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Abstract. Draping and forming of textile reinforcements are usually performed thanks to finite 
element models with continuous media assumption. The specific purpose of mesoscale model is 
to faithfully reproduces defects like yarn buckling or gapping during the process. Such defects are 
crucial outputs because they have huge impacts on mechanical and permeability properties of the 
whole textile. However, mesoscopic analysis usually leads to expensive computation cost and 
needs to be optimized to propose a cost-effective response to this problem. Thus, this document 
aims to develop a solid-beam approach for mesoscale model, with coarse geometric assumption 
but with finite element and constitutive law formulation taking into account the fibrous aspect of 
the fabric. 
Introduction 
The principle of mesoscopic analysis is to consider each yarn of a reinforcement as a continuous 
medium which mimics the geometric description of the fabric, as for example, its weaving pattern. 
Thanks to periodicity, textile studies can be reduced to a representative volume element (RVE), or 
unit-cell. The RVE can be either modelled from CAD software or deduced from micro-computed 
tomography (µCT) which enables to access to characteristics within the textile [1, 2]. It can be 
especially useful when yarn cross section shape and contact areas are critical inputs of the 
simulation. Such models are commonly meshed with isoparametric hexahedral elements 
associated with transverse isotropic 3D constitutive laws, either hypoelastic [2, 3] or hyperelastic 
[4]. Typically, mesoscopic RVE analysis can be relevant to simulate characterization test of woven 
fabrics [5]. 

When the purpose consists in modelling the entire textile, macroscopic scale is often chosen 
because of its efficiency. It can predict defects such as wrinkling [6, 7] but mesoscale models are 
necessary to highlight yarn buckling or gaping. However, very detailed and rich modelling might 
not be the most accurate because of their high computational costs (about one week of computation 
in case of forming simulation). To tackle this problem, some mixed meso-macro models have been 
proposed to give local mesoscopic analysis on macroscopic model. These works were mostly 
focused on 2D and 3D woven fabrics forming processes [8, 9].  

Some assumptions can be made to simplify models and get more efficient computation with 
full mesoscopic analysis [10], but these models must be optimized to improve kinematic fidelity 
regarding experimental results. 

To properly model the behaviour of textiles, classical Cauchy mechanics is not relevant, as has 
been experimentally highlighted [11]. Indeed, since fibrous media kinematics is guided by quasi-
inextensibility of fibres and their relative sliding, tension and bending stiffness must be 
independent [12, 13]. These considerations motivated the development of a new finite element 
formulation which include the fibrous aspect [14, 15], which has mainly been used for macroscopic 
analysis so far. 
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In the present work, the formulation is extended to mesoscopic scale by modelling yarns as 
fibrous beams with deformable cross section. A new fibrous solid-beam element is developed for 
this purpose. 
Bending behaviour 
In order to ensure independence between tension and bending behaviour, a specific kinematic-
based method called neighbour element method (NEM) is used. It has been initially developed for 
stamping simulation of metal sheets [16], to calculate curvature of shell element, for out-of-plane 
bending, without using rotational degrees of freedom (DOF). The principle holds in the fact that 
rotations can be directly expressed though out-of-plane displacement of neighbouring elements 
nodes. In addition, specific boundary conditions must be defined when an has no neighbour, as 
proposed in [17, 18]. 

To calculate their curvature, fibres are considered as Bernoulli beams (see Fig.1), which means 
that their curvature is linear along their neutral axis and can be entirely determined by the cross-
section rotation of each side (see 𝜃𝜃𝑖𝑖 in Fig.1). In the case of a 2D problem, the NEM is represented 
in Fig. 2 and can be summarize as follows. 

 
Fig.1°: Scheme of the parametric curve of the neutral axis of a Bernoulli beam. 

For each beam of the model, its relative rotation with respect to its neighbour, (see 𝛼𝛼𝑖𝑖 in Fig.2) 
is known from the initial undeformed configuration. The rotation angle can be calculated thanks 
to the projection of the nodal displacement in the normal direction. Moreover, the two circular arcs 
interpolating either the three nodes on the left (𝑘𝑘, 𝑙𝑙,𝑚𝑚) (red curve on Fig.2) or the three nodes on 
the right (𝑙𝑙,𝑚𝑚,𝑝𝑝) (green curve on Fig.2) enable to calculate the cross-section orientation with 
relative rotation angles. 

  
Fig.2°: Illustration of the NEM for one beam element in 2D  

Each increment of relative rotation 𝛼𝛼𝑖𝑖 can be calculated with the incremental nodal 
displacement. As an example, this would be the formula for the 𝑘𝑘𝑘𝑘 two node Bernoulli beam 
represented in Fig.2: 

𝛿𝛿𝛿𝛿1 = 1
𝐿𝐿

(𝒏𝒏𝟏𝟏 ∙ 𝜹𝜹𝜹𝜹𝒍𝒍 − 𝒏𝒏𝟏𝟏 ∙ 𝜹𝜹𝒖𝒖𝒎𝒎)  (1) 
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with 𝒏𝒏𝟏𝟏 the unitary vector normal to the neutral axis elements, 𝜹𝜹𝜹𝜹𝒍𝒍 and 𝜹𝜹𝒖𝒖𝒎𝒎 the nodal incremental 
displacement of nodes 𝑘𝑘 and 𝑙𝑙 respectively. 

The proposed NEM is implemented in an explicit dynamic framework [19]. Summing over the 
increments for large displacement simulation, the integrated curvature 𝜒𝜒 of the element 𝑙𝑙𝑙𝑙 then 
writes: 

𝜒𝜒(𝑠𝑠) = 𝜕𝜕2𝑁𝑁𝑙𝑙
𝜕𝜕𝜕𝜕2

𝜃𝜃𝑙𝑙 + 𝜕𝜕2𝑁𝑁𝑚𝑚
𝜕𝜕𝜕𝜕2

𝜃𝜃𝑚𝑚  (2) 

where 𝑠𝑠 ∈ [0; 1] is the local coordinate of the beam element in its reference configuration (see 
Fig.1), 𝑁𝑁𝑙𝑙 and 𝑁𝑁𝑚𝑚 are the shape function associated to the bending mode, defined by: 

𝑁𝑁𝑙𝑙(𝑠𝑠) = 𝐿𝐿2(𝑠𝑠3 − 𝑠𝑠2) ;  𝑁𝑁𝑚𝑚(𝑠𝑠) = 𝐿𝐿2(𝑠𝑠3 − 2𝑠𝑠2 + 𝑠𝑠) (3) 

with 𝐿𝐿2 the length of the element of interest 𝑙𝑙𝑙𝑙 (see Fig.2). Then, the cross-section rotations at the 
nodes 𝑘𝑘 and 𝑙𝑙 are obtained by: 

𝜃𝜃𝑙𝑙 = − 𝐿𝐿2
𝐿𝐿2+𝐿𝐿1

(𝛼𝛼1 + 𝛼𝛼2) ;  𝜃𝜃𝑚𝑚 = 𝐿𝐿2
𝐿𝐿2+𝐿𝐿3

(𝛼𝛼3 − 𝛼𝛼2) (4) 

For a 3D formulation of the NEM, we assume that the curvature can be represented by a first 
order tensor whose components are deduced from the 2D formulation in two orthogonal planes 
containing the fibre direction.  

As for the material response, even if irreversible phenomena occur when a yarn is bent 
cyclically [20], elastic behaviour is sufficient to simulate textile forming process [21]. The present 
work thus assumes isotropic linear elastic bending behaviour, which has shown quite convincing 
results in previous fibrous element studies [14,15]. 
Behaviour of the yarn 
A yarn can be composed of thousands of more or less aligned fibres which are mostly free to 
rearrange and slide between each other. Consequently, the fibre direction is a preferential one and 
can be used to describe the material behaviour. It implies that a transverse isotropic law should be 
applied. Moreover, it has been stated that the fibre density does not evolve in the section orthogonal 
to the fibre direction [22]. As a consequence, the spheric and deviatoric parts of the stress tensor, 
reduced to the cross section, are decoupled. To achieving this decoupling, Charmetant et al. [23] 
proposed a transverse isotropic hyperelastic fibrous model, which relies on four deformation 
modes represented in Figure 3:  

(a) Elongation of the fibres  
(b) Compaction, representative of fibre density in the cross section 
(c) Distortion, representative of fibre rearrangement in the cross section 
(d) Longitudinal shearing, representative of fibre sliding  

 
Fig.3°: Charmetant law modes, a) elongation, b) compaction, c) distortion, d) shearing. 

Charmetant work was based on a special mode decomposition proposed by Criscione et al. [24] 
who defined, based on the assumption of transverse isotropy, an orthogonal frame in which the 
deformation gradient tensor F is written: 
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�𝐹𝐹 � = �
𝑓𝑓𝑚𝑚 𝑓𝑓𝑚𝑚1 𝑓𝑓𝑚𝑚1
0 𝑓𝑓11 0
0 0 𝑓𝑓22

�

�𝑀𝑀,𝑁𝑁1,𝑁𝑁2�

 (5) 

where 𝑀𝑀 is the unitary vector that represents the preferred direction of the fibres, and (𝑁𝑁1, 𝑁𝑁2) are 
two orthogonal unitary vectors, in the cross section, that stays orthogonal throughout the 
transformation. One of the Charmetant law innovation was to build a physically based set of 
invariants easily measurable experimentally. All of them are expressed from the deformation 
gradient tensor components (5): 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ln(𝑓𝑓𝑚𝑚) ; 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1
2

ln(𝑓𝑓11𝑓𝑓22) ;  𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
2

ln �𝑓𝑓11
𝑓𝑓22
�  ;  𝐼𝐼𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑓𝑓112+𝑓𝑓222

𝑓𝑓𝑚𝑚2  (6) 

Given the independency of each deformation mode, the energy potential is written as the sum of 
every single mode potential written as: 

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
1
2
𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 ;  𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 𝑖𝑖𝑖𝑖 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 0 𝑜𝑜𝑜𝑜 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 ;  

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
2
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 ;  𝑊𝑊𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 1

2
𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 (7) 

Fibrous Finite Element Formulation 
The present formulation is based on various assumptions [14, 15]:  

• Fictive fibres are considered all along the thickness of the element and they can be 
seen as unitary cross section Bernoulli beams sharing the same nodes as the element.  
• Deformation modes are fully independent so they might not obey to the same 
material law and do not need to be integrated in the same way into the element.  
• NEM are used [16, 17, 18].  

In the case of the solid-beam element, fictive fibres are located at the edge of the hexahedral 
element and are aligned with the ξ direction corresponding to the anisotropic one, i.e. the fibre’s 
direction, as represented in Figure 4. Therefore, the deformation modes occurring in the fibre 
direction (resp. cross section) are referred to as “longitudinal modes” (res. “transverse modes”). 
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Fig.°4: Fibrous solid-beam element scheme in its reference configuration. 

The tension behaviour is assumed to be linear elastic and will be integrated in a single Gauss 
point into the beam element. The same assumption is done for the bending behaviour, whose 
curvature will be calculated thanks to NEM at two Gauss points. The hexahedral element is a 
classical reduced integrated one with the transverse isotropic hyperelastic Charmetant law [23]. It 
handles the thickness behaviour of the yarn, which means compaction, transverse shear and 
longitudinal shear, illustrated in Figure 5. 

a)  b)  

c)  
Fig.5°: Thickness behaviour deformation modes a) transverse compression, b) transverse shear, 

c) longitudinal shear. 
Contrary to Charmetant law, tension deformation potential is considered null because 

superimposed beam elements already ensure this mode and the quasi-inextensibility of fibres. 
Consequently, since beams and hexahedral elements share the same nodes, longitudinal length will 
not extend when the element is compressed. 
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Numerical Analysis 
The efficiency and accuracy of this fibrous solid-beam element has been tested throughout the 
simulation of a cantilever test and compared with an experiment performed with a set of several 
layers of Hexcel G986 reinforcement held together by soft threads [14]. The right tip of the sample 
is clamped and the rest is free and subjected to its own weight. This test is relevant for observing 
material normal orientation, drawn in white on Fig.6 (a), as it has been done by Boisse et al. [11] 
to show that neither Kirchhoff nor Reissner assumptions hold.  

A qualitative comparison between experimental and numerical results has been performed 
based on kinematic considerations such as the orientations of material normal, the shape of the 
free tip and the thickness evolution along the longitudinal axis. 

Boundary conditions of the numerical model are: 
• Right tip nodes clamped. 
• Left tip nodes vertical displacement imposed. 

 
Fig.6°: Cantilever test on a multilayer reinforcement comparison between experiment and 

simulation 
Since each layer is free to slide on its neighbours, the free tip of the sample has a bevel shape 

and the material normal stays vertical. Furthermore, the thickness of the sample doesn’t change 
because the plies are held together and thus no delamination can appear. Thanks to this results, 
fibrous solid-beam element model will be able to properly simulate kinematic response of yarns.  
Summary 
A new solid-beam finite element formulation based on phenomenological observations on textile 
reinforcements is developed. It is a generalization of the fibrous element formulation for a 
mesoscopic modelling purpose. The neighbour element method is used to calculate curvature, 
which ensures that bending behaviour is fully independent of the other deformation modes. These 
modes are taken into account using Charmetant transverse isotropic hyperelastic law.  

This element will be tested on mesoscopic models soon. A characterization campaign is also 
yet to be done to identify Charmetant law parameters. 
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