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Applications of a MoM with High Order Impedance Boundary

Condition for the Scattering Problem

Christian Daveau ∗, Soumaya Oueslati †, Svevo Bandelier ‡

July 1, 2024

Abstract

In this paper, we study an integral equation method with high order impedance boundary

condition (HOIBC) to solve Maxwell’s equations in time harmonic regime. We present several

numerical experiments.

1 Introduction

We are interested in solving the scattering problem using integral formulations with HOIBC

[1], which leads to solving a variational problem in 3D and in 2D for a ground plane. In the

first part, we study a PEC coated by a dielectric. Then we apply the moments method for a

ground plane.

2 Integral formulation with HOIBC

The physical problem is described in Fig 1.

Figure 1: Scattering problem of dielectric coated conducting target
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The dielectrically coated conducting objects fig. 1 can be modeled by an impedance boundary

condition (IBC) at the surface, we are interested in higher-order impedance boundary conditions

(HOIBC) (1), (see [1]), various methods are presented for computing the coefficients (a0, aj , bj).

(I + b1LD − b2LR)Et = (a0I + a1LD − a2LR)(n×H). (1)

Thus leading to the following problem:

Problem 2.1. Find (E,H) such as



∇× E+ iωµH = 0 in Ωe,

∇×H− iωϵE = 0 in Ωe,

(I + b1LD − b2LR)Et = (a0I + a1LD − a2LR)(n×H) in Γ,

lim
r→∞

r(E× nr +H) = 0.

(2)

We introduce the integral operators (B − S) and (P +Q) are defined as follows:

< (B − S)ϕ,ψ >= i

∫∫
Γ

k Gϕ ·ψ − 1

k
G∇y · ϕ∇x ·ψ dydx, (3)

< (P +Q)ϕ,ψ >=
1

2

∫
Γ

ψ · (n× ϕ) dx+

∫∫
Γ

(ψ × ϕ) · ∇xG dydx, (4)

We then obtain the variational problem.

Problem 2.2. Find U = (J,M) ∈ V = [Hdiv(Γ) ∩Hrot(Γ)]
2 such that:

A(U,Ψ) =< IEinc,ΨJ > + < IHinc,ΨM > (5)

for all Ψ = (ΨJ ,ΨM ) ∈ V , with the bilinear form A(U,Ψ) is defined by :

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0
< (B − S)M,ΨM > + < QM,ΨJ > − < QJ,ΨM >

+
a0

2
< J,ΨJ > +

1

2a0
< M,ΨM > −a1

2
< divΓJ,divΓΨJ > − b2

2a0
< divΓM, divΓΨM >

+
b1
2

< divΓ(n×M), divΓΨJ > − b2
2

< divΓM, divΓ(n×ΨJ) > − b1
2a0

< divΓ(n×M), divΓ(n×ΨM ) >

+
a1

2a0
< divΓJ, divΓ(n×ΨM ) > − a2

2a0
< divΓ(n×J),divΓΨM > −a2

2
< divΓ(n×J), divΓ(n×ΨJ) >

In the next section, we are going to give an alternative proof that Problem 2.2 is well-posed

by analysing the bilinear form A defined on V = [Hdiv(Γ) ∩Hrot(Γ)]
2.

We have the following result.

Theorem 2.1. The variational problem 2.2 admits a unique solution if the coefficients satisfy
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the following conditions:



ℜ(a0) > 0,

ℜ(a1) < − |q1|
2
,

ℜ(b1a∗
0) < − |q1|

2

ℜ(a2) < − |q2|
2

ℜ(b2a∗
0) < − |q2|

2

(6)

where : q1 = b1|a0|+ a∗
1a0/|a0| et q2 = b2|a0|+ a∗

2a0/|a0|.

3 Discretization and operators’ approximation

The obtained variational Problem 5 is solved with the method of moments (MoM) [2] using

Galerkin testing procedure, which requires discretizing the contour defining the surface Γ into

triangles T .

Γh =

NT⋃
n=1

Tn.

To discretize the variational problem, we employ a non-conformal approach, the Galerkin

method is employed utilizing RAO-Wilton-Glisson RWG basis functions defined on the space

W = H
−1/2
div , i,e. , the equivalent currents on the surface J and M are approximated on a set of

Ne basis functions using RWG functions fi(x) with the unknown are the flows such as:

J(x) =

Ne∑
i=1

Jifi(x), M(x) =

Ne∑
i=1

Mifi(x). (7)

On each triangle, the current is written as a linear combination of 3 functions of base associated

with 3 edges of a triangle. If n is a common edge of two triangles then:

fn(x) =



ln
2|T+

n |
(x− a+

i−1) if x ∈ T+
n

ln
2|T−

n |
(a−

j−1 − x) if x ∈ T−
n

0 if x /∈ T+
n ∪ T−

n

(8)

we define also its divergence:

∇Γ · fn(x) =


+ ln

|T+
n |

if x ∈ T+
n

− ln
|T−

n |
if x ∈ T−

n

0 if x /∈ T+
n ∪ T−

n .

(9)
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By arbitrary definition, the current flows from the first triangle of the zone T+
n to the second

triangle of the zone T−
n . a+

i−1 and a−
j−1 are the opposite vertices of the edge n in T+

n and T−
n

respectively. |T±
n | designates the area of the triangle T±

n and the length of the common edge

is ln. Through the use of the decomposition of surface electric and magnetic densities (7), we

inject them into the variational problem (2.2).

This procedure converts the coupled set of integral equations into a matrix which may be cast

into the form.

Ah(Uh,Ψh) =

Ne∑
i=1

< Einc, fi > +

Ne∑
i=1

< Hinc, fi > (10)

where

Ah(Uh,Ψh) =

Ne∑
i,j=1

< ZrZ0 (B − S)fj , fi > Jj + Z−1
r Z−1

0

Ne∑
i,j=1

< (B − S)fj , fi > Mj

+

Ne∑
i,j=1

< Qfj , fi > Mj−
Ne∑

i,j=1

< Qfj , fi > Jj+
a0

2

Ne∑
i,j=1

< fj , fi > Jj+
1

2a0

Ne∑
i,j=1

< n×fj ,n×fi > Mj

+
a1

2

Ne∑
i,j=1

< ∇Γ∇Γ · fj , fi > Jj −
a2

2

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj),n× fi > Jj

− b1
2

Ne∑
i,j=1

< ∇Γ∇Γ · fj ,n× fi > Mj +
b2
2

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj), fi > Mj

+
b1
2a0

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj),n× fi > Mj −
b2
2a0

Ne∑
i,j=1

< ∇Γ∇Γ · fj , fi > Mj

− a1

2a0

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj), fi > Jj +
a2

2a0

Ne∑
i,j=1

< ∇Γ∇Γ · fj ,n× fi > Jj ;

We seek an approximate solution to the discrete problem (10). To solve it, we first give notations

for the integral operators arising from the Higher-Order Integral Boundary Conditions (HOIBC)

involved in the discrete problem, defined as follows:

Lij =

∫
Γh

fi · fjds, (11)

Dij =

∫
Γh

∇Γ∇Γ · fj · fids (12)

Eij =

∫
Γh

∇Γ∇Γ · fj · n× fids, (13)

Gij =

∫
Γh

∇Γ∇Γ · (n× fj) · n× fids. (14)

We study discretzations for these operators.
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3.1 The jump formula

Definition 3.1. Formula for the jump across a bounded surface

Let Ω be an open set of R3, with a Lipschitz boundary Γ, F a regular function in R3, such that

C1-regular on either side of Γ. Then the jump of the discontinuous function F through Γ is

denoted by:

[F ]Γ = F int − F ext

with F int, F ext are the values of F inside and outside the domain bounded by Γ respectively.

The normal ν to Γ is oriented inside out.

This definition leads to the formulas of the gradient and the divergence in the sense of

distribution for functions which are discontinuous at this interface:

Proposition 3.2. With the regularity hypotheses of the function F , we have:

The gradient and the divergence in the sense of the distributions defined for functions which are

discontinuous at an interface Γ are given by:

∇F = (∇F )− SΓ([F ]ν) (15)

∇ · F = (∇ · F )− SΓ([F · ν]) (16)

where (∇F ) and (∇·F ) are respectively the usual gradient and divergence of the function where

they exist and SΓ is the operator defined by:

< SΓ(F ), φ >=

∫
Γ

F (x)φ(x) dx.

One observes the presence of discontinuity through the edges which deteriorates the condi-

tioning of the operators, an approximation method is thus necessary.

According to (15) the gradient of piecewise constant functions F is written in this form:

< ∇ΓF,φ >= −[F ]/Γ

∫
Γ

ν(x) · φ(x) dx , ∀φ ∈ D(R3)3 (17)
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one has upon the application of F = ∇Γ · f in (17), so that < ∇Γ∇Γ · f, φ > can be written as

< ∇Γ∇Γ · f, φ >= −[∇Γ · f]/Γ
∫
Γ

ν(x) · φ(x) dx , ∀φ ∈ D(R3)3 (18)

3.2 Integral operators’ approximation

To have an explicit expression of the operators, we first define the jump of a piecewise

constant function f with respect to an edge i [3].

Definition 3.3. The jump of a piecewise constant function f with respect to an edge i:

[f]/i = (εif)
T+
i + (εif)

T−
i

= ε
T+
i

i fT+
i + ε

T−
i

i fT−
i

= fT+
i − fT−

i

with the trace of f on T+
i and T−

i denoted by fT+
i and fT−

i respectively.

The function εi is defined by:

εi(x) =


1 on T+

i ,

−1 on T−
i ,

0 otherwise.

3.2.1 Approximation of operator D

We will explain the method of calculating the elements of matrices Dij . By applying the

differential operators property (18) to the D operator [3]:

Dij =

∫
Γh

∇Γ∇Γ · fj · fi dS

= −li[∇ · fj ]/l
∫
l

νl · fi ds

with ν+
l (respectively ν−

l ) is the outgoing normal to edge l which goes from T+
l to T−

l (respec-

tively from T−
l to T+

l ) in the plane of the triangle.

We deduce the expression of the operator Dij :

Dij = − li[∇ · fj ]/i. (19)
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Using definition 3.1, the divergence jump of RWG functions (8):

[
∇ · fj

]
/i

= [(εi∇ · fj)T
+
i + (εi∇.fj)

T−
i ] (20)

= εi
T+
i ∇ · fjT

+
i + εi

T−
i ∇ · fjT

−
i (21)

= ε
T+
i

i ε
T+
i

j

lj

|Tj |T
+
i

+ ε
T−
i

i ε
T−
i

j

lj

|Tj |T
−
i

(22)

so the Dij (19) can therefore be written as

Dij = −li

(
ε
T+
i

i ε
T+
i

j

lj

|Tj |T
+
i

+ ε
T−
i

i ε
T−
i

j

lj

|Tj |T
−
i

)
.

3.2.2 Approximation of operator E

Similarly as for the operator D, using the definition of the gradient of piecewise constant

function, the operator E can be written as :

Eij =

∫
Γh

∇Γ∇Γ · fj · n× fi ds

= −
Ne∑
l=1

[
∇ · fj

]
/l

∫
l

νl · n× fi ds

We make an approximation of
∫
l
νl ·n×fi ds to translate the discontinuity of the normals which

is: ∫
l

νl · n× fi ds =
1

2

(∫
l

νl · n× fi ds

)
T+
i

+
1

2

(∫
l

νl · n× fi ds

)
T−
i

(23)

To determine this integral, it is necessary to distinguish several geometric configurations.

∫
l

νl · n× fi ds =



1
2
(
∫
l
ν+
l · n

T+
i

× f+i ds+
∫
l
ν−
l · n

T−
i

× f−i , ds), if i = l

1
2

∫
l
ν+
l · n

T+
l

× f±i ds, if i ∈ T+
l

1
2

∫
l
ν−
l · n

T−
l

× f±i ds, if i ∈ T−
l

The expression of the operator E is then written:

Eij = −1

2
([∇.fj ]/i

(∫
l=i

ν+
i · n

T+
i
× f+i ds+

∫
l=i

ν−
i · n

T−
i

× f−i ds

)
+

∑
l∈T+

i =T+
l

[∇.fj ]/l

∫
l

ν+
l · n

T+
l

× f+i ds+
∑

l∈T+
i =T−

l

[∇.fj ]/l

∫
l

ν−
l · n

T−
l
× f+i ds

+
∑

l∈T−
i =T+

l

[∇.fj ]/l

∫
l

ν+
l · n

T+
l

× f−i ds+
∑

l∈T−
i =T−

l

[∇.fj ]/l

∫
l

ν−
l · n

T−
l

× f−i , ds).
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The integral operator which is defined by:

∫
Γh

LD(n× fj) · fi ds

is the adjoint operator of operator Eij .

3.2.3 Approximation of the G operator

Employing the definition of the operator G and the jump formula, we deduce the result for

the operator E using similar procedure, we find [4]:

Gij =

∫
Γh

∇Γ∇Γ · (n× fj) · (n× fi) ds

= −1

2
([∇.(n× fj)]/i

(∫
l=i

ν+
i · n

T+
i
× f+i ds+

∫
l=i

ν−
i · n

T−
i

× f−i ds

)
+

∑
l∈T+

i =T+
l

[∇.(n× fj)]/l

∫
l

ν+
l · n

T+
l

× f+i ds+
∑

l∈T+
i =T−

l

[∇.(n× fj)]/l

∫
l

ν−
l · n

T−
l
× f+i ds

+
∑

l∈T−
i =T+

l

[∇.(n× fj)]/l

∫
l

ν+
l · n

T+
l

× f−i ds+
∑

l∈T−
i =T−

l

[∇.(n× fj)]/l

∫
l

ν−
l · n

T−
l

× f−i ds).

The jump calculation [∇ · (n× fj)]/l is based on the calculation of the adjoint operator of E.

4 Numerical experiments

In this section, several examples will be presented to show the accuracy of the proposed

method and correctness of the developed formulation after implementing it into MoM code

([4],[5]). A standard spherical coordinate system is used for the body of revolution model with

the z axis being the axis of revolution. Several geometries and different types of dielectric mate-

rial (electric permittivity ϵr and magnetic permeability µr) are also presented. The first example

is considered for validating the accuracy of the code developed while the remaining examples

are regarded to produce some new results which cannot be found elsewhere in literature.

First, we consider a coated conductive sphere having a radius of r2 = 1.8λ, thickness of coating

layer is 0.05m (fig. 2) with a relative permittivity of ϵr = 5 and a relative permeability of µr = 1.

The exact series-solution of this geometry is available and is used here to validate the results of

the proposed formulation. The bistatic RCS for the θθ-polarization at 0.45GHz are computed

and the results obtained (fig. 3) are compared with Mie series solutions. Figure 3 illustrates

three results, Mie’s analytical result and different mesh densities using the new approximation

method. Good agreements have been observed in the comparisons.
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(a) ϵr = 1− i and µr = 1
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(b) ϵr = 2− 3i and µr = 1− i

Figure 4: θθ component of the bistatic RCS for a coated conductive sphere with frequency
f = 0.190986GHz, layer thickness δ ≃ 0.05λ. Exact Mie solution and HOIBC solution

Dielectric coating

Figure 2: geometry of a coated conductive sphere
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Figure 3: θθ component of the bistatic RCS for a coated conductive sphere with frequency
f = 0.45GHz, layer thickness δ = 0.09λ. Exact Mie solution and HOIBC solutions.

Now, we will choose a complex configurations of permittivity and permeability. In fig. 4a

and fig. 4b, when we substitute the complex values for permeability and permittivity, we ob-
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serve a very good agreement between the analytical solution of Mie and the numerical results

obtained using the HOIBC method. In our study, we compared our method to the Lagrange

multiplier method proposed in [1]. Since the analytical solution is available for comparison, we

computed the error for different meshes using the infinity norm for both methods. Additionally,

we measured the CPU time (in seconds) for system resolution and the total memory occupation

of the matrix (in Go). We begin by considering the case where ϵr = 5 and µr = 1.

0 20 40 60 80 100 120 140 160 180
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d
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Mie exact

Lagrange /8

distribution /8

(a) Comparison between Lagrange solution
and distribution solution of the correspond-
ing mesh λ/8. The Mie series solution is
used as reference data.

number mesh
Distribution Lagrange

of unknowns density ∥.∥∞ CPU(s) Mem(Go) ∥.∥∞ CPU(s) Mem(Go)

55788 λ/8 0.018 343.66 27.2 0.032 385.7 27.2

101760 λ/10 0.018 1287.16 84.81 0.032 1365.9 84.81

125376 λ/11 0.0152 2326.97 118.37 0.032 2602.63 118.37

186684 λ/14 0.0104 4529.9 285.16 0.031 4736.36 285.16

(b) Comparison in terms of relative error and memory usage with respect to mesh density

Figure 5: Values of error computed using two approximations of integral operators with the different
mesh with ϵr = 5 and µr = 1.

In fig. 5a, it is evident that the results of both methods compare well with the exact solution.

But, from the above discussion in fig. 5b, we can see that the other method suffers a drastic

increase in the computation cost as the number of unknowns increases. The matrix size, and

hence, both the filling and solving times grow substantially. On the other hand, our method

has a better performance regarding the CPU times where the computation cost is substantially

lower. In the light of these factors, our method is more appealing than the other formulation

for simulating large-scale problems where the reduction of CPU times becomes an essential and

crucial issue. Now we compute the error with complex permitivity and permeability ϵr = 2− 3i
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and µr = 1− i.
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(a) Comparison between Lagrange solution
and distribution solution for the mesh λ/12.

number mesh
Distribution Lagrange

of unknowns density ∥.∥∞ CPU(s) Mem(Go) ∥.∥∞ CPU(s) Mem(Go)

4956 λ/8 0.013 1.9 0.32 0.0122 1.95 0.32

10824 λ/12 0.0051 11.69 1.32 0.0039 12.75 1.32

44664 λ/25 0.005 54.28 19.26 0.0026 76.05 19.26

(b) Comparison in terms of error and memory usage with respect to mesh density

Figure 6: Values of relative error computed using two approximations of integral operators with the
different mesh with ϵr = 2− 3i and µr = 1− i.

According to the tests presented above, it can be concluded that Lagrange approximation

has a good accuracy independently with respect to the number of unknowns, while our approx-

imation has the best performance in terms of computational cost.

We will now transition to a different geometry where no analytical scattering solution is avail-

able as a reference. To obtain the reference results, we compare our method to the reference

PMCHWT formulation ([6],[7],[8]). We move on to the case of an ellipsoid is with dielectric

parameters as depicted in fig. 7a, we choose a coating thickness δ = 0.1λ.

11



(a) Surfacic mesh of the ellipsoid. ϵr = 5
and µr = 1.

(b) θθ component of the monostatic RCS with
frequncy f = 0.3GHz. Reference PMCHWT
and HOIBC solutions.

Figure 7a presents surface mesh of ellipsoid geometry and fig. 7b plots θθ component of the

monostatic RCS with the solution using SIBC and two mesh densities λ/10 and λ/25 and we

compare it to PMCHWT reference. We notice that we obtain a good accuracy compared with

the reference PMCHWT when we use a finer mesh.

In the sequel, sharp-edged targets will be simulated by the suggested method to verify the

stability of the proposed formulation. We consider the case of coated PEC almond. Its total

length is 4.169λ0, where λ0 is the vacuum wavelength, and the dielectric parameters are ϵr = 4

and µr = 1. A 0.5-GHz monostatic RCS, θθ-polarized incident wave is incident from the tip of

the almond. Figure 8a shows the mesh configuration of this problem fig. 8b.

Coated PEC

PEC

(a) Problem description (b) Surface mesh for nasa almond geometry. Plot
of SIBC , HOIBC with different mesh density and
PMCHWT reference

Figure 8: Scattering analysis for the NASA almond with ϵr = 4 and µr = 1. A 0.5-GHz monostatic
RCS, θθ-polarized incident wave is incident from the tip of the almond

Figure 8b plots different HOIBC mesh densities solutions and SIBC solution. It is clear that

HOIBC converge to PMCHWT reference and more accurate compared to SIBC.
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(a) Surface mesh for simple-ogival geometry.
Plot HOIBC with different mesh density and
PMCHWT reference

(b) Surface mesh for double-ogival geometry.
Plot of SIBC , HOIBC with different mesh den-
sity and PMCHWT reference

Figure 9: Scattering analysis for different types of ogives (double fig. 9a and simple fig. 9b). A
monostatic RCS, ϕϕ-polarized incident wave is incident from the tip of the ogives

Based on the tests on the sphere (see fig. 2), ellipsoid (see fig. 7a), and double-ogive (see

fig. 9b), it can be concluded that the Higher Order Impedance Boundary Condition (HOIBC)

approximation exhibits good accuracy. However, the Standard Impedance Boundary Condition

(SIBC) approximation demonstrates poor accuracy in both simple and complex cases.

(a) Geometry of coated conductive sphere-cone-
sphere.R1 = 315mm,R2 = 50mm.
δ = 0.02m, ϵr = 5 and µr = 1.

(b) ϕϕ component of the monostatic RCS with
frequency f = 0.45GHz. Reference PMCHWT
and HOIBC solutions.

(c) Geometry of cone. h = 716mm, R = 66mm,
α = 45◦ and δ = 0.034m , ϵr = 2− i and µr = 1.

(d) ϕϕ component of the monostatic RCS with
frequency f = 0.35GHz. Reference PMCHWT
and HOIBC solutions.

Figure 10: Performance comparison of different mesh of HOIBC formulation with respect to PM-
CHWT reference of conic geometries
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Figure 10a and fig. 10c presents geometrical parameters of coated conductive sphere-cone-

sphere and coated conductive cone respectively. Figure 10b and fig. 10d plots ϕϕ component of

the monostatic RCS with different mesh densities and frequencies compared with PMCHWT

reference. We observe that, in both geometries,increasing the number of unknowns yields good

accuracy regardless of the frequency. As shown in fig. 10d, the two curves of HOIBC solutions

agree excellently with each other comparing to the reference.

We choose now another conic geometry (fig. 11) that is coated with a complex homogeneous

material layer ϵr = 1− i and µr = 1.

Figure 11a shows the mesh configuration of cone and fig. 11b display the results obtained. We

can observe that as the mesh density increases, the HOIBC solutions exhibit a strong agree-

ment with the reference PMCHWT. This can be attributed to the excellent performance of the

HOIBC operators employed in the formulation.

(a) Monostatic RCS of a 1.312m × 1.312m ×
0.798m of a coated PEC cone body (δ = 0.05m,
ϵr = 1− i and µr = 1) at 0.19GHz.

(b) θθ RCS component. Reference PMCHWT
and HOIBC solutions.

Figure 11: Performance comparison of different mesh of HOIBC formulation with respect to PM-
CHWT reference

We gave some preliminary results indicating good accuracy behavior of our method com-

pared to the popular PMCHWT equation. Numerical examples demonstrate that the developed

new formulation lead to clear improvements in the convergence rates.

5 Variationnal formulation with HOIBC for a ground

plane

We described the problem see Fig. 12. Here, we consider TM polarization and apply image

14



Figure 12: Ground plane

theory and principe of equivalence. Then, we propose the following variational formulation:

∫ xr

xl

Mz(x)φ(x) dx

+
ωϵ0
2

∫ xr

xl

∫ xr

xl

a0(x) H
(2)
0 (k0|x− x′|)Mz(x

′)φ(x)dx′dx

+
ωϵ0
2

∫ xr

xl

∫ xr

xl

a1(x) (∂
2
xH

(2)
0 (k0|x− x′|))Mz(x

′)φ(x)dx′dx

+

∫ xr

xl

b1(x)∂
2
xMz(x)φ(x)dx

= 2

∫ xr

xl

(a0(x)− a1(x)k
2
0 cos(ϕ0)

2)ejk0 cos(ϕ0)xφ(x)dx (24)

6 Meixner’s conditions

We have to apply HOIBC in an interior domain since singularity appears at the ends of the

domain. We then apply Meixner’s conditions to take account the discontinuity PEC/dielectric

material.

M1

(∆
2
)tl−1

=
M2

( 3∆
2
)tl−1

(25)

MN

(∆
2
)tr−1

=
MN−1

( 3∆
2
)tr−1

(26)
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To calculate t, we etablish an equation in t, with Φ1 and Φ2 given by Figure 13 :

tan(tΦ1)

ϵ1
+

tan(tΦ2)

ϵ2
= 0 (27)

Theses conditions are based on a equivalence relation on the normal electric field :

Eρ ∼ ρt−1 (28)

, with ρ the distance to the edge.

Figure 13: Calculation of t

7 Numerical results

With 45 points, our HOIBC+edges almost coincides with the FEM. So we hypothesize that

the size of a segment (3/45 m) constitutes a good balance between the edge zone and the HOIBC

zone . By calculation we find that the length of a segment is approximately equal to λ
6.70

, for

the frequency and the properties of the material in our example. We specify that λ corresponds

to the wavelength in the dielet. Note that for each ϵr it is necessary to calculate a new t0.
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Figure 14: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.05m d’épaisseur avec ϵr = 5.0, µr = 1.0, pour f = 3.108 Hertz

8 Conclusion

In a first part of this paper, we present an integral formulation with HOIBC to solve

Mawwell’s equations and validate the method with several numerical results. Then, we apply

HOIBC for a ground plane in 2D. We apply Meixner’s conditions to take account the ground

plane. Now we study discontinuity in 3D.
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Figure 15: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.05m d’épaisseur avec ϵr = 5.0, µr = 1.0, pour f = 3.108 Hertz
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Figure 16: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.02m d’épaisseur avec ϵr = 5.0, µr = 1.0, pour f = 3.108 Hertz
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Figure 17: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.02m d’épaisseur avec ϵr = 3.0, µr = 1.0, pour f = 3.108 Hertz
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Figure 18: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.05m d’épaisseur avec ϵr = 5.0, µr = 1.0, pour f = 19.108 Hertz
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Figure 19: LER d’une rainure rectangulaire de 3m de longueur remplie d’une couche de diélectrique
de 0.02m d’épaisseur avec ϵr = 3.0, µr = 1.0, pour f = 1, 9.108 Hertz
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problème de Maxwell en régime harmonique. PhD thesis, CY Cergy Paris Université, 2022.
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