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ABSTRACT
The abundance of Educational Resources (ERs) has allowed people
to have access to a vast amount of knowledge. However, it can
be difficult, for both educators and learners, to navigate through
these resources. One way to facilitate navigation is to identify
useful relations between these resources. This can improve the
teaching and learning experiences by allowing the users to go from
one resource to another based on the identified relations, such as
precedence. In this work, we introduce the notion of precedability
between educational resources; whether a resource A can precede
another resource B. Then, we propose a two-step method to identify
precedability relations between educational resources. Our method
structures the educational resources in an enriched Knowledge
Graph (KG). Then, it uses a Graph Neural Network (GNN) model to
predict precedability relations. Our method performed better than
multiple baselines on different benchmarks.

CCS CONCEPTS
• Applied computing → Education; • Computing method-
ologies → Knowledge representation and reasoning; Neural
networks.
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1 INTRODUCTION
In the past few years, e-learning has seen an increase in popularity,
especially during the Covid period. One of the reasons behind this
increased popularity is the abundance of Educational Resources
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(ERs) such as video lectures, blogs, and books that were made avail-
able online by universities and professors. This learning approach
had a great impact on people as it enables them to learn from any-
where on Earth using any resource the learner finds interesting.
Open Educational Resources (OERs) are resources that permit no-
cost access and are found on the public domain or are under an
open license. They represent a great opportunity for the individ-
uals to unleash their potential. This can be especially beneficial
to people who do not have access to quality educational content
due to their disadvantaged background for example. However, the
heterogeneity of these OERs, and ERs more generally, as well as
their enormous quantity makes it hard to navigate through them.
Therefore, organizing these OERs and facilitating the navigation
between them is an important issue. By addressing it, we can im-
prove the learning experiences for individuals, thereby leading to a
positive societal impact.

Let us assume that a learner wants to learn about a complex
topic. Generally, complex topics are not covered in one ER only
(one video for example). This leads the learner to seek out another
ER to fulfill her knowledge quest. However, this quest is not always
a straightforward procedure. Sometimes, learners struggle to find an
appropriate follow-up ER. Recommender systems and personalized
learning path systems can solve this problem. Nevertheless, not
all the platforms have such systems. Thus, identifying possible
precedence relations, which we call precedability, between different
resources can enhance the learning experience. It can also empower
teachers by offering them a set of ordered ERs that can be used to
construct new courses, which is the aim of the CLARA project1,
the project that this contribution is a part of.

Identifying precedability relations between ERs is a relatively
new domain that has gained in popularity in the last decade. The
techniques found in the literature have some limitations. For in-
stance, some techniques rely on the explicit elicitation of the con-
cepts covered in the ERs as well as the prerequisite relations be-
tween these concepts ([17] for example). Other techniques do not
take full advantage of the information found in the ER ([6] for ex-
ample). While the rest of the techniques do not use the most recent
methods and obtain suboptimal results that can be significantly
improved by using other approaches ([8] for example).

The goal of this work is to address the challenge of automati-
cally predicting precedability between ERs. Our proposed method,
PreSAGE, does not need any meta-information about the ER (like
the concepts covered and their prerequisite relations, authors, etc),
1https://project.inria.fr/clara/
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it only requires the raw text of the ERs. It takes full advantage of the
ERs’ texts by constructing a Knowledge Graph (KG) that regroups
all the ERs as well as information extracted from the structured con-
tent of DBpedia. Then, it predicts precedability relations between
ERs using a Graph Neural Network (GNN) called GraphSAGE on
the constructed KG. Our contribution is two-fold :

• We introduce a new terminology, that of ’precedability’, to
better address this issue, as we elucidate why terms like
’precedence’ and ’prerequisite’ may not adequately capture
the complexity of the problem.

• We formulate the problem of precedability prediction as a
binary classification problem and propose a method based
on GNNs to solve it.

To present our contribution, we start by discussing the relatedworks
in Section 2. We introduce the usage of the term precedability in
education, discuss the differences between the terms used, define
the problem then present our method in Section 3. We follow up
by conducting an experimental evaluation in which we compare
our method to several baselines and carry out an ablation study of
the architecture proposed in Section 4. We conclude in Section 5 by
recapitulating the work done and discussing future research paths.

2 STATE OF THE ART
There are multiple works that have addressed the problem of identi-
fying prerequisite and precedence relations. Although these works
have used different approaches, we can distinguish two main fami-
lies of approaches. The first family of approaches takes into account
the concepts related to the ERs. These concepts are topics covered
by the ER. For example, an ER about Machine Learning can be
related to the concepts : Classification, Gradient descent, etc. The
second family does not use concepts and relies solely on the raw
text of the ERs. Table 1 summarizes the related works and highlights
the differences between the approaches in terms of if/how they use
concepts as well as the raw text, the method used, and what data
structures are used.

For the first family, despite the use of concepts, there are different
ways with which these concepts were obtained. They can either be
extracted [14], [26], provided [24], [18], or provided then crowd-
sourced [17]. Some of these approaches use the Reference Distance
(RefD) metric [14] and its generalization to quantify precedabil-
ity between pairs of ERs ([26], [22]). The remaining approaches
formulate the precedability identification problem as a binary clas-
sification problem and use different classification models such as
the MaxEnt model [17] or the SVM and KNN models [24] to predict
the presence or absence of precedability between pairs of ERs.

For the second family, they formulate the task as a binary clas-
sification problem. They use different methods to process the text
followed by different classification models. [9] crafts some features
that are later fed to different classifiers. [6] segmented the ERs’
texts into overlapping chunks that are fed to a Recurrent Neural
Network (RNN) to generate representations for the ERs. They later
fed pairs of ER representations to a Multilayer Perceptron (MLP).
[8] generated text embeddings for the ERs’ texts then fed pairs of
text embeddings to different classifiers.

There is a similar line of work that studies techniques for extract-
ing concept-level prerequisite relations [13], [15], [1], [19], [25],

Table 1: Related work summary.

Method Concepts Text Method Data
structures

[17] Crowd-
sourced

✓ MaxEnt Subgraphs

[14] Extracted ✓ Metric ×
[24] Provided × SVM, KNN Graphs
[9] × ✓ Different

classifiers
×

[26] Extracted × Metric ×
[6] × ✓ RNN + FNN ×
[8] × ✓ FastText +

classifier
×

[22] Extracted ✓ Metric ×
[18] Provided ✓ Different

classifiers
×

usually by structuring them in the form of a graph. These methods
can be later used to infer course prerequisite relations using the
RefD metric[14]. [22] is an example of how this can be done.

Generative AI and LLMs have made massive advancements re-
cently. Although there are a variety of ways with which it has been
exploited in education ([5] for example), it has not yet been used to
tackle the problem that we are discussing in this paper.

2.1 Research questions
Although the methods covered in the previous section use different
approaches, we can notice some similarities and trends between
some of them (Table 1). While analyzing these works, some impor-
tant questions arise :

• RQ1 : Can the concepts related to the ERs help in predicting
precedability?

• RQ2 : What ER representations are most efficient for pre-
dicting precedability between different ERs?

• RQ3 : Does using expressive data structures such as graphs
help to better represent ERs?

• RQ4 :Which models are the most efficient in such tasks?

3 CONTRIBUTIONS
In this section, we will present our contributions. In order to do
so, we start by discussing the difference between the notions of
prerequisite, precedence, and precedability and explain why the
term precedability is more suitable for such problems. Then, we
give a formal definition for the problem, make a few hypotheses
from which the architecture was inspired, then present the different
component of this chosen architecture.

3.1 Prerequisite vs precedence vs precedability
We believe that using the appropriate terminology is necessary
in analyzing such problems. Therefore, we analyze the notions
commonly used in such tasks then propose the usage of a new term
that is more suitable : Precedability.
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According to Wikidiff2, the difference between prerequisite and
precedent is that prerequisite is required as a prior condition of
something else; necessary or indispensable while precedent is hap-
pening or taking place earlier in time; previous or preceding. In
other words, precedence is a more general term than prerequisite.

In most works, researchers try to find either prerequisite [17] or
precedence [22] relations between ERs. Despite it being a reason-
able problem, the data available is often extracted from courses. In
these courses, we find a succession of ERs forming learning paths.
However, two successive ERs in such learning paths do not nec-
essarily have a prerequisite relation. We can find two successive
relations that can be interchangeable. For example, given three ERs
about the topics of SVMs, Decision Trees, and Random Forests. It
is clear that in order to learn about Random Forests, the learner
must first learn about Decision Trees, this is a prerequisite relation.
However, for SVMs, they can be learned before or after the first
two depending on the subjective choice of the person constructing
this sequence.

Since this task is subjective, using the term precedence implies
that there is only one coherent order that should be respected.
Therefore we suggest the use of the term precedability which has
not been used before in this domain. It was used in the domains of
linguistics, and more specifically in pragmatics, as well as in biology
and chemistry when discussing Autopoiesis systems. Precedability
can be defined as the possibility of one element to precede another.
Therefore, precedability is a more general term for prerequisite and
precedence. The use of this term is more adequate to describe the
task at hand given the nature of the data and the subjectivity of the
task.

3.2 Problem definition
Learning sequences are constructed from ERs ordered in a coherent
manner. This order, despite being subjective, follows a certain logic
that can be captured. For a learning sequence L = {𝑆1, 𝑆2, . . . , 𝑆𝑛},
with 𝑆𝑖 ∈ S andS being the set of all ERs, there is a precedability re-
lation between every two successive ERs 𝑆𝑖 and 𝑆𝑖+1 (1 ≤ 𝑖 ≤ 𝑛 − 1).
This precedability relation reflects the presence of one of two rela-
tions :

Prerequisite (P). A strict partial order relation that determines
the order necessary for understanding different ERs; in order to
understand 𝑆𝑖+1 we should first understand 𝑆𝑖 . For example, you
need to understand Decision Trees before Random Forests. P is
irreflexive, asymmetric, and transitive.

Interchangeability (I). A non-strict partial order relation that
informs us about the interchangeability of two ERs. For example,
when learning about different ML models, we can learn about SVMs
before or after learning about Decision Trees. I is reflexive, sym-
metric, and transitive.

Since these two relations are transitive, this means that we
can have a precedability relation between two ERs 𝑆𝑖 and 𝑆𝑖+𝑗
(1 ≤ 𝑖 ≤ 𝑖 + 𝑗 ≤ 𝑛) from the learning sequence L.

We use these two relations (P and I) to mathematically define
precedability as a function F : S × S → {0, 1}. It determines, for a
pair of ERs, if the first can precede the second in a learning sequence.

2https://wikidiff.com/precedent/prerequisite

F (𝑥,𝑦) =

{
1, if 𝑥P𝑦 ∨ 𝑥I𝑦
0, else

with (𝑥,𝑦) ∈ S × S (1)

The task of predicting precedability relations can be done by
searching for an approximation of the function F .

3.3 Architecture
To design a method that approximates the function F , we formu-
lated several hypotheses that served as the foundation for designing
the architecture. These hypotheses were formulated based on the
research questions made in the previous section and are presented
in the same order :

• H1 : Concepts can be strong indicators for pedagogic conti-
nuity in ERs regardless of whether they were extracted or
given.

• H2 : ER representations that vehicle semantic information
of the ERs are more efficient in identifying precedability
between ERs.

• H3 : Graphs are powerful structures that can be used to
illustrate relations between concepts and ERs and (H4) on
top of which powerful machine learning models can be built.

To predict precedability, we present our method PreSAGE that
is mainly composed of two steps (Figure 1). In the first one, we do
some preprocessing to go from ERs’ texts to a rich KG. This prepro-
cessing consists of extracting concepts from raw text. The ERs as
well as these concepts are used to constitute the KG. In the second
step we use a GNN model called GraphSAGE to learn representa-
tions of the ERs from the KG created. These ER representations are
passed to a Multilayer Perceptron (MLP) to predict precedability
relations between ER pairs by capturing both prerequisite and in-
terchangeability relations. The name PreSAGE is a concatenation of
the first part Pre which stands for preprocessing or precedability and
SAGE comes from the name of the GNN model used GraphSAGE.

3.3.1 Preprocessing. This is the first step of the method, it is com-
posed of two phases:

Enrichment : The first phase of preprocessing consists of ex-
tracting the concepts from the ERs’ texts which corresponds to the
hypothesis H1. In this step, there are many methods that can be
applied. In our system we chose an approach based on Wikification
using a tool called Wikifier3 [4]. Wikification is a semantic annota-
tion technique that uses Wikipedia as a source of possible semantic
annotations by disambiguating natural language text and mapping
mentions into canonical entities also known as Wikipedia concepts
[12]. Furthermore, we add for every concept other secondary con-
cepts to which it is related using DBpedia4. Every extracted concept,
which is a Wikipedia concept, is found in DBpedia and is associated
with other concepts through different relations. For example, the
concept Law is linked to the concept Speciality. The goal of adding
these secondary concepts is to have more information that can be
used to identify similarities between ERs which can lead to making
more informed predictions. For simplicity, the main concepts which
are the concepts directly extracted from the ER text will referred to
3https://wikifier.org/
4https://www.dbpedia.org/

https://wikidiff.com/precedent/prerequisite
https://wikifier.org/
https://www.dbpedia.org/
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Figure 1: PreSAGE architecture.

as concepts. As for the secondary concepts extracted from DBpedia
using the main concepts, will be referred to as terms. Figure 2 shows
an example of how an ER can be enriched.

KG construction : The second phase of preprocessing consists
of creating a rich KG which corresponds to the hypothesis H3. In
this KG, the ERs, the concepts extracted, as well as the terms are
represented as nodes. For the edges, we create edges between every
ER and the concepts it covers, every concept and the terms to which
it is linked, as well as precedability relations between ERs. Figure 3
shows a sample subgraph from the created KG. We have the three
types of nodes (ERs, concepts, terms) as well as the three types of
edges (covers, associated, precedes). The "precede" relations are the
ones we are trying to predict.

3.3.2 Model. This is the second step of the method, it is also com-
posed of two phases::

Feature generation : Graph Representation Learning has been
increasing in popularity after the impressive results it has achieved
in different tasks in which the data is, or can be transformed to,
a graph. The goal of graph representation learning techniques is
to learn embeddings, for nodes, edges, subgraphs or entire graphs
depending on the task we want to accomplish. These embeddings
can be later used for node classification, relation prediction, commu-
nity detection, and graph classification, regression and clustering
[11]. Although there are a lot of Graph Representation Learning
techniques, the ones based on Machine Learning, and more specifi-
cally GNNs, are particularly interesting due to their versatility and
adaptability. Our goal is to use such techniques on the enriched KG
in order to predict precedability relations between ER nodes which
corresponds to the hypothesis H4.

There are a lot of GNN models from which we can chose. In
order to chose the adequate model, we have a list of criteria to
abide by. According to the hypothesis H1, ERs that have a preced-
ability relation should have similar neighborhoods in the KG. This
means that the information found in neighborhoods is of extreme
importance and should be taken into account by the chosen model.
Furthermore, the model needs to take into account the contents of

the ERs since they carry useful information. In addition, we might
want to add new ERs to the KG later on, thus the chosen model
must also be able to perform inductive reasoning over new ERs.

GNNs are the version of neural networks adapted to graph data,
they are the most widely used graph models. According to [21]’s
taxonomy, there are 4 families for GNN models : recurrent, con-
volutional, autoencoders, and spatial-temporal. Recurrent are the
first type of models suggested. They have some limitations such as
the use of the same layer multiple times instead of different layers
which limits the learning ability of these models. Convolutional
models can use different layers which solves the recurrent model
problems. Autoencoders are relatively hard to train and tend to
learn the general structure of the graph which is not necessary for
our task. Whereas spatial-temporal GNNs are used in tasks where
the graphs or the features are dynamic which is not our case. This
makes convolutional models clear favorites for this task.

We used an inductive convolutional model called GraphSAGE
[10]. This model leverages node feature information to generate
node embeddings. It does that by learning functions that generate
these embeddings through sampling and aggregating features from
local neighborhoods while maximizing similarity of embeddings be-
tween similar nodes and minimizing similarity of embeddings from
different nodes. This model is efficient, simple, and can be easily
generalized to larger graphs through sampling. The aforementioned
characteristics make this model a perfect choice.

Since we mentioned that GraphSAGE generates node embed-
dings from node features, we need to have initial node features that
will be used by the model. For that purpose, we generate represen-
tations for the ER nodes using an embedding method specific to
ERs called EMBEDD-ER [2]. This method generates embeddings
that are content-focused and contain semantic information since
it leverages a model that has been trained on Wikipedia called
Wikipedia2Vec [23]. As for the concept and term nodes, we directly
use Wikipedia2Vec since they already correspond to Wikipedia
pages. The usage of these representations are inspired by the hy-
pothesis H2. GraphSAGE propagates these node features within
the graph to generate new node embeddings that take into account
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Figure 2: Concept extraction and term enrichment.

Figure 3: Subgraph example from the created KG.

the information found in their neighborhoods. At the end, these
node embeddings will vehicle information about the node itself as
well as its neighborhood.

Prediction : After generating embeddings for the nodes in the
enriched KG, we used a Multilayer Perceptron (MLP) as a classifier
that takes pairs of ER nodes as an input and predicts whether there
is a precedability relation between them or not.

Figure 1 illustrates the process of classification, starting from
initial ERs that are used to construct a KG. Then, we use a GNN
(GraphSAGE) to learn new representations for the ER nodes. These
representations are then fed to an MLP to make predictions.

4 EVALUATION
In this section, we present the experiments done to evaluate our
model against several baselines in a binary classification task to de-
termine whether there is a precedability relation between ER pairs.
In these experiments, we will be referring to our model as SAGE
for simplicity. These experiments are conducted on a machine that
has an 11th Gen Intel i7-11850H @ 2.50GHz × 16 processor, a 16GB
of RAM, and a 64 bit Fedora Linux 35 OS.

4.1 Data
We have made the conscious choice to opt for the use of Open
Educational Resources (OERs) in compliance to UNESCO’s recom-
mendations5. OERs are learning, teaching and research materials
that have been released under an open license, that permit no-cost
access, re-use, re-purpose, adaptation and redistribution by others.

5https://www.unesco.org/en/legal-affairs/recommendation-open-educational-
resources-oer

This is due to two main reasons. First, using OERs, offers access to
a vast amount of knowledge due to the participation of different ER
providers in this initiative (universities, online learning platforms,
etc). Second, since we want to identify such relations between re-
sources, we need to make sure that we can re-use and re-purpose
the ERs as the goal of identifying such relations is to eventually
combine them to achieve a learning purpose.

Since our approach is learning-based, the quality of the results
depends on the quality of the data. Therefore, we will be using 4
OER datasets from reputable institutes, 3 of which we constructed
by extracting transcripts from YouTube videos from MIT, Stanford
and Khan academy using the tool ConstrucTED [3], and one dataset
from Yale [6]. In these datasets, we have a set of courses between
some of which there are precedability relations extracted from the
order defined by the providers. We assume that these precedability
relations represent good examples from which our model can learn.
Furthermore, we also added randomly-sampled negative precedabil-
ity relation examples to allow our models to properly learn by both
seeing positive and negative examples. The details of the datasets
used are shown in Table 2.

Table 2: Information and statistics about the datasets.

Dataset OERs Relations Negative samples
Yale 2550 423 338
MIT 1857 984 787
Stanford 1010 431 344
Khan 1039 1024 819

https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
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4.2 Results
We have chosen a few baselines to which we compared our model in
a binary classification scenario. The baselines chosen are TANN [6]
for which the results reported were taken from the article, [8] which
we implemented ourselves (we refer to this method as FastText6),
and a third baseline, inspired by the previous one, that we created by
replacing FastText with BERT [7] to generate embeddings. We used
a 5-fold cross-validation strategy for evaluation using accuracy as
a metric. The models’ parameters were chosen using a grid search
strategy. The code as well as the datasets are publicly available7.

The results from Table 3 show that our method achieves better
results than the rest of the methods. These results are also stable
compared to those of other methods. Our method achieves better
results for two reasons mainly. The first one is the richness and
the provided information in the form of the KG that we created in
the preprocessing step. This makes the predictions more informed
about neighboring notions and adds more context. Given that these
neighboring notions are concepts extracted from the ERs, this con-
firms the hypothesisH1. Furthermore, given the fact that a KG was
used to represent the ERs and link them to different information
such as the concepts, it shows that the use of a graph-based data
structure can help to improve the accuracy of predictions. This con-
firms the hypothesis H3. The second reason is the way with which
we use this information. This aspect is shown in two ways; first,
the embeddings of the text used as node information. We can even
notice that the BERT baselines generally perform better than the
FastText baselines which shows that some embeddings are better
than others in capturing precedability. The usage of EMBEDD-ER
and Wikipedia2Vec to generate the initial node features further
highlights the fact that using features that carry semantic infor-
mation leads to better results which confirms the hypothesis H2.
This hypothesis will be further discussed in the ablation study in
Section 4.3. Second, given the rich KG and the node information
we also must use the appropriate GNN model to efficiently learn
how to generate the most congruous embedding with respect to the
prediction task at hand. This aspect will also be further discussed
in the ablation study.

4.3 Ablation study
In order to better understand the different components of our ar-
chitecture, we created different versions of our model by altering
different parts of the architecture such as the KG creation method,
the initial node features, the GNN model as well as the inputs to the
classification model. These derived models were tested using the
same experimental setup as before; 5-fold cross-validation strategy
using accuracy as a metric.

4.3.1 KG construction. When enriching the KG with terms from
DBpedia, there are different types of terms that can be added. In
the created KG, we added secondary concepts that are associated
to the main concepts by a dcterms:subject relation. This relation
links a concept to other concepts for which the first concept is a
topic. To evaluate the quality of the KG, we create another KG using
another relation. This new KG contains the ERs, the concepts, as
6The classifiers used for this method are : LR = Linear Regression - SVM = SVM with a
linear kernel - RBF = SVM with an RBF kernel - RF = Random Forest.
7Datasets and code : https://github.com/AymenRaouf/PrecedabilityOER

well as the terms that are associated to the main concepts using a
rdf:type relation. This version of the architecture will be referred to
as RDFT.

4.3.2 Initial node features. Instead of using EMBEDD-ER to gener-
ate features for ER nodes and Wikipedia2Vec for the concepts, we
use the BERT model which showed superior performance in the
previous experiments. For the ERs, we generate embeddings for the
whole ER text. As for the concepts and terms, we use the labels to
generate the embeddings. This version of the architecture will be
referred to as BERT.

4.3.3 GNN model. We replaced the GraphSAGE GNN model with
two different models. First, a non-trainable message passing opera-
tor that aggregates the information from its neighborhood. Second,
an attention-based GNN model called GAT[20]. These versions of
the architecture will be referred to as Conv and GAT respectively.

4.3.4 Classification model inputs. In the initial architecture, we
feed the classificationmodel (MLP) pairs of ER features generated by
the GNNmodel. However, It can be interesting to feed it the features
generated by the GNN as well as the initial features generated by
the embedding model EMBEDD-ER. The intuition behind feeding
these initial node features to the MLP is to avoid oversmoothing
[16]. Oversmoothing occurs when we run a deep GNN and the
features of the nodes tend to become similar. If this occurs, feeding
the MLP the initial features can help it make better predictions since
we will be adding information about the ERs’ content. This version
of the architecture will be referred to as Rein (name derived from
Feature Reinjection).

From Figure 4, we can observe that the training time for all the
models, except for GAT,was less than oneminute. This is considered
acceptable for our experimental setup and given the computational
resources available. We can also observe that the original model
performs consistently well compared to the other derived models.
It performs better compared to the models that use a different
GNN model, namely GAT and Conv. Conv being a non-trainable
model, it lacks the ability to learn complex node representations.
GAT, a more complex model that is also more time-consuming
to train, does not perform better than SAGE. GAT can probably
obtain better results if we use larger parameters for the number
of attention heads or the number of layers for example. However,
it will take even more time to train which is not practical given
that it takes already six to seven more times the amount of time
necessary to train compared to SAGE. The results obtained by these
different models confirm the hypothesis H4 since SAGE, a graph
machine learning model, performs better and is more balanced.
The RDFT model, the one that exploits a different KG, produces
results that are similar to those produced by SAGE. However, while
inspecting the terms that were found in this new KG, we found
that some terms did not make sense. For example, the concept
Antibiotic was associated with the term Military Conflict. However,
the original KG did not seem to have such inconsistencies. This
might be the reason behind the advantage that SAGE has over
RDFT. As for BERT, it performs reasonably well and even manages
to surpass SAGE on the Stanford benchmark. This shows that the
BERT embeddings also manage to effectively capture the semantic
information needed to identify precedability. This can be due to

https://github.com/AymenRaouf/PrecedabilityOER
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Table 3: Rounded mean accuracy (%) results with standard deviation for the precedability relation classification task (Best in
bold, second best is underlined).

Data TANN FastText BERT SAGELR SVM RBF RF LR SVM RBF RF
Yale 80 58(±4) 56(±3) 77(±2) 68(±6) 74(±3) 70(±2)) 80(±3) 74(±5) 92(±1)
MIT × 56(±2) 50(±1) 75(±1) 73(±2) 65(±2) 56(±2)) 78(±1) 72(±2) 87(±2)
Stanford × 60(±5) 53(±2) 74(±2) 70(±3) 67(±3) 61(±3) 75(±4) 71(±5) 82(±4)
Khan × 55(±2) 42(±2) 77(±2) 69(±1) 40(±3) 39(±2) 70(±1) 59(±1) 83(±2)

Figure 4: Comparison of mean accuracy and training time between the original and derived models from the ablation study
with standard deviation (best in bold, second best in semi-bold).

the fact that a part of the corpus used to train BERT was extracted
from Wikipedia. This confirms the hypothesis H2. However, the
BERT embeddings are vectors of size 768 while the embeddings
generated by EMBEDD-ER and Wikipedia2Vec are vectors of size
300. This makes the size of embeddings used by SAGE almost 40%
the size of the BERT embeddings. Given the number of the ERs,
concepts and terms, it will be more efficient to use EMBEDD-ER and
Wikipedia2Vec instead of BERT in terms of storage. Finally, the Rein
model, the one that feeds the MLP both the initial features as well as
the GNN generated representations, performs well but not as good
as the SAGE model. This shows that the representations generated
by the GNN model were not oversmoothed. This means that the
information required to predict precedability is already found in
the GNN-generated representations. It is worth mentioning that
other derived models were tested but not reported in this work for
brevity.

The experiments that we conducted in Sections 4.2 and 4.3 con-
firmed the hypotheses made at the beginning of Section 3.3. The
confirmation of these hypotheses served as an answer to the re-
search questions raised in Section 2.1.

5 CONCLUSION
In this work, we presented a novel approach to predict precedability
relations between ERs. This method, which we named PreSAGE,
consists of two main steps. The first one involves the collection and
organization of information via the construction of an enriched KG.
The second step utilizes a GNN, namely GraphSAGE, to learn node
representations and predict precedability.

We focus on Open Educational Resources (OERs) since they can
be freely used by anyone. Detecting precedability relations between
OERs can encourage students to learn more, as they can navigate
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easily between resources without worrying about financial or legal
issues. This can even shift the learners’ focus to OERs, which in
turn can encourage more institutions to create additional OERs,
thereby enriching the publicly available knowledge.

Empirical results showed that PreSAGE performed better than
multiple baselines in accuracy, as well as other metrics that were
not reported in this work for brevity, due to its ability to capture
precedability through the use of its enriched graph structure. We
also demonstrated the importance of the different components
through the ablation study we carried out in which we compared
the proposed model to other derived models.

For futureworks, wewould like to test PreSAGE on other datasets
of similar and different domains and study the effect of changing
domains on the results. We also plan to create datasets that have
ERs covering the same topics with different levels of difficulty (for
high school and university courses for example) and analyze the
impact on the performance. It can also be interesting to test more
GNN models. We would also like to create rich educational KGs
from different OERs, enrich them, then use them in high level tasks
such as learning path creation or recommender systems as we be-
lieve that the identification of precedability relations is essential in
these tasks.
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