this interpolation method with kriging is illustrated in Figure 3. Such proximity
with the kriging results is of great interest because we have an extremely limited
number of observed data in the case of most environmental applications. We will
provide in Section 3 a comparative analysis and experimental results between
the different interpolation functions.

The first step of the expansive path is to make a linear transformation of the
encoded representation in order to have the first convolution layer, and then we
proceed to the reverse operations of the contracting path by doing upsampling,
with concatenations using skip connections, until we obtain the output dimen-
sion RH × W . After the last convolution layer, we use the hyperbolic tangent
as an activation function to get the output map of the distribution of interest
values.

2.1.3 Loss function

The loss function is especially important in machine learning, as it is used to
evaluate the ability of the model to learn from the training data. Our case
is a bit specific compared to the classical case, because we have as output (of
our U-net architecture) a 2D map with all the values, while we have only the

1More details on interpolation for downsampling and upsampling with PyTorch are avail-
able here: https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
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Figure 3: Illustration of results from the different interpolation methods (near-
est, bilinear, bicubic) compared to the results of an ordinary kriging (OK). The
sampled points are represented by the red crosses in the original image.

values of the samples to compare. To overcome this issue, we proceed to a
Hadamard product ⊗ with the mask m to have the same elements in output of
our algorithm and the sampled values, with m ∈ {0, 1}W×H . The purpose of
the loss function is to measure the difference between X̂ and X, minimizing this
difference enables to estimate the optimal parameters of the neural network f .
The mean squared error as loss function L is defined as

L(X, X̂) =
∥∥∥(X − X̂)⊗m

∥∥∥2 . (1)

2.2 Generative DIP U-net as alternative to geostatistical
conditional simulation

The method described in Subsection 2.1 allows, like kriging, to perform a spatial
interpolation from observed data. But for most environmental applications,
spatial interpolation is not enough, and it is in this perspective that we propose
to use the DIP U-net-like architecture as a conditional map generator.

The conditional geostatistical simulation was introduced by Journel (1974).
This approach addresses the problem of non-integration of spatial correlations
in simulation techniques. This simulation is conditional because the simulated
values at the data locations are equal to the experimental values. And it is
geostatistical as it considers the spatial correlation function, namely the vari-
ogram, in the simulation process. Sequential Gaussian simulation (SGS) and
sequential indicator simulation are widely used methods for obtaining the spatial
distribution of a variable in environmental science.

As for the geostatistical conditional simulation, our method can also generate
multiple maps based on the observed values. Therefore, it is a generative CNN.
Generative Adversarial Networks (GANs) are the most widely used generative
networks in deep learning. The principle of GANs is to have two antagonis-
tic networks, one to generate the data and one to differentiate the generated
data from the real data; The goal is to generate data close to the real data by
minimizing the distance between the distribution of the observed data and the
generated data. Unfortunately, GANs require a very large amount of data to
get good results, which is not the case in environmental applications where data
is often limited and real training data may not be available. For example, in the

8



context of soil pollution, existing maps are already the result of processing, and
we took the decision not to train our model on pre-interpolated data. Unlike
GANs, the method we propose has only one generator network directly adjusted
by the map of observed values X, allowing us to do the interpolation with a
limited amount of data.

The steps of the proposed conditional map generation method are as follows:

1. The first step is to perform a spatial interpolation as described in Subsec-
tion 2.1

2. The second step consists in repeating the generation (step 1) n times
to obtain n maps. Even if having the random input z to the f U-net
function can add variability in the generation of the maps, this poses a
problem of convergence of the algorithm. Indeed, the change of the input
z at each generation can alter the performance of the CNN. To avoid this
issue, we propose to seed z for each generation from the same input. This
means that only the convolution weights ω are randomly initiated and
vary according to the generations.

3. The n maps generated allow us to have 3 maps of the value of interest:
the maximum map X̂max, where we take the maximum for each map of n
generations, the minimum map X̂min and the average map X̂avg following
the same principle, namely

X̂max(i, j) = max
{
X̂1(i, j), . . . , X̂n(i, j)

}
(2)

X̂min(i, j) = min
{
X̂1(i, j), . . . , X̂n(i, j)

}
(3)

X̂avg(i, j) =
1

n

n∑
k=1

X̂k(i, j) (4)

where X̂k represents each of the n generated maps, and i and j denote the
coordinates of the points that constitute the maps. For the conditional
geostatistical simulation, the mean map corresponds to the kriging inter-
polation map. Therefore, in the following we will use the mean map to
compare with the kriging results.

4. The main advantage of kriging is to provide a prediction with the asso-
ciated uncertainty. For environmental uses, the uncertainty map allows
users to measure the reliability of the prediction and to help in the choice
of the next areas to be sampled. In this paper, we propose a pseudo-
uncertainty in the same spirit as in kriging. To this end, we consider the
standard deviation between each value of the n maps to have the uncer-
tainty map u, namely

u(i, j) =

√√√√ 1

n

n∑
k=1

(
X̂k(i, j)− X̂avg(i, j)

)2

. (5)
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With this formulation, we consider that the variation of X̂ values mainly
concerns the unsampled areas. However, this is not the case when the
data do not have a normal distribution. Indeed, since we use the standard
deviation, the highest values are over-represented in the uncertainty map.

5. In environmental applications, especially for pollution cartography, the
threshold exceeding probability map is especially important. For example,
for soil pollution, this map can help choose the area to be remediated. We
propose to take the number of times the prediction X̂(i, j) exceeds the
authorized threshold among the n maps generation, which gives

p(i, j) = P
[
X̂k(i, j) > thresh

]
for all k ∈ [1, n], (6)

where p is the probability map and P represents the probability that a
point exceeds the threshold.

3 Experiments and results

In this section, we first present the datasets and the fine-tuning of the hyperpa-
rameters, and then compare the proposed methods to other spatial interpolation
methods, including ordinary kriging2 (OK) (Cressie, 1988; Mälicke et al., 2021),
a new kriging method that uses a dense neural network to automatically adjust
the variogram (DNN-OK) (Li et al., 2022a) and log-normal ordinary kriging
(LOK) (Journel, 1980; Yamamoto and Furuie, 2010; Balaban and Dengiz, 2018)
for non-Gaussian data. We made a conditional geostatistical simulation with
1000 maps in order to compare the results with the proposed map generation
method. Thus, this simulation gives us the map of averages, the map of un-
certainty and the map of the probability of exceeding the threshold (denoted
respectively Simu mean, Simu Proba, Simu Uncertainty).

3.1 Dataset and sampling method

We use three datasets to compare the results obtained by our method, as well
as to fine-tune the hyperparameters of the U-net-like f function.

The first dataset is a real dataset of digital elevation model (DEM). This
dataset was used by Li et al. (2022a). This dataset is composed of 4 areas,
as shown in Figure 4 and in Table 1. Since the distributions of most of the
datasets are much close to a normal distribution and they are not skewed, these
datasets are suitable for the ordinary kriging, which is optimal for normal dis-
tributions. We also used this dataset as a test dataset for the analysis of the
hyperparameters.

To show the efficiency of our method on the mapping of a hydrocarbon
pollution, we use a dataset from the hyperspectral imagery conducted by Tellux.
Indeed, Tellux proposes Machine Learning algorithms that match the index

2Ordinary kriging is done with SciKit GStat (https://scikit-gstat.readthedocs.io/)
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Figure 4: Distribution of the 4 DEM data areas

from the hyperspectral imagery, as shown by Achard and Elin (2019) and Kühn
et al. (2004), with the hydrocarbon concentration from chemical analysis in
laboratory. This dataset represents the diffusion of pollution in the soil at the
scale of the borehole. Each pixel of the borehole image corresponds to 4mm by
4mm. This dataset has a skewed distribution like the hydrocarbon pollution
data, which is due to the over-representation of values near zero in the map.
This provides images of hydrocarbon concentrations that constitute the second
dataset.

The third dataset is a synthetic dataset created by replicating the main
pollution variable (Total Petroleum Hydrocarbons in mg.kg−1) from a real hy-
drocarbon polluted site with the Python library GSTools (Müller et al., 2022).
The main pollution variable in mg.kg−1 was created by a conditional simula-
tion over the original dataset in a 100m× 100m grid. First step is to transform
the original variable from the real data into a log normal distribution. Then,
the experimental variogram is created by calculating the average squared dif-
ference between each point separated at distance. The synthetic dataset was
made from a simulation with the covariance model from Oliver and Webster
(2015) and based on the experimental variogram of the log-transformed original
variable (Sill). The covariance model with a semivariance γ of the spatial field
is expressed as

γ(r) = σ2
(
1− corr

(
s
r

l

))
+ n, (7)

where σ2 is the variance, s is the scaling factor (if normalization), r is the range,
l is the main correlation length and n is the nugget. The correlation function
corr(·) depends on s r

l . Ordinary kriging is not optimal for this dataset, unlike
the DEM dataset. Instead, we use LOK, which consists in doing a log-normal
transformation of the variable of interest and then an inverse transformation
after estimating with a corrective factor defined as

Z(x0) = k0 exp(Y (x0)) +
σ2
y

2
, (8)

where σ2
y is the kriging variance and k0 is the correction factor given by the

ratio between the sample mean and the back transformed mean (Journel, 1980;
Yamamoto and Furuie, 2010; Balaban and Dengiz, 2018).
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The prediction quality of kriging or other spatial interpolation methods de-
pends strongly on the distribution of samples. For example, Mälicke et al. (2021)
and Zhang et al. (2021) conducted a review of sampling strategies for kriging to
improve its performance. Knowing this, we propose to use 4 different sampling
strategies {S1, S2, S3, S4} for each dataset, as illustrated in Figure 5. The sam-
pling strategies S1 and S2 are composed of 100 points regularly distributed on
the grid with a grid space of 10, the minimum value of the coordinates of the
points for S1 is equal to (0,0), while for S2 the minimum value is (3, 7). The
sampling strategies S3 and S4 are also composed of 100 points but placed ran-
domly on the map. Table 4 represents the p-value of the Kolmogorov-Smirnov
test from the values for 4 sampling strategies for each dataset. The distribution
is considered normal if the p-value is greater than 0.05.

For metrics to compare the results, we use the mean absolute error (MAE),
defined as

MAE =
1

N

N∑
i=1

∣∣∣X̂i −Xi

∣∣∣ , (9)

and the root mean square error (RMSE), defined as

RMSE =

√√√√ 1

N

N∑
i=1

(
X̂i −Xi

)2

. (10)

Since the second and third datasets have skewed distributions, we also use the
mean absolute percentage error (MAPE), defined as

MAPE =
100%

N

N∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣ . (11)

In these expressions, N is the number of elements in the map, X is the ground
truth map, and X̂ the predicted map. It has the advantage of considering scale
variation of the values to be estimated in the computation of the error, and thus
gives the percentage of error compared to actual data. Therefore, this metric is
widely used for environmental data. It can also be used as an evaluation index
of fitting error for models, as shown by Zeng et al. (2016).

3.2 Hyperparameters

As our architecture is similar to an autoencoder architecture, the size of the
vector at the bottleneck, namely the end of the encoder process, is also an
hyperparameter. The most optimal size considers the learning time and the ef-
ficiency of the model. We evaluated 3 sizes of encoding S ∈ {10, 100, 1000} and
compared the MAE at the end of each map generation. The results show that
S = 10 and S = 1000 have an average MAE quite close (see Figure 6), while
knowing that the more the dimension of encoding is big the more the train-
ing time is important as highlighted in Table 5. For the following, we use the
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Figure 5: The 4 sampling strategies: S1 with {xmin = 0;xmax = 100; ymin =
0; ymax = 100; gridspace = 10}, S2 with {xmin = 3;xmax = 100; ymin =
7; ymax = 100; gridspace = 10} and S3 and S4 are randomly generated.

encoding size S = 10, which is small for an encoding size but the skip connec-
tions between the encoder and decoder part allow to transfer the information
between the layers without going through the encoding vector. However, we
found that with synthetic data that have very skewed distributions even after
log-normal transformation, as shown by the results of the Kolmogorov-Smirnov
test (Table 4), the training of the U-net spatial interpolation does not converge.
This is due to over-compressing the input by the encoding/contracting path. To
overcome this issue, a larger encoding size is used with S = 1000 for data having
complex distributions, namely skewed distributions as for the synthetic dataset.
It is worth noting that the optimal size of the bottleneck of an autoencoder or
U-net architecture is still an open problem.

In the contracting path, we have the choice between two downsampling tech-
niques: average pooling and max pooling. We have proceeded to the same tests
as for the encoder size to compare the two techniques. The results in Figure 7
show that the MAE between the two techniques are close, except for AREA 1
where average pooling gives better results. Therefore, we use average pooling
for the three datasets.

The interpolation method used in the expansive path can also have an influ-
ence on the efficiency of our method. For the image reconstruction application
proposed by Ulyanov et al. (2018), they used the nearest interpolation. In our
case, we propose to use the bicubic interpolation, which gives better results as
regards interpolation, as shows Figure 8.

3.3 Results on DEM data

The DEM data have a Gaussian distribution, which corresponds to what kriging
expects and makes these experiments advantageous for ordinary kriging. The
results in terms of MAE and RMSE, as given in Table 6 and Table 7, show
that our method has competitive results compared to the two kriging methods.
However, the results also show the fact that our model does not outperform other
methods when considering random sampling. This is since kernel re-weighting
only acts locally. As shown in Figure 5, for the random sampling strategies S3
and S4, there are zones where the number of samples is less than for other zones.
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Table 1: Statistics (mean, standard deviation, minimum, first quartile, median,
third quartile and maximum) for each area and by sampling strategy. The unit
of data is the meter

mean std min 25% 50% 75% max

Area1

89.98 20.06 31.00 73.00 90.00 106.00 156.00
S1 90.13 20.61 58.00 69.75 89.50 106.25 133.00
S2 92.06 19.91 51.00 78.00 92.00 105.25 133.00
S3 89.57 17.76 54.00 74.00 91.00 105.00 124.00
S4 90.74 20.62 46.00 76.00 87.00 104.25 156.00

Area2

88.37 33.89 20.00 57.00 96.00 116.00 169.00
S1 82.77 33.24 26.00 48.00 87.50 111.00 143.00
S2 91.44 33.90 22.00 63.75 98.50 119.00 148.00
S3 84.56 34.01 26.00 48.00 93.50 112.00 143.00
S4 88.90 34.65 27.00 56.25 97.50 118.25 153.00

Area3

142.61 26.47 89.00 121.00 148.00 166.00 187.00
S1 143.81 26.49 92.00 121.50 148.00 166.25 184.00
S2 141.95 26.75 92.00 118.00 148.50 165.00 182.00
S3 145.47 25.05 92.00 128.00 151.00 166.25 184.00
S4 141.43 26.24 90.00 119.50 144.00 166.00 182.00

Area4

85.32 18.97 35.00 74.00 88.00 98.00 129.00
S1 84.38 18.93 38.00 69.75 87.00 97.00 120.00
S2 85.52 19.15 36.00 73.50 88.00 98.00 120.00
S3 82.41 20.02 36.00 68.75 84.50 96.00 119.00
S4 85.08 22.01 38.00 67.50 88.50 103.25 120.00

Under stationarity assumption, the variographic analysis of kriging assumes the
fact that for each zone of the map the data have the same distribution, which
allows it to have a better prediction than our method with a random sampling
strategy.

We also note that the proposed method is more faithful to the sampled data.
Figure 9 shows we have better results when the samples are closer to the real
data, as for example in Area 4 where, for all the sampling techniques, the data
remain close and thus the proposed method outperforms the other methods.
Our method is thus more adapted for environmental applications, within the
framework of a pollution mapping for example, because in this case pre-studies
of the zone to be mapped make it possible to identify the most polluted zones.

3.4 Hydrocarbon concentration from hyperspectral im-
ages

The data used in this section is the result of a hydrocarbon pollution analysis of
a borehole with hyperspectral imaging and supervised learning. And as shown
in Table 4 after a log-normal transformation, for the 4 sampling strategies,
the observed data have a normal distribution. We will therefore compare the
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Table 2: Statistics (mean, standard deviation, minimum, first quartile, median,
third quartile and maximum) for data from the hyperspectral image analysis by
sampling strategy. The unit of data is mg.kg−1

mean std min 25% 50% 75% max
Data 1458.84 1666.16 50.00 216.53 835.72 2014.94 7585.36
S1 1577.41 1755.77 50.00 294.93 886.15 2367.42 7373.25
S2 1470.34 1652.01 50.00 232.23 856.41 1818.84 5935.64
S3 1408.93 1600.01 50.00 315.15 818.34 1581.66 6902.00
S4 1183.12 1584.44 50.00 201.29 537.13 1338.42 7253.90

Table 3: Statistics (mean, standard deviation, minimum, first quartile, median,
third quartile and maximum)for synthetic data generated from real hydrocarbon
pollution by sampling strategy. The unit of data is mg.kg−1

mean std min 25% 50% 75% max
Data 5592.16 13578.21 50.00 50.00 139.23 2393.74 89815.74
S1 6369.60 14835.25 50.00 50.00 204.98 3154.07 75177.96
S2 5014.45 11388.47 50.00 50.00 184.55 2254.67 63415.58
S3 5683.34 14290.26 50.00 50.00 201.17 1972.31 81369.32
S4 3558.30 9714.95 50.00 50.00 177.77 736.40 61007.99

proposed method to LOK but also to mean map of geostatistical conditional
simulation. Table 8 shows competitive results with MAE and RMSE, while
the MAPE results show that the proposed method outperforms geostatistical
methods. The resulting map of the proposed method is remarkably close to the
LOK result as shown by Figure 10, even though the proposed method does not
require any prior spatial correlation analysis.

3.5 Synthetic Dataset

In this part, we analyze the relevance of the proposed method with a synthetic
dataset created from real data of an industrial polluted soil with hydrocarbons.

We compared the MAE, RMSE and MAPE of the proposed method with
LOK and the average map of the geostatistical simulation. Table 9 shows com-
petitive results with these two methods. However, as shown in the Table 3,
the data are unequally distributed between 50 mg.kg−1 and 89815.74 mg.kg−1,
which explains the fact that the results differ according to the metrics, the re-
sults of the MAPE diverge from the results of the MAE and the RMSE. Indeed,
the MAE and RMSE represent the average of the error and therefore the errors
on the extremely high values would have much more weight in the results of
these two metrics. On the other hand, the MAPE considers the values to be
estimated to give a percentage error. To illustrate the effect of the extremely
high values on the results of the MAE and RMSE, we have calculated the errors
by concentration level for the sampling strategy S2, where the proposed method
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Table 4: The P-values of the Kolmogorov-Smirnov test for all datasets by sam-
pling strategies. The distribution is considered not normal if the p-value is
smaller than 0.05 (values in bold).

S1 S2 S3 S4
Area1 0.267 0.853 0.350 0.482
Area2 0.070 0.130 0.049 0.040
Area3 0.116 0.058 0.020 0.289
Area4 0.304 0.407 0.501 0.121
Hyperspectral image 0.001 0.001 0.000 0.000
Log hyperspectral image 0.135 0.091 0.287 0.182
Synthetic data 0.000 0.000 0.000 0.000
Log synthetic data 0.000 0.000 0.000 0.000

Table 5: Execution time and trainable parameters depending on the encoding
size

Encoding Size 10 100 1000
Trainable Params 6× 106 24× 106 201× 106

100 maps time generation 4min 16s 6min 30s 23min 5s

has a MAE and RMSE higher than the LOK and Simu mean. The results show
that the DIP U-net method gives satisfactory results whatever the metrics for
the values classes lower than 10000mg.kg−1.

As given in Section 2.2, we also propose the map of the probability of exceed-
ing a threshold. In the state-of-the-art, this map is generated by a conditional
simulation based on the results of the variogram analysis, also called geosta-
tistical simulation. For our case, we use the generated n maps as described in
Subsection 2.2 to have the probability of exceeding the threshold. We can see
from Figure 11 that the sampling strategy has a strong influence on the results
of the probability exceeding threshold map. Moreover, since we have a limited
number of samples, we cannot capture all polluted areas. We also note from
Figure 11 that the proposed method of the probability of exceeding a threshold
is much more straightforward than the geostatistical method with probability
remarkably close to 1. This is confirmed by the confusion matrices given in
Figure 12 where, for the two methods with a minimum probability of exceeding
1000 mg.kg−1 at 0.9, 0.75 and 0.5; The closer this minimum probability is to
1, the more accurate the result of the proposed method is to the actual data.
In any case, both methods give an accuracy close to 95%, which is sufficient to
perform a fairly accurate soil remediation.

For most environmental applications, the uncertainty map is particularly
important, it allows to evaluate the estimated values but also to choose the
coordinates of new locations to estimate in order to reduce the uncertainty. We
have compared the method proposed by the uncertainty map from a geostatis-
tical simulation with 1000 maps. Knowing that the interest of the uncertainty
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Figure 6: The MAE (vertical axis) variations over 100 maps (horizontal axis)
of the results obtained by the proposed method according to the encoding size
S ∈ {10, 100, 1000} for the 4 DEM areas. The horizontal lines in each figure
represent the mean of the MAE values for the 100 map

map is to show the locations where the estimation method is imprecise, we
propose to compare the uncertainty map with the absolute error map of the
estimation. Figure 13 shows that our method gives an uncertainty map consis-
tent with the error map. The proposed method of uncertainty map has results
quite close to the geostatistical simulation for the sampling strategies S1 and
S2. However, we find that for random sampling strategies, and especially for
S3, the geostatistical simulation gives results of the uncertainty more faithful
to the absolute error map. For random sampling strategies, we also find with
the proposed method that the largest variations correspond to observed data,
which should not be the case.
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Figure 7: The MAE (vertical axis) variations over 100 maps (horizontal axis) of
the results obtained by the proposed method according to the shrinking tech-
nique (average pooling and max pooling) for the 4 DEM areas. The horizontal
lines in each figure represent the mean of the MAE values for the 100 map

Figure 8: The MAE between bicubic and nearest interpolation results for the 4
DEM areas and the 4 sampling strategies
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Figure 9: The distributions of the 4 areas and the distributions of the 4 different
sampling strategies. The histogram is green when the proposed method is better
than kriging by more than 5% and for the reds, it is kriging that is better by
more than 5%.
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Table 6: The MAE of the different methods depending on the sampling strategy
Sampling OK DNN-OK This paper

Area 1

S1 6.33 6.13 6.92
S2 6.16 6.21 5.96
S3 7.20 13.86 7.94
S4 7.16 11.98 8.25

Area 2

S1 10.87 10.94 11.49
S2 10.57 10.63 10.93
S3 13.32 13.86 12.53
S4 10.46 11.31 12.82

Area 3

S1 8.22 8.10 7.79
S2 7.01 7.17 6.15
S3 7.88 11.27 8.93
S4 8.13 10.00 8.13

Area 4

S1 5.67 5.69 5.39
S2 5.40 5.34 5.05
S3 7.27 8.63 6.68
S4 6.79 6.93 6.55

Table 7: The RMSE of the different methods depending on the sampling strategy
Sampling OK DNN-OK This paper

Area 1

S1 9.44 9.42 9.89
S2 9.10 9.21 8.48
S3 10.67 54.28 11.57
S4 10.23 52.05 12.21

Area 2

S1 14.90 15.05 15.89
S2 14.55 14.73 15.23
S3 18.29 19.62 17.88
S4 14.24 15.96 17.77

Area 3

S1 13.78 13.44 12.93
S2 10.03 10.41 8.64
S3 10.53 25.05 13.17
S4 11.76 19.94 12.89

Area 4

S1 7.83 8.04 7.67
S2 7.25 7.34 7.27
S3 11.04 15.89 9.73
S4 9.98 10.32 9.08
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Table 8: The MAE, RMSE and MAPE of the hyperspectral image dataset,
comparing the LOK with the proposed method.

Sampling LOK Simu Mean This paper

MAE

S1 179.10 329.12 183.23
S2 200.54 310.12 186.75
S3 266.12 282.93 288.07
S4 256.24 277.85 253.45

RMSE

S1 275.21 532.75 277.26
S2 348.03 520.20 336.37
S3 519.44 570.30 596.15
S4 437.04 458.64 432.74

MAPE

S1 54.61% 55.13% 38.97%
S2 36.92% 38.70% 20.89%
S3 67.16% 50.48% 42.59%
S4 71.65% 52.63% 37.87%

Table 9: The MAE, RMSE and MAPE of the synthetic dataset, comparing the
log-normal ordinary kriging, the mean map from geostatistical simulation, and
the proposed spatial interpolation method (mean of generated map).

Sampling LOK Simu mean This paper

MAE

S1 2920.75 2805.06 2755.88
S2 3074.50 3087.46 3129.42
S3 3267.93 4392.19 4163.58
S4 3263.31 3333.99 3297.94

RMSE

S1 8561.42 8238.80 8104.82
S2 8744.60 8638.47 9192.44
S3 9314.54 13021.07 11683.91
S4 9854.03 9215.22 9734.36

MAPE

S1 79.84% 71.81% 37.74%
S2 69.31% 72.18% 46.10%
S3 63.55% 107.28% 77.31%
S4 45.45% 72.06% 45.80%
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Figure 10: Maps of the results of the proposed method (This paper) compared
to the results of the log-normal ordinary kriging (LOK) for hyperspectral hydro-
carbon concentration image dataset represented in first column Ground Truth
(GT). The red crosses represent the sampling points.
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Table 10: The MAE, RMSE and MAPE by concentration level of the syn-
thetic dataset with the S2 sampling strategy, comparing to lognormal ordinary
kriging, the mean map from geostatistical simulation, and the proposed spatial
interpolation method (mean of generated map).

Concentration level
(mg.kg−1)

LOK Simu mean This paper

MAE

0-500 89.15 84.69 53.38
500-1000 495.97 474.48 428.84
1000-10000 4105.09 3950.44 3658.75
+10000 14958.65 15048.49 15808.14

RMSE

0-500 243.82 233.57 175.45
500-1000 900.10 867.49 760.80
1000-10000 7304.44 7095.41 6556.00
+10000 20422.65 20773.21 22112.91

MAPE

0-500 68.98% 66.13% 32.07%
500-1000 70.18% 67.08% 60.50%
1000-10000 106.18% 102.04% 93.23%
+10000 53.55% 51.87% 52.21%
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Figure 11: Illustration of the results of the probability map of exceeding
1000 mg.kg−1 between the proposed method and the geostatistical conditional
simulation for the synthetic data of hydrocarbon pollution. The first column
represents the map classification of data according to whether it exceeds the
threshold of 1000 mg.kg−1 or not. The red crosses represent the observed data.
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(a)

(b)

(c)

Figure 12: Illustration of the different confusion matrices between the actual
classification of the data and the classification given by the probability of ex-
ceeding 1000 mg.kg−1 greater than 0.9 (a), 0.75 (b) and 0.5 (c) for the pro-
posed method (Unet) and the geostatistical simulation by sampling strategy.
The value 0 indicates that the threshold is not exceeded and 1 represents the
opposite (namely, detection).
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Figure 13: The first column is the absolute error map between the real map and
the mean map of the proposed method (U-net), while the absolute error map of
the average of the geostatistical simulation is on the third column. The uncer-
tainty maps of the proposed method, compared to the results of a conditional
geostatistical simulation, are given in the second and fourth columns. The red
crosses represent the sampling points.

26



4 Conclusion

In this paper, we have proposed a method for spatial interpolation, as well as a
new conditional generation method using Deep Image Prior U-net-like architec-
ture. This approach was motivated by recent advances in image reconstruction
methods. Moreover, the proposed method does not need any prior training to
perform well. We have also seen that convolution networks can capture the
spatial configuration of the data, which allows us to go directly to interpolation
without worrying about spatial correlation, while for ordinary kriging, the inter-
polation results depend on the analysis of the spatial correlation. Regarding the
experimental results, we evaluated our method on 3 datasets, and we saw that
we have competitive results compared to ordinary kriging methods, whether it
is the classic method or the method with a variogram adjusted by a dense neu-
ral network. Unlike kriging, our method works with any data distribution and
requires less computation to perform so it is scalable for large-scale data, on
top of that, to generate the 100 maps as we did in the experiments with DEM
data, it took 4 minutes using Tesla P100-PCIE-16GB GPU from Google Co-
Lab. We have also seen through the probability exceeding threshold maps that
the proposed generation method gives a result quite close to the geostatistical
simulation, even if the method gives a more straightforward probability map.
We have seen that our method does not perform very well when it comes to
random sampling because the kernel only captures local spatial patterns. The
possibilities for improvement of our methods therefore consist in adding spatial
correlation information to the neural networks. This can be done by using a loss
function that includes the spatial notion, or by adapting the size of the kernel
according to the correlation distance at the sampled points. It is also possible
to take advantage of very recent advances in inpainting, a very dynamic field
of research, to improve the performance of our model. Another way of improv-
ing our method is to propose, as co-kriging does, the possibility of having two
variables of interest.
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