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ABSTRACT

Deep models have been shown to tend to fit the target function from low to high frequencies (a phenomenon
called the frequency principle of deep learning). One may hypothesize that such property can be leveraged
for better training of deep learning models, in particular for segmentation tasks where annotated datasets are
often small. In this paper, we exploit this property to propose a new training method based on frequency-
domain disentanglement. It consists of three main stages. First, it disentangles the image into high- and
low-frequency components. Then, the segmentation network model learns them separately (the approach is
general and can use any segmentation network as backbone). Finally, feature fusion is performed to complete
the downstream task. The method was applied to the segmentation of the red and dentate nuclei in Quantitative
Susceptibility Mapping (QSM) data and to three tasks of the Medical Segmentation Decathlon (MSD) challenge
under different training sample sizes. For segmenting the red and dentate nuclei and the heart, the proposed
approach resulted in considerable improvements over the baseline (respectively between 8 and 16 points of
Dice and between 5 and 8 points). On the other hand, there was no improvement for the spleen and the
hippocampus. We believe that these intriguing results, which echo theoretical work on the frequency principle
of deep learning, are of interest for discussion at the conference. The source code is publicly available at:
https://github.com/GuanghuiFU/frequency_disentangled_learning.
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1. INTRODUCTION

Deep learning is particularly powerful for medical image segmentation but its performance can be limited by
the lack of training data.1 Xu et al.2 and Rahamman et al.3 found that deep networks tend to fit from low
to high frequency information during training. This phenomenon was referred to as the frequency principle
(F-principle) of deep learning.2 The unbalanced learning of high- and low-frequency information during training
requires a large amount of data to produce reliable results. Tang et al.4 analyzed from the frequency domain
and proved that cascaded convolutional decoder networks are more likely to weaken high-frequency components.
From the above references, we can conclude that different frequencies play different roles in the learning process
of deep networks. Therefore, to effectively learn information, the learning process must balance between high-
and low-frequency components. Furthermore, it has been shown that CNN decoders (which are a part of most
deep learning segmentation methods) weaken the impact of high-frequency information during training.4 One
may thus hypothesize that disentangling image information into high- and low-frequency components may lead
to improved segmentation results.
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Various recent works have proposed to exploit disentanglement in deep learning. Azad et al.5 proposed a
frequency re-calibration U-Net for medical image segmentation, by introducing the Laplacian pyramid in the U-
shaped structure. It allowed to better generalize with few training data. Liu et al.6 used frequency refinement to
improve adversarial defense for several biomedical image segmentation tasks. McIntosh et al.7 proposed a wavelet
transform-based model and showed that extra high-frequency components can increase performance. Charstias et
al.8 proposed to decompose cardiac images into spatial anatomical factors and non-spatial modality factors using
a variational autoencoder. Liu et al.9 proposed a method for optical coherence tomography angiography (OCTA)
segmentation based on disentangling images into the anatomy component and the local contrast component from
paired OCTA scans. The disentangling module is implemented by a conditional variational autoencoder (CVAE).
Furthermore, several works have used frequency decomposition for domain adaptation, generalization, or prior
knowledge introduction.10–12 However, the above approaches may be complex to train and implement. Moreover,
they may be specific to a given architecture. Finally, most of them did not specifically assess the impact in the
low-training size regime.

In this paper, we propose to perform medical image segmentation using a simple disentanglement into high-
and low-frequency parts. The method has two advantages: it is conceptually simple and it can be used with any
type of segmentation network.

2. METHODS

The proposed method consists of two steps: i) frequency domain disentangling and feature learning; ii) frequency
domain fusion. Two types of fusion are considered. In early fusion, the fusion is done before feeding the result to
a segmentation network. In late fusion, only the high frequency information is fed to the segmentation network
and the result is fused with low frequency features. The overall workflow of the approach can be seen in Figure 1.
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Figure 1. Processing flow of the proposed method. We introduce two ways of fusion: early fusion and late fusion.

2.1 Frequency domain disentangling and feature learning

Given samples i ∈ I, where I ⊂ RNx×Ny×Nz is a set of images, the disentangling operation is achieved by first
transferring to Fourier space, and separating the high- and low-frequency components as follows:

Hθ(i) = F(i)

[
Nx × (1− θ)

2
:
Nx × (1 + θ)

2
,
Ny × (1− θ)

2
:
Ny × (1 + θ)

2
, :

]
Lθ(i) = F(i)−H(i)

(1)

where F(i) represents the Fourier transform of i, Lθ(i) is the extraction of the low-frequency part of i, Hθ(i) is
the high-frequency part and θ ∈ (0, 1) is a parameter that controls the high/low frequency separation. We then
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apply the inverse Fourier transform (F−1) to obtain high- and low-frequency parts in image space:

Lθ(i) = F−1(Lθ(i))

Hθ(i) = F−1(Hθ(i))
(2)

Lθ(i) andHθ(i) are then each fed to a convolutional layer and the outputs are respectively denoted as Oθ
L and Oθ

H .
Figure 2 illustrates the transformation of the QSM image into frequency domain space, aimed at distinguishing
between high and low frequencies. In this representation, the central region corresponds to low frequencies, while
the borders indicate high frequencies. Notably, the low frequency segment is defined as encompassing a 10%
width of the image.

Figure 2. An example of QSM image frequency disentanglement. This figure depicts the process involving FFT (Fast
Fourier Transform) and IFFT (Inverse Fast Fourier Transform). It highlights how high frequencies correlate with brain
structures within the image, whereas low frequencies are associated with image contrast.

The F-principle indicates that models tend to first fit low-frequency information. Thus, in particular with low
sample size, there is a risk that high-frequency information is not adequately learnt. High-frequency information
represents structural details that are essential in medical tasks. Our approach addresses this issue by utilizing
a simple disentanglement operation that forces the model to balance the learning process for both high and
low-frequency information.

2.2 Feature fusion after disentangled learning

The fusion operation can be done at two different stages: early fusion and late fusion. In the case of early fusion,
low- and high-frequency outputs Oθ

L and Oθ
H are fused before being fed to a segmentation network. In the case

of late fusion, only the high frequency is fed to a segmentation network, resulting in a result denoted as Sθ
H

which is fused with Oθ
L.

3. EXPERIMENTS AND RESULTS

3.1 Implementation details

Our code is developed based on the PyTorch framework.13 We used the open-source Python library TorchIO14

for reshaping images to the same size (for a given task) and for min-max normalization. We used Adam15

as optimizer with a learning rate of 1e-3. We did not apply any hyperparameter selection techniques or data
augmentation. In our experiments, we used a 3D-UNet16 as segmentation network and Dice as loss function17

but the approach is general and could be applied to other models.

3



3.2 Datasets and experiments

We conducted experiments on four segmentation tasks. The first task is the segmentation of the red nucleus
and dentate nuclei from MRI quantitative susceptibility mapping (QSM) data. The three other tasks are the
segmentation of the spleen, of the heart and of the hippocampus from the publicly available Medical Segmentation
Decathlon (MSD).18 For red nucleus segmentation, we studied a total of 80 participants including 18 healthy
subjects, 46 patients with early Parkinson’s disease (i.e. disease duration below 4 years), and 16 patients
with prodromal parkinsonism (idiopathic rapid eye movement sleep behavior disorder-iRBD), recruited between
May 2015 and January 2019 as part of the ICEBERG cohort. In some participants, the boundaries of the
dentate nucleus were heavily affected by artifacts, making them impossible to distinguish. Such participants
were excluded from the dentate nucleus segmentation task which included 67 participants including 17 healthy
subjects, 39 patients with early Parkinson’s disease, and 11 patients with prodromal parkinsonism (training,
validation and test sets comprised 42, 11, and 14 participants, respectively). The QSM were generated from
multi-echo 3D GRE (12 echo times ranging from 4 ms to 37 ms) with a full brain coverage at an isotropic voxel
resolution of 1 mm3.

Each dataset was split into training, validation and test sets. The splits were done at the participant level to
avoid any data leakage.19 We studied the performance when varying the size of the training set, ranging from
very small size (4 samples) to full training set (166 participants for the hippocampus task), while the validation
and test sets were left unchanged. In order to avoid being biased by a lucky (or unlucky) subsampling, for a given
training set size, we randomly drawn 10 training subsamples, trained separately on each of the 10 subsamples
and averaged the results. The datasets and the splits are summarized in Table 1. The performance metrics were
the Dice coefficient and the 95% Hausdorff distance. We assessed whether the average Dice was significantly
higher with the frequency disentanglement than without using paired Student’s t t-tests on the test set (with
Bonferroni correction across the four independent tasks). Figure 3 shows the data and the region of interest
for each segmentation task. Furthermore, Figure 4 displays the separated visualizations of the high and low
frequency regions within our experimental data.

Table 1. Characteristics of the 3D medical imaging datasets.
Data type Dataset Region(s) Train+val Test Image Size
3D MRI [Local] ICEBERG Red nucleus 51+13 16 160,160,128
3D MRI [Local] ICEBERG Dentate nucleus 42+11 14 160,160,128
3D CT [Public] Spleen Full organ 25+7 9 256,256,128
3D MRI [Public] Heart Full organ 12+4 4 320,320,128
3D MRI [Public] Hippocampus Anterior, Posterior 166+42 52 56, 56, 40

3.3 Results

The results are displayed in Table 2 and Table 3. Frequency disentanglement (either early or late stage) resulted in
substantial and statistically significant increases in performance for the red nucleus and dentate nucleus (between
8 and 16 points of Dice) and the heart (between 5 and 8 points). However, no improvement was observed for
the spleen and the hippocampus. As can be expected, across all tasks, performances increased with the training
set size. For the red and dentate nuclei, the strongest improvements were observed when training with very few
samples (e.g. 16 points when training with four samples). There was no major difference between early and late
fusion.

4. DISCUSSION

Our method is grounded on the frequency principle of deep learning. Conventional training process can result
in asynchronous learning in the frequency domain. Our solution is to disentangle the data without the need to
modify the model architecture or employ other training techniques. This method has the benefit of being simple
to implement and applicable with any segmentation network. We propose two fusion strategies: early and late.
In our experiments, we did not observe any major or systematic difference in performance between the two.
However, the early fusion strategy offers more flexibility and is not restricted to an encoder-decoder architecture.
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Figure 3. These are examples of all the datasets we used for model evaluation. We overlap the region of interest (right
part) and visualize them in three planes.

We performed a rigorous evaluation using an independent test set separated from the very beginning, reporting
unbiased SEMs and statistical tests computed on the test set and using multiple resamplings of the training set
to obtain robust estimates. The use of frequency disentanglement (FD) led to considerable improvement in
performances for the red nucleus and the heart segmentation. We believe that it is quite remarkable that such
a simple strategy results in such gains of performance. However, this was not the case for the spleen and
hippocampus tasks. It remains unclear why FD is beneficial in some cases but not in others. One can only
speculate that this is due to some specific characteristics in the shape or appearance of the target objects.
Further experiments will be needed to explain this phenomenon.

In this preliminary work, we only tested our approach with a simple backbone model, the U-Net. Future work
should assess whether FD is also beneficial to more advanced segmentation architectures. Another limitation of
our approach is that one needs to choose the parameter θ which controls the separation between high and low
frequencies. We did not experiment with varying values of θ. It is possible that other values would have been
more adapted for some tasks. Future work could aim to integrate the parameter into the loss function as in
reference.20

In summary, we presented a novel, yet simple, segmentation approach based on disentangling of frequency
components. When applied to the red and dentate nuclei and the heart, it provided considerable improvements
in performance. We believe that these intriguing results are of interest for the community.
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