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GigaVoxels DP : Starvation-Less Render and Production
for Large and Detailed Volumetric Worlds Walkthrough
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Fig. 1. Left: a complex world rendered in 12.8𝑚𝑠 with our approach compared to 20.2𝑚𝑠 with GigaVoxels original
approach (at 1500 × 1000 on an Nvidia 4080). Middle: colors show the bricks of 83 voxels. Thanks to MIPmap like
LODs they all have near-identical screen-space size, so that each voxel corresponds to one pixel and the amount
of required bricks for a given frame is near constant. Right: our GPU-cores timeline tool on GigaVoxels style tasks
scheduling vs our scheduling (horizontal: core index, vertical: time, red: render task, blue: production task).

Using voxel hierarchies as a generic 3D scene representation makes ray marching, antialiasing, and LOD easy.
The drawback is the huge amount of memory required to store voxels, even with empty space compression.
Still, GigaVoxels [Crassin et al. 2009] showed that by using a ray-guided cache to produce and store only
visible voxels bricks on demand, it is possible to walk through very large and detailed worlds with real-time
performance in bounded GPU memory. However, on-demand production of data during rendering is still
challenging in terms of synchronization and starvation of GPU cores. We propose a new GPU-driven algorithm
using dynamic parallelism (DP) to minimize these, and a "GPU-cores timeline" profiling tool to analyze them.
We validate our model with timings (2× gain) and we illustrate it on various scenes.
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1 INTRODUCTION
Our general goal is similar to GigaVoxels [Crassin et al. 2009]: we want to walk through very
large and detailed worlds made of mostly opaque objects in real-time with high quality rendering
(i.e., no popping artifact, near and far antialiasing). Voxel grids offer a total order which allows
efficient ray marching, easy access to neighborhood information (e.g. near antialiasing is provided
by hardware interpolation), and signal-processing makes LOD trivial as a simple MIPmapping
operation. Volumes of voxels are easy to tile in bricks, which allows to compress empty space and
eases the on-demand streaming or building of data and its caching.

The GigaVoxels method proposed a full scheme based on an octree of voxels bricks stored in an
LRU cache, produced on-demand when a ray hits a missing brick, at the LOD resolution determined
from the differential ray cones footprint just as for MIPmapping. Data production was thus triggered
by rendering, but still, the algorithm was driven from the CPU: Each unfinished ray pass was
followed by a stream-reduction pass providing a list of missing bricks, fromwhich the CPU launched
a brick content production pass, then relaunched unfinished rays from where they stopped. The
iteration of these three passes yielded a lot of efficiency loss caused by these synchronizations
and the frequent GPU-core starvation while treating small batches of variable-duration tasks - see
Figure 1 (right).
Our main contribution is a new system where production and rendering tasks run in parallel,

asynchronously, using CUDA Dynamic Parallelism [Adinets 2014].
To analyze and compare the impact of various possible choices on performances, GPU profiling

tools are often tedious to exploit. We developed a "GPU-cores timeline" display tool showing
compactly on the fly when each GPU core is working on a render task, a production task, or
starving. We believe this tool can be very useful to understand what’s going on on the GPU beyond
the classical GPU profiling tools such as Nvidia Nsight [NVIDIA 2018].
This allows us to obtain a 2-fold gain compared to the GigaVoxels approach, and our profiling

tool shows that GPU core occupancy is near-optimal. We analyze this and show results in section 4
and the companion video.

2 RELATEDWORKS
2.1 Encoding large volumetric data
After seminal J.Carmack and J.Olick work on Sparse Voxel Octrees (SVO) [Carmack 2008; Olick 2008],
several recent voxel-based games and papers took an interest in binary (i.e., either empty or opaque)
voxels fields, either high resolution or coarse "boxels" (big voxels) like MineCraft. "Boxels" are often
managed as meshes, while true binary voxels lead to near and far aliasing, and popping if LOD are
used. As GigaVoxels [Crassin et al. 2009] we are rather interested in encoding "usual" CG scenes,
using continuous density and voxel interpolation for antialiasing and seamless LOD transition -
even if contrarily to scientific visualization our objects are generally meant to be globally opaque,
which allows occlusion, space skipping and early exit. Still, we share the problem of finding efficient
3D structures to encode large scenes containing a lot of empty space, plus an LOD hierarchy:
octrees have been proposed for real-time volume editing [Careil et al. 2020], DAGs can be used to
compress SVO [Kämpe et al. 2013] (but this is mainly fitted for architectural flat & aligned content).
GigaVoxels relies on an octree of bricks (cf Brickmaps [Christensen and Batali 2004]), containing
density and auxiliary data.

Another useful representation for this task is clipmaps [Tanner et al. 1998], originally introduced
for 2D terrain textures: for each LOD a relevant grid of data is stored around the camera, possibly
focused in the view frustum [Losasso and Hoppe 2004]. As discussed by Panteleev [Panteleev 2014],
this representation is simpler to implement, more memory coherent, and gives simple access to
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neighborhoods, while octrees are more compact but require systematic traversal from the root to
access bricks.

More generally, virtual textures [Lefebvre et al. 2004; Mittring and GmbH 2008] - for instance ID
Software’s MegaTextures - is a trend to emulate larger-than-memory data, via a page table and a
data pool. Khronos hardware sparse textures [Obert et al. 2012] manage this totally transparently
as a regular huge and possibly MIPmapped nD texture, but the maximum size is limited and we
experienced that the updating performances were disappointing. Emulations like MegaTextures
have to manage a strategy to handle the interpolation across tile borders. Rather than imposing
complex and costly manual bi or tri-linear interpolation to shader programmers, the classical
solution is to embed - and thus duplicate - the borders in each data brick. Still, the MIPmap
interpolation has to be done manually. In practice, besides terrain texture [Cornel 2012], Virtual
Textures seem to be mainly used for shadow maps [Lefohn et al. 2007].

In our implementation, we rely on clipmaps for the reasons mentioned above. But to recover
some of the octree efficiency in empty space compression, we use clipmaps with indirection - i.e.,
as a coarse grid of block IDs plus a brick pool. Marking empty bricks also allows hierarchical
empty space traversal. Still, virtual memory is not free lunch: As for GigaVoxels, for the real-time
exploration of very large and detailed scenes to be possible we need all the necessary data for a
given frame to fit the GPU memory. This is ensured by the "scene is mainly made of opaque objects
in transparent space" hypothesis: thanks to the MIPmapping-like LODs, the screen will be covered
with un-occluded bricks of near-constant screen-space size, as shown in Figure 1 (middle), and will
thus occupy a near-constant space in the pool. The extra available memory and LRU management
then reduce the need for production in case of camera meandering in the same neighborhood.

2.2 Managing on-demand data
Most methods assume that all the data is resident, which is not adapted for the walk-through
of very large data on the GPU, even with empty space compression. Some consider out-of-core
streaming and caching the data just in time when getting visible, but this is generally scheduled for
the next frame, with temporary artifacts or lower resolution.
[Beyer et al. 2015] surveys several approaches there, while GigaVoxels [Crassin et al. 2009]

triggers the production of missing bricks during the ray-marching of a given frame to always show
seamless frames.

When the on-demand data is treated during the process using them, this leads to a dependency
between two (or more) different tasks. GigaVoxels was alternating partial rendering tasks stopping
on missing bricks and production tasks building them - with a stream compaction task in between
to get a request list - then iterating on the unfinished rays. But this causes many synchronizations
from the CPU, yielding starvation of GPU cores at the end of each task, and which can result in
catastrophically low GPU occupation when iterating on the last chunks of unfinished rays - see
Figure 1 (right); we analyze this in section 4.3. Tools like Cuda Streams [Harris 2015] allow the CPU
to schedule a list of tasks with dependencies, but this is not dynamic, and only made to manage
a handful of concurrent streams. Oppositely, Dynamic Parallelism [Adinets 2014] let GPU tasks
totally manage each other. Performances and overhead of CUDA Dynamic Prallelism version 1
(CDP1) are analyzed in [Wang and Yalamanchili 2014]. The persistent thread strategy settles the
dependent tasks as producers-consumers connected via FIFO arrays. For example the Nanite system
[Brian Karis 2021] uses persistent threads to decide which LOD of meshlet should be shown.
In our implementation, we used Cuda Dynamic Parallelism version 2 ([Adinets 2014] Section

9.5), but it would also be possible to use OpenCL Device-Side Enqueue [Khronos 2013] or compute
shader with the persistent thread model.



1:4 Richermoz et al.

2.3 GPU profiling tools
Profiling parallel algorithms is not an easy task. Global statistics even on a single frame can hide
very different unoptimal configurations, while seeing them eases their optimization. Existing GPU
profiling tools such as Nvidia Nsight [NVIDIA 2018], AMD Radeon GPU Profiler [AMD 2017], or
Microsoft PIX [Microsoft 2016] are widley used, but they show separate timelines for hardware
counters and logical tasks, making it difficult to link the two. In addition, they work off-line rather
than in real-time, and none of them support CUDA Dynamic Parallelism. So we developped the
profiling tool we needed, showing in real time the synthetic timeline of which task is executing on
which GPU cores.

3 OUR MODEL
3.1 Overview

Data structures. Like GigaVoxels and BrickMaps we rely on constant-size voxel bricks stored in a
pool to compress the empty space and manage the dynamic caching of visible content, and we rely
on differential ray cones to choose the LOD for which brick resolution matches pixel resolution (as
for MIPmapping). To benefit from the native trilinear interpolation, our bricks also store borders.
But we opted for clipmaps of bricks rather than octrees of bricks as an efficient dynamic data
structure to store the cached bricks and the LOD hierarchy - which is also required for efficient
space-skipping. We justify and detail our structure in section 3.2.
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Fig. 2. Comparison of task scheduling with static par-
allelism (i.e., Gigavoxels-like) vs dynamic parallelism
when applied to our problem.

Task scheduling system. Like GigaVoxels we
have a rendering task and a production task.
But to avoid the loss of efficiency and GPU-core
starvation due to synchronizations between it-
erated alternate invocations - especially when
they are small batches -, we want to be able
to run them concurrently. For this we rely on
the Cuda Dynamic Parallelism [Adinets 2014] :
each rendering thread reaching a missing brick
launch its production task, and each finished
production task relaunch rendering threads
from where ray were interrupted. A difficulty
is that the parallel domains - neighbor pixels
on screen vs neighbor voxels in bricks - are not
the same for the two tasks, so that a rendering
warp can touch several bricks while a brick can
be requested by several rays. We detail the two
tasks and our scheduling system in section 3.3.

Starvation analysis. We develop a very convenient "GPU-cores timeline", showing in real time
the synthetic timeline of all the physical GPU cores, see Figure 1, right. Note that it closely mimics
the information of Figure 2). It was instrumental in the creation of our model and the development
of our prototype. We study how the different scheduling choices behave in terms of GPU-cores
occupancy in section 4.3, using tool we developed.

3.2 Data Structures
In our method, we employ the following data structures:
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• Brick Pool: A large 3D texture atlas that is used as a brick cache. Each texel has an opacity
plus any other required material parameter (color, normal, ...). Bricks are 83 voxels in our
implementation.
• Indirection Table: It maps each brick position (XYZ + LOD) to either a slot in the brick
pool or a special value indicating that this bricks is empty, missing, or in-production. It is

implemented as a clipmap. As for a 2D clipmap, 𝑐𝑙𝑖𝑝𝑚𝑎𝑝𝑊𝑖𝑑𝑡ℎ =


𝑠𝑐𝑟𝑒𝑒𝑛𝑊𝑖𝑑𝑡ℎ
𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

1
1

tan 𝑓 𝑜𝑣

2

 · 𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑏𝑟𝑖𝑐𝑘𝑊 𝑖𝑑𝑡ℎ

(3003 in our examples), for each LOD (8 were sufficient in our examples).
• Inverse Indirection Table: It maps each brick pool slots to the position (XYZ + LOD) of the
corresponding brick.
• Timestamp Buffer : A buffer the size of the brick pool that stores the last timestamp at which
the corresponding brick in the page pool was accessed.
• Free Slot List: A fixed size list (stored as a continuous buffer) of available brick pool slots not

mapped to anything (either never used, freed by the LRU, or by falling out of the clipmap).
• Ray Payload Buffer: A screen size buffer that stores the state of rays. Each entry contains

the distance traveled, the RGBA color accumulated, and a boolean lock to avoid concurrent
execution of the same pixel.

Brick Pool

Indirection Climap

Inverse Direction Table
Timestamp Buffer

Free Slot List

Ray Payload Buffer

Fig. 3. Our data structure. For a ray in red, the clipmap entries at various LOD, pointing to the allocated
voxel bricks.

3.3 Task scheduling system
3.3.1 Rendering task. At first, we start by launching a ray-tracing thread for every pixel (by tasks
of 32 × 16 pixels in our implementation, and variable size at later relaunch). When a ray tracing
thread encounters a missing brick (at the required position+LOD), we save its state in the Ray
Payload Buffer and we release its lock. Then we try to launch a production task for the missing
brick. To do so, we use an atomic compare-and-swap operation (atomicCAS) to try to change the
brick’s state from missing to in-production. If it succeeds, we can safely launch the production task
using dynamic parallelism. Then the rendering thread can stop. This is detailed in Algorithm 1.

3.3.2 Production task. A Brick production task starts by computing the data of each voxel in
parallel, with one thread per voxel. Once this is done, we have to update our data structures, which
is done by the single thread #0 of the production task.

If the brick is empty, we just have to mark it as such in the indirection table. Otherwise, we need
to find a slot in the brick pool to store it and update the indirection table. We obtain a slot using
the Free Slot List (see Section 3.2) and an atomic index. Voxels can now be stored in the brick pool
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Algorithm 1 Rendering task
Input: 𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 ⊲ threadIndex
𝑟𝑎𝑦 ← 𝑔𝑒𝑡𝑅𝑎𝑦 (𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥) ⊲ ray origin and direction
𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟 [𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥] ⊲ color, t, lock
if 𝑎𝑡𝑜𝑚𝑖𝑐𝐶𝐴𝑆 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑙𝑜𝑐𝑘, 𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒) then

return
end if
while 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑐𝑜𝑙𝑜𝑟 .𝑎 < 1 do

𝑝 ← 𝑟𝑎𝑦.𝑜𝑟𝑖𝑔𝑖𝑛 + 𝑟𝑎𝑦.𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑡
𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥 ← 𝑔𝑒𝑡𝐵𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥 (𝑝)
𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐶𝐴𝑆 (𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒 [𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥],𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑖𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
if 𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡 =𝑚𝑖𝑠𝑠𝑖𝑛𝑔 then

𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑙𝑜𝑐𝑘 ← 𝑓 𝑎𝑙𝑠𝑒

𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟 [𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥] ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑙𝑎𝑢𝑛𝑐ℎ𝐵𝑟𝑖𝑐𝑘𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥) ⊲ Dynamic Parallelism Call
return

else if 𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡 = 𝑖𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 then
𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑙𝑜𝑐𝑘 ← 𝑓 𝑎𝑙𝑠𝑒

𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟 [𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥] ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑

return
else if 𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡 = 𝑒𝑚𝑝𝑡𝑦 then

𝑠𝑘𝑖𝑝𝐵𝑟𝑖𝑐𝑘 (𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥, 𝑟𝑎𝑦, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ⊲ Updates t
else

𝑑 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐵𝑟𝑖𝑐𝑘 (𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡, 𝑝)
𝑐 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆ℎ𝑎𝑑𝑖𝑛𝑔(𝑑) ⊲ Optional uncompress or shading
𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑐𝑜𝑙𝑜𝑟 ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑐𝑜𝑙𝑜𝑟 + (1 − 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑐𝑜𝑙𝑜𝑟 .𝑎) ∗ 𝑐
𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑡 ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑡 + 𝑔𝑒𝑡𝑉𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (𝑝)

end if
end while
𝑓 𝑟𝑎𝑚𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 [𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥] ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑.𝑐𝑜𝑙𝑜𝑟

and the indirection table can be updated with the given slot. The indirection table now has a valid
address so the brick is not in-production anymore (since the flag is stored in the same field).
Rays that were waiting for this brick can now be restarted. We use Dynamic parallelism once

again to launch a rendering task re-starting a ray-tracing thread for every pixel in the brick’s
screen-space bounding box. (In an earlier implementation we recorded a precise list of rays to
relaunch, but the extra structures and locks proved less efficient).

As this will probably contain rays that were not waiting for this brick, ray tracing threads start
by testing their legitimacy by trying to acquire their respective ray lock using an atomicCAS. If
they succeed, they can reload their saved state and restart ray tracing accordingly. If not, they
are stopped immediately (since the ray is already alive elsewhere or finished). This is detailed in
Algorithm 2.

3.3.3 Possible data race. There is still a possibility for a data race here. In the very short time
between a ray-tracing thread seeing that a brick is in-production and that ray releasing its lock, it is
possible for brick production to end and attempts to restart the same ray happening. If that is the
case, the thread in charge of restarting that ray will not be able to acquire the lock. This ray will
thus never terminate, resulting in an empty pixel. In practice this was an exceedingly rare event in
our tests (we measured about 1 data race every 1000 frames). But if 100% sanity is required, it can
be prevented by relaunching an extra full screen render pass until no pixel is empty.
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Algorithm 2 Production task
Input: 𝑣𝑜𝑥𝑒𝑙𝐼𝑛𝑑𝑒𝑥 ⊲ threadIndex
Input: 𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥 ⊲ destination
𝑝 ← 𝑔𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥, 𝑣𝑜𝑥𝑒𝑙𝐼𝑛𝑑𝑒𝑥)
𝑑 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑉𝑜𝑙𝑢𝑚𝑒𝐷𝑎𝑡𝑎(𝑝) ⊲ Custom voxel production
if 𝑡ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝐴𝑛𝑑 (𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑑)) then

if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 = 0 then
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒 [𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥] ← 𝑒𝑚𝑝𝑡𝑦

end if
else

if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 = 0 then
𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡 ← 𝑓 𝑟𝑒𝑒𝑆𝑙𝑜𝑡𝐿𝑖𝑠𝑡 [𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑 (𝑠𝑙𝑜𝑡𝐿𝑖𝑠𝑡𝐼𝑛𝑑𝑒𝑥, 1)]

end if
𝑏𝑟𝑖𝑐𝑘𝑃𝑜𝑜𝑙 [𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡, 𝑣𝑜𝑥𝑒𝑙𝐼𝑛𝑑𝑒𝑥] ← 𝑐

if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 = 0 then
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒 [𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥] ← 𝑏𝑟𝑖𝑐𝑘𝑆𝑙𝑜𝑡

end if
end if
if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 = 0 then

𝑏𝑟𝑖𝑐𝑘𝐵𝑏𝑜𝑥 ← 𝑔𝑒𝑡𝐵𝑟𝑖𝑐𝑘𝐵𝑏𝑜𝑥 (𝑏𝑟𝑖𝑐𝑘𝐼𝑛𝑑𝑒𝑥)
𝑙𝑎𝑢𝑛𝑐ℎ𝑅𝑎𝑦𝑇𝑟𝑎𝑐𝑖𝑛𝑔(𝑏𝑟𝑖𝑐𝑘𝐵𝑏𝑜𝑥) ⊲ Dynamic Parallelism Call

end if

3.3.4 Free Slot List. The Free Slot List is maintained as follows: Each time a brick is accessed, its
corresponding slot in the Timestamp buffer gets updated with the timestamp of the current frame.
At the beginning of every frame, brick pool slots are sorted by their timestamp value from the
timestamp buffer. This is done very fast thanks to GPU radix sort. The Free Slot List then gets filled
with the first entries from that sort, i.e. the brick slots that were the least recently used (LRU), or
never used, or freed by the clipmap after a camera motion. The bricks from the list then get freed by
setting their state to missing in the indirection table. For this we need to use the inverse indirection
table to go from slots in the brick pool to brick positions in the indirection table.
In the degenerate case where the index exceeds the list’s capacity, all production is stopped,

the list gets regenerated, and a full screen ray tracing task is relaunched, similar to GigaVoxels
scheduling. However, this is only a back-up solution and we found that using a list capacity of
10% of brick pool capacity results in no list regeneration during normal traversal (in our examples,
moving back through a wall covering the full screen would require 2̃5% of that).

4 RESULTS AND ANALYSIS
4.1 Testing methodology
The goal of our performance analysis is to measure the speed improvement of our new task
scheduling system, as well as to demonstrate the viability of high resolution voxel caching for
real-time rendering of generic scenes. In order to compare ourselves to the GigaVoxels approach, we
created a modified version of our prototype to run with static (as opposed to dynamic) parallelism
task scheduling.
In our prototype bricks are 83, and voxels only store opacity + color with pre-backed shading.

Our test scenes use procedural brick producers, productions tasks consist of evaluating a (costly)
procedural function. We designed five test scenes with differing requirements (see Figure 4):
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(a) Multi-layer Perlin noise (b) Random spheres (c) Aligned spheres

(d) 10 Layer FBM (e) Forest

Fig. 4. Test scenes used for performance analysis

• A two-layer Perlin noise scene to simulate a somewhat credible environment with lots of
disocclusion and a costly to evaluate procedural function.
• A up-to-10 layers Perlin noise scene showing both a very detailed first stage and large world.
The fractal depth is adapted to the LOD.
• A forest scene where tree foliage is passing-through so that only aggregated occlusion

from several trees can stop rays. We used a very naive costly procedural producer: basically
a field of leaves is potentially computed everywhere in space (16 leave SDF evaluations
per voxels, including many sin-based random numbers) and truncated by the closest tree
ellipsoid SDF.
• An extreme uncorrelated disocclusion scene consisting of randomly positioned spheres.
• An extreme correlated disocclusion scene consisting of sphere aligned on a grid (causing
free sight up to the horizon and many simultaneous production requests caused by the
synchronised disocclusions).

Note that in all these examples we used no oracle or bounding box to pre-register empty
space or lighten the procedural evaluation. The cache and hierarchical production alone naturally
concentrate the calculation where and when useful. Conversely, we didn’t implemented view-
dependant shading so the stress in higher on the production tasks. For the sake of demonstration
and benching we rely on 100% voxels rendering, but note that in a real application it would be easy
to mix ordinary rasterized scenes with GigaVoxels via the Z-buffer, so that hero first stage objects
could be rendered with regular polygons if preferred - and animated object can be added to the
scene the same way.
In order to stress the scheduling systems in different ways, we tested five movement types:

simulated walkthrough, moving forward, moving backward, moving sideways, and turning on the
spot.
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All testing was done on a Linux system equipped with an NVIDIA 4080 GPU and an AMD 7900X
CPU, at a resolution of 1500× 1000. GPU memory utilization was as follows: 2GB for the brick pool,
1GB for the indirection table, and 1GB for the data structures allocated by CUDA for Dynamic
Parallelism, the rest being negligible, resulting in a total memory utilization of a little bit more than
4GB.

4.2 FPS Results

Table 1. Measured average FPS for various scenes and movement type, comparing Static Parallelism (SP)
"GigaVoxels" and our Dynamic Parallelism (DP) scheduling, and showing the speedup (SU) from SP to DP.

Scene Perlin noise FBM Forest Random spheres Aligned spheres Average
Scheduling SP DP SU SP DP SU SP DP SU SP DP SU SP DP SU SU
Walkthrough 49.5 78.1 1.6 20.0 29.4 1.5 41.0 48.3 1.2 22.2 46.6 2.1 14.1 35.9 2.5 1.9
Forward 57.0 85.9 1.5 19.5 29.0 1.5 63.5 69.1 1.1 23.8 51.4 2.2 19.6 35.1 1.8 1.7
Backward 41.4 84.3 2.0 10.8 26.1 2.4 59.5 65.8 1.1 15.6 50.0 3.2 8.3 36.3 4.4 2.9
Sideways 65.7 104.4 1.6 42.6 65.8 1.5 80.1 96.7 1.2 22.5 54.2 2.4 14.4 47.5 3.3 2.2
Spinning 64.8 95.0 1.5 33.5 48.5 1.4 50.9 75.7 1.5 37.2 69.3 1.9 24.2 41.1 1.7 1.7
Average 55.7 89.5 1.6 25.3 39.8 1.7 59.0 71.1 1.2 24.3 54.3 2.3 16.1 39.2 2.7 2.1

All our FPS results can be seen in Table 1. We get a speedup ranging from 1.1 to 4.4, with an
average of 2.1. We also see that scenes with more disocclusion, especially when it is correlated,
perform worse for all systems, but show a better speedup. Similarly, movement types that produce
more disocclusion, such a moving backward or sideways, also show a better speedup.
We also measured the 1% low FPS (average FPS of the slowest 1% of frames, indicating per-

formance consistency), as we initially thought that our scheduling system would show a better
speedup because of its ability to eliminate cases of extreme underutilization. But in the end the
overall speedup was exactly the same at 2.1, with no clear pattern of which test showed a better
improvement for 1% lows or average FPS. In absolute term, 1% FPS values were about 60% of average
FPS values.

4.3 GPU-cores Timeline Tool

(a1) SP (a2) DP

(a) Short frame

(b1) SP (b1) DP

(b) Long frame

Fig. 5. Example of GPU-cores timelines for a short frame
(5a) and a long frame (5b), comparing static parallelism
scheduling (5a1, 5b1) and dynamic parallelism (5a2, 5b1).
horizontal: core index, vertical: time, red: render task,
blue: production task.

To better understand how task scheduling af-
fects GPU utilization all along the frame eval-
uation, we developed a custom profiling tool
showing a timeline of the activity of each GPU
core (SM) during a frame, with time on the
vertical axis (starting from the top), core index
on the horizontal axis, and a different color
for each task that the core is currently execut-
ing. We used red for rendering tasks and blue
for production tasks, black indicating that the
core is idle, and purple that it is running both
tracing and production at the same time (see
Figure 5).
Our custom timeline tools work by record-

ing a timeline entry in a buffer for each Thread-
Block executing a kernel. A timeline entry
consists of: a kernel color, a GPU-core index,
a start time and an end time. In order to be
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recorded to the timeline, kernels must be instrumented with a special function call at their begin-
ning and end. The "begin" function call does a ThreadBlock-wise atomicMin with the current time
to get the start time of the kernel, allocates a timeline entry from the timeline entry buffer using an
atomic index, and records to this entry the kernel color, GPU-core index, and start time. The "end"
function call does a ThreadBlock-wise atomicMax with the current time to get the end time of the
kernel, and records it to the timeline entry. At the end of the frame, timeline entries are processed
and display to the screen. All of this introduces a negligible but measurable overhead (about 2%),
so we deactivated it for performance analysis.
In Figure 5, we can see that fixed scheduling leads to a lot of idle time. Idle GPU cores are

present at the end of every ray tracing pass, as some rays take longer to trace than others. Similarly,
idle time would also be present at the end of each production pass if the brick’s producers were
heterogeneous. There is also idle time in between each pass, caused by CPU-GPU synchronizations.
Finally, there is a lot of idle time at the end of a frame - the "tail" regime, which can sometimes
represent more than half of the total time -, when tasks are unable to saturate the GPU. We can
see that dynamic parallelism is able to eliminate almost all idle time, at least as far as our timeline
tool can measure it. Most of the gain come from compacting the tail of the frame, but significant
improvement is also extracted at the beginning just by better overlapping tasks.

5 LIMITATIONS, FUTUREWORK AND CONCLUSION
By using dynamic parallelism, we were able to dramatically increase the effective GPU utilization
for GigaVoxels-like applications, resulting in a more than 2× gain on average. This enabled traversal
of various scenes with real-time frame rates (30 to 100 fps), at a resolution of 1500×1000, and with
perfect filtering at one voxel per pixel. For now, the drawback of our solution is the high memory
cost of the data structures associated with dynamic parallelism. However, we believe that by using
a custom implementation of dynamic parallelism instead of the one built into CUDA, that memory
cost could be reduced. Moreover, using a custom dynamic parallelism implementation could result
in better performance, by tailoring it to our specific needs. In addition, a Vulkan-compatible version
would open a way broader applicative world such as gaming. Also, relaunching all the rays covering
a whole brick bounding box yields several incomplete warps: a better packing should improve
rendering task performance. Production-wise, it would be interesting to study some strategies to
smooth out the peaks of production, such as relying on a prefetching oracle (e.g. when a voxel
fetch was close to the max current LOD) or deferring a brick LOD change to the next frame so as
to prioritize the production of totally new content.
We wanted to experiment clipmaps as an alternative to octrees (or more generally, 𝑛3-trees).

While it does simplify the implementation, it consumes more memory (where a subtree would be
clamped) and is not proven faster - which may depend on scenes. So it is mostly a programmer’s
choice.
The GPU-cores timeline profiling tool we developed to aid in our comprehension of GPU

scheduling proved extremely convenient and fruitful. By working in real-time and showing physical
cores instead of logical streams, it provides crystal-clear information that existing solutions don’t
show explicitly, while supporting dynamic parallelism. This tool could be further improved and
made into an API so as to be integrated into other projects.
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