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discretized with a high-order space-time nonconforming

method

Erik Burman∗, Guillaume Delay†, Alexandre Ern‡

July 19, 2024

Abstract

We are interested in solving the unique continuation problem for the wave equation, i.e., we
want to reconstruct the solution of the wave equation given its (noised) value in a subset of the
computational domain. Homogeneous Dirichlet boundary conditions are imposed, whereas the
initial datum is unknown. We discretize this problem using a space-time discontinuous Galerkin
method (including hybrid variables in space and in time) and look for the solution corresponding
to the saddle-point of a discrete Lagrangian. We establish discrete inf-sup stability and bound
the consistency error, leading to a priori estimates on the residual. Our main result proves
the convergence of the discrete solution to the exact solution in a shifted energy norm involving
weaker Sobolev norms than the standard energy norm for the wave equation. The proof combines
the above a priori bound with a conditional stability estimate at the continuous level. Finally,
we run numerical simulations to assess the performance of the method in practice. A static
condensation procedure is used to eliminate the cell unknowns and reduce the size of the linear
system.

Keywords: unique continuation, data assimilation, wave equation, hybridized discontinuous
Galerkin, error estimate, static condensation

1 Introduction

In the present work, we are interested in solving numerically a data assimilation problem subject
to the wave equation. Homogeneous Dirichlet boundary conditions are imposed, whereas initial
conditions are unknown. In order to compensate for the lack of initial datum, we use the
knowledge of the solution in a subdomain. We also investigate the influence of noise on this
additional datum. Specifically, we consider a bounded open domain Ω ⊂ Rd, d ∈ {1, 2, 3}, with
a smooth boundary ∂Ω, a subset $ ⊂ Ω, and a time interval J := (0, Tf ) with final time Tf > 0.
The assumption that ∂Ω is smooth has its limits in practice, owing to the hybrid nature of the
discretization method; see Remark 2. We denote by Q := J × Ω the computational domain.
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Our goal is to approximate the function u : Q→ R that satisfies

L(u) := ∂2
ttu−∆u = f in Q, (1a)

u = 0 on J × ∂Ω, (1b)

u = g in J ×$, (1c)

where f ∈ L2(Q) is a given source term and g ∈ H1(J ;L2($))∩L2(J ;H1($)) is the restriction
to J ×$ of a solution to the wave equation in Q. Notice that f and g have to be chosen in a
compatible way such that there exists a solution to the problem (1). In the sequel, we consider
perturbed data gδ := g + δ to account for some noise δ ∈ L2(J ×$) in the measurements.

This work is carried out under the so-called assumption of geometric control condition.

Assumption 1 (Geometric control condition). Every compressed generalized bicharacteristic
intersects the set J ×$ when projected to Q.

Roughly this means that every ray has to cross the domain where measurements are available
(accounting for reflexions on the computational domain boundary). We refer to [1] for a technical
definition of a compressed generalized bicharacteristic, see also [2] where a time-dependent
measurement domain is considered. This condition is necessary and sufficient for the exact
controllability of the wave equation by a boundary control, see [3]. Notice that the assumption
that ∂Ω is smooth is used to fit the setting of [2].

We consider the following shifted energy norm:

‖v‖sft :=
{
‖v‖2L∞(J;L2(Ω)) + ‖∇v‖2H−1(J;L2(Ω)) + ‖∂tv‖2L2(J;H−1(Ω))

} 1
2 . (2)

The terminology is motivated by the use of a weaker Sobolev norm than the standard energy

norm for the wave equation, which is {‖∇v‖2L2(J;L2(Ω)) + ‖∂tv‖2L2(J;L2(Ω))}
1
2 . Under the above

geometric control condition, we have the following stability estimate.

Lemma 1 (Stability estimate). Let the geometric control condition (Assumption 1) be satisfied.
There exists Cstb > 0 such that for all v ∈ H1(J ;H−1(Ω)) ∩ H−1(J ;H1

0 (Ω)) ∩ L∞(J ;L2(Ω)),
we have

‖v‖sft ≤ Cstb

(
‖v‖L2(J×$) + ‖L(v)‖H−1(Q)

)
. (3)

The proof of this lemma is given in Section A. It is one of the building blocks to prove the
convergence of our approximation method.

Several works already deal with the numerical resolution of data assimilation subject to a
transient PDE. For instance, data assimilation for the heat and wave equations in 1d has already
been considered in [4] using a quasi-reversibility method. The case of the wave equation in a
multi-dimensional configuration is addressed in [5], where a mixed formulation is proposed and
proven to be well-posed at the continuous level only. A discretization of this mixed problem
using a C1 time-space finite element method is proposed as well. The reader is also referred
to [6] for the reconstruction of the wave celerity based on Carleman estimates. Also notice
the work [7] where the authors develop a general framework for least-squares methods to solve
ill-posed problems that are conditionally stable. The norm in the least-squares method and
the regularization are determined by the components of the conditional stability estimate. The
method is applied to data assimilation problems subject to the heat and wave equations.

It is well-known that data assimilation problems and control problems are closely linked.
The discretization of the control problem for the wave equation has been studied in [8]. A
mixed formulation is proposed and C1-conforming time-space finite elements are used for the
discretization. Another work on discretizing the control problem of the wave equation is [9],
where a low-order finite element method is considered for space discretization and a low-order
finite difference method for time discretization. This work has been extended in [10], where
space-time arbitrary high-order finite elements were considered. More examples of control and
data assimilation methods for the wave equation can be found in [11].
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We are interested in a class of methods that consists in first discretizing the ill-posed con-
tinuous problem and then adding stabilization terms at the discrete level. The discrete system
to be solved corresponds to the equations characterizing the saddle point of a Lagrangian func-
tional minimizing the solution discrepancy with respect to the data under the constraint of the
wave equation. Some stabilization terms are also considered to enforce the well-posedness of
the discrete problem. This framework for data assimilation has been developed in [12, 13] for
elliptic problems. Several other application problems have been considered since, such as the
Stokes [14] and Helmholtz [15, 16] equations. Unstationary problems have also been considered
in this framework; see for instance [17, 18, 19] for the heat equation. The wave equation has
been dealt with in [20], where a low-order finite element method for the space discretization
and a finite difference for time have been considered. This work has been continued in [21],
with an arbitrary high-order time-space finite element method. Notice though that the above
framework is computationally challenging since all the time-space unknowns are globally cou-
pled, thereby adding one more dimension compared to a discretization of a well-posed problem
by a time-marching scheme. Finally, in the recent work [22], a dG approach in time is combined
with a standard FEM approach in space. The wave equation is written in a mixed formulation.
Two preconditioning approaches are also proposed and studied numerically.

The main asset of the above framework is that a priori error bounds in a shifted energy norm
can be derived. The method to prove these bounds follows the following two steps:

1. stability, consistency, and a priori error bounds in a residual norm are first established;

2. then, using the stability estimate of the continuous problem (see Lemma 1), a priori error
bounds in the shifted energy norm are obtained.

In the present work, we follow these two steps. Stability, consistency and a priori error bounds
in residual norm are respectively proved in Lemmas 3, 5 and 6. The a priori error bound in the
shifted energy norm is proved in Theorems 9 and 10.

The discretization method we propose here is based on a time-space Galerkin discretization.
Discontinuous polynomials are considered in time and in space. A distinctive feature to increase
computational effectivity is that interfacial elements in space and in time are added to reduce
the size of the linear system through a static condensation procedure that eliminates the cell
unknowns. This is a significant difference with respect to [19], where the authors have proposed
and analyzed a nonconforming discretization for the data assimilation problem subject to the
heat equation without the use of time-interfacial unknowns, thereby precluding the possibility
of performing static condensation in time. Actually, the numerical tests in [19] emphasized
that the method was computationally expensive. In the present work, we benefit from the
static condensation procedure to reduce the size of the linear problem to solve. Moreover, the
present method can use arbitrary high-order polynomials, and we expect the static condensation
procedure to save more degrees of freedom for higher-order polynomials.

The rest of this work is organized as follows. In Section 2, we present the discretization
method. In Section 3, we perform the error analysis. Finally, in Section 4, we present some
numerical results that corroborate our theoretical error estimates.

2 Problem discretization

In this section, we describe the time and space discretization, and we present the numerical
scheme studied in the present work.

2.1 Time-space meshes

We discretize the time-space cylinder Q = J × Ω by a tensor-product time-space mesh.
Let T tτ be a quasi-uniform mesh of J . We denote by τ the diameter of its largest cell. We

also define the outward time-cell normal nT t associated with a generic time cell T t ∈ T tτ which
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is conventionally taken to be an open subset of R. The mesh faces in time (which coincide with
the discrete time nodes) are collected in the set F tτ , and every generic time face F t ∈ F tτ is
oriented by the fixed unit normal vector nt ∈ R1 positively orienting the time line.

Let T xh be a shape-regular mesh of Ω, where h refers to the maximal diameter of the mesh
cells. We assume that T xh covers Ω exactly and that it is fitted to the measurement subset $
(so that, in particular, at least one mesh cell is contained in $). In principle, the mesh cells in
T xh can be polyhedra with planar faces in Rd, and hanging nodes are also possible. However,
the analysis below requires the mesh to be such that the underlying discontinuous polynomial
approximation space has a global H1-conforming subspace with optimal approximation prop-
erties. For simplicity, we will therefore restrict the discussion to meshes composed of simplices
(one can also readily consider meshes composed of cuboids). The mesh cells are conventionally
taken to be open subsets of Rd, and nTx ∈ Rd denotes the unit outward normal of the generic
mesh cell T x ∈ T xh . The mesh faces in space are collected in the set Fxh , and every generic face
F x ∈ Fxh is oriented by a fixed unit normal vector nxFx ∈ Rd. To avoid technicalities, we assume
henceforth that the mesh T xh is quasi-uniform. Therefore, we will use h to measure the diameter
of any cell in T xh or any face in Fxh .

The time-space mesh of Q is defined as Qh,τ := {q := T t × T x | T t ∈ T tτ , T x ∈ T xh }. For
the sake of simplicity, we assume that there exists a constant C > 0 such that C−1h ≤ τ ≤ Ch.
We could lift this assumption, but we would have to include the ratio h/τ in several estimates
in the error analysis. With the above assumption, we will use h as the mesh parameter of
the time-space mesh instead of max(h, τ). Thus, we simply write Qh instead of Qh,τ for the
time-space mesh. We notice that, for every time-space cell q := T t × T x ∈ Qh, its boundary ∂q
can be decomposed as ∂q = ∂tq ∪ ∂xq with

∂tq :=
⋃

F t∈Ftτ
F t⊂∂T t

{F t × T x}, ∂xq :=
⋃

Fx∈Fxh
Fx⊂∂Tx

{T t × F x}. (4)

We loosely say that ∂xq collects the space faces of q and that ∂tq collects the time faces of q. We
let nq be the unit outward normal to q. We also set n∂tq := nq|∂tq := nt and n∂xq := nq|∂xq
with n∂xq|T t×Fx := nxFx for all T t × F x ∈ ∂xq.

The collection of all the faces of Qh is denoted by Gh, which is partitioned as Gh = Gxh ∪ Gth,
where Gxh collects all the space faces and Gth collects all the time faces of the time-space mesh.
Thus, ∂xq ⊂ Gxh and ∂tq ⊂ Gth for all q ∈ Qh. Moreover, the set Gxh is further partitioned as
Gxh = Gx,int

h ∪ Gx,ext
h , where Gx,int

h collects all the space faces that are subsets of J × Ω (called
interior space faces), whereas Gx,ext

h collects all the space faces that are subsets of J×∂Ω (called
exterior space faces). Similarly, we consider the partition Gth = Gt,int

h ∪ Gt,ext
h and observe that

the time faces in Gt,ext
h correspond either to the initial or to the final time.

Finally, we set Gint
h := Gt,int

h ∪ Gx,int
h . For all g ∈ Gint

h , we define ng := nt if g ∈ Gt,int
h

and ng := nxFx if g := T t × F x ∈ Gx,int
h , and [[v]]g denotes the jump of the piecewise smooth,

time-space function v across g in the direction of ng. The notation is summarized in Figure 1.

2.2 Time-space polynomial spaces

Let k ≥ 1 be the polynomial degree of the hybridized dG method in space and let ` ≥ 1 be
the polynomial degree of the hybridized dG method in time. We denote by Pk(S) the set of
polynomials of total degree at most k on the subset S ⊆ Ω. Moreover, for a linear space U
composed of functions defined on S, we denote by P`(I;U) the set of U -valued polynomials of
degree at most ` on I ⊆ J̄ = [0, Tf ].

The discrete unknowns are tensor-product time-space polynomials attached to every time-
space cell, q ∈ Qh, and to every space and time face, gx ∈ Gxh and gt ∈ Gth, respectively. For all
q := T t × T x ∈ Qh, we set

Uq := P`(T t;Pk(T x)). (5)
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Figure 1: Mesh notation

For all gx := T t × F x ∈ Gxh and all gt := F t × T x ∈ Gth, we set

Ugx := P`(T t;Pk(F x)), Ugt := Pk(T x). (6)

(There is no time variation in Ugt since F t is just a discrete time node). We then set

U∂q := U∂xq × U∂tq, U∂xq :=
∏

gx∈∂xq

Ugx , U∂tq :=
∏

gt∈∂tq

Ugt . (7)

The discrete problem involves cell polynomials uQ := (uq)q∈Qh , and face polynomials uG :=
(ug)g∈Gh :=

(
(ugt)gt∈Gt

h
, (ugx)gx∈Gx

h

)
. Notice that we partitioned the face polynomials into

those attached to the time faces and those attached to the space faces. We introduce the
time-space discrete space

ÛQ := UQ × UG , UG := UGt × UGx , (8)

with

UQ := {vQ ∈ L2(Q) | vq := vQ|q ∈ Uq, ∀q ∈ Qh}, (9a)

UGt := {vGt ∈ L2(Gth) | vgt := vGt |gt ∈ Ugt , ∀gt ∈ Gth}, (9b)

UGx := {vGx ∈ L2(Gxh) | vgx := vGx |gx ∈ Ugx , ∀gx ∈ Gx,int
h , vgx = 0, ∀gx ∈ Gx,ext

h }, (9c)

Notice that functions in UGx vanish identically on J × ∂Ω. For a generic function v̂Q ∈ ÛQ, we
write v̂Q := (vQ, vG) with vQ ∈ UQ and vG ∈ UG . Finally, we denote by

ÛQ,0 := UQ × UG,0, UG,0 := UGx × UGt,0, (10a)

UGt,0 := {vGt ∈ UGt | vgt = 0, ∀gt ∈ Gt,ext
h }, (10b)

the subspace of ÛQ composed of pairs whose time-face polynomials are null at the initial and at
the final times. We will use the space ÛQ for the discrete primal unknowns and the space ÛQ,0
for the discrete dual unknowns.

For a time-space cell polynomial vQ ∈ UQ, we define the broken gradient and Laplacian
operators, ∇Q and ∆Q, such that (∇QvQ)|q := ∇(vQ|q) and (∆QvQ)|q := ∆(vQ|q) for all
q ∈ Qh. A similar notation is adopted for the first-order and second-order time-derivatives, ∂t,Q
and ∂2

tt,Q. Finally, we set

LQ(vQ) := ∂2
tt,QvQ −∆QvQ, ∀vQ ∈ UQ. (11)
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Remark 1 (Cell polynomials). The time-space polynomial space defined in (5) has a time-space
tensor-product form. Indeed, any polynomial vq ∈ Uq can be written as

vq =
∑

β∈{0:`}
α:=(α1,...,αd)∈Nd
0≤α1+···+αd≤k

γαβ t
βxα,

with xα := xα1
1 . . . x

αd
d .

2.3 Bilinear forms

We can now introduce the bilinear forms needed to formulate the discrete problem. Let v̂Q,
ŵQ be generic functions in ÛQ (primal variables) and let ζ̂Q, η̂Q be generic functions in ÛQ,0
(dual variables). The bilinear form associated with the discretization of the wave equation in a
generic time-space cell q ∈ Qh is

aq(v̂q, η̂q) := (∇vq,∇ηq)q − (∇vq·n∂xq, ηq − η∂xq)∂xq − (vq − v∂xq,∇ηq·n∂xq)∂xq
− (∂tvq, ∂tηq)q + (∂tvqn∂tq, ηq − η∂tq)∂tq + (vq − v∂tq, ∂tηqn∂tq)∂tq. (12)

In order to allow for a more compact notation, we define

B :=

(
−1 01,d

0d,1 Id,d

)
∈ Rd+1,d+1, (13)

together with the space-time gradient operator ∇̃v := (∂tv,∇v)T and the space-time unit out-
ward normal vector ñq ∈ Rd+1 for all q ∈ Qh such that ñq|∂tq := (n∂tq,0)T ∈ Rd+1 and
ñq|∂xq := (0,n∂xq)

T ∈ Rd+1. We also use a similar notation ñg ∈ Rd+1 for all g ∈ Gint
h and

we consider the broken version of the above space-time gradient operator, ∇̃Q. We can then
rewrite the local bilinear form aq as follows:

aq(v̂q, η̂q) = (B∇̃vq, ∇̃ηq)q − (B∇̃vq·ñq, ηq − η∂q)∂q − (vq − v∂q, B∇̃ηq·ñq)∂q.

The global bilinear form is assembled by summing over the time-space cells:

aQ(v̂Q, η̂Q) :=
∑
q∈Qh

aq(v̂q, η̂q). (14)

Moreover, the local stabilization bilinear forms read as follows:

sq(v̂q, ŵq) := h−1(vq − v∂q, wq − w∂q)∂q, (15a)

σq(ζ̂q, η̂q) := (∇̃ζq, ∇̃ηq)q + sq(ζ̂q, η̂q), (15b)

leading to the following global stabilization bilinear forms:

sQ(v̂Q, ŵQ) :=
∑
q∈Qh

sq(v̂q, ŵq), (16a)

σQ(ζ̂Q, η̂Q) :=
∑
q∈Qh

σq(ζ̂q, η̂q) = (∇̃QζQ, ∇̃QηQ)Q + sQ(ζ̂Q, η̂Q). (16b)

Notice that sQ consists of least-squares penalties on the difference between the trace of the cell
polynomials and the polynomials on the space and time faces of every time-space cell q ∈ Qh.
For the dual variables, we enforce the same penalty together with a least-squares penalty on the
broken time-space derivatives.
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2.4 Lagrangian and discrete problem

We want to find the saddle-point of the Lagrangian defined for all (v̂Q, ζ̂Q) ∈ ÛQ × ÛQ,0 by

LQ(v̂Q, ζ̂Q) :=
1

2
‖vQ − gδ‖2J×$ +

1

2
sQ(v̂Q, v̂Q)− 1

2
σQ(ζ̂Q, ζ̂Q) + aQ(v̂Q, ζ̂Q)− (f, ζQ)Q, (17)

where gδ := g + δ denotes the available perturbed measurement of g. Notice that there is no
initial nor final condition on the primal variable, whereas the dual variable is null at initial and
final time.

The discrete problem is derived by seeking a critical point of the Lagrangian and reads as
follows: Find (ûQ, ξ̂Q) ∈ ÛQ × ÛQ,0 such that

(uQ, wQ)J×$ + sQ(ûQ, ŵQ) + aQ(ŵQ, ξ̂Q) = (gδ, wQ)J×$, (18a)

aQ(ûQ, η̂Q)− σQ(ξ̂Q, η̂Q) = (f, ηQ)Q, (18b)

where the first equation holds for all ŵQ ∈ ÛQ and the second for all η̂Q ∈ ÛQ,0. For all (v̂Q, ζ̂Q)
and (ŵQ, η̂Q) in ÛQ × ÛQ,0, we define the bilinear form

AQ((v̂Q, ζ̂Q), (ŵQ, η̂Q)) := (vQ, wQ)J×$ + sQ(v̂Q, ŵQ) + aQ(ŵQ, ζ̂Q)

+ aQ(v̂Q, η̂Q)− σQ(ζ̂Q, η̂Q). (19)

The discrete problem (18) can be rewritten as follows: Find (ûQ, ξ̂Q) ∈ ÛQ × ÛQ,0 such that,
for all (ŵQ, η̂Q) ∈ ÛQ × ÛQ,0,

AQ((ûQ, ξ̂Q), (ŵQ, η̂Q)) = (gδ, wQ)J×$ + (f, ηQ)Q. (20)

We will see in Corollary 1 that the discrete problem (18) (or equivalently, (20)) is well-posed.
The discrete problem (18) can be solved efficiently by eliminating locally all the cell degrees

of freedom using a static condensation procedure. The global problem to be solved then involves
only the face degrees of freedom. The stencil of the global problem couples unknowns attached
to neighboring time and space faces (in the sense that two neighbors share a common time-space
cell). To eliminate the cell degrees of freedom, one needs to solve the following linear system:
Find (uQ, ξQ) ∈ UQ × UQ such that, for all (wQ, ηQ) ∈ UQ × UQ,

AQ(((uQ, 0), (ξQ, 0)), ((wQ, 0), (ηQ, 0))) = (gδ, wQ)J×$ + (f, ηQ)Q

−AQ(((0, uG), (0, ξG)), ((wQ, 0), (ηQ, 0))), (21)

where uG ∈ UG and ξG ∈ UG,0 are given. We will see in Corollary 1 that the discrete problem (21)
is well-posed. At this stage, we only record that the linear system (21) is easy to solve since it
amounts to a block linear system on the cell unknowns. Indeed, (21) is equivalent to solving,
for all q := T t × T x ∈ Qh, all u∂q ∈ U∂q, and all ξ∂q ∈ U∂q, the following local system: Find
(uq, ξq) ∈ Uq × Uq such that, for all (wq, ηq) ∈ Uq × Uq,

(uq, wq)T t×($∩Tx) + sq((uq, 0), (wq, 0)) + aq((wq, 0), (ξq, 0)) = Φ1
q(wq), (22a)

aq((uq, 0), (ηq, 0))− σq((ξq, 0), (ηq, 0)) = Φ2
q(ηq), (22b)

with Φ1
q(wq) := (gδ, wq)T t×($∩Tx) − sq((0, u∂q), (wq, 0)) − aq((wq, 0), (0, ξ∂q)) and Φ2

q(ηq) :=
(f, ηq)q − aq((0, u∂q), (ηq, 0)) + σq((0, ξ∂q), (ηq, 0)).

7



3 Analysis

In this section, we first study the stablity properties of the discrete operator AQ in a suit-
able residual norm. Next, we introduce interpolation operators in space and in time, and we
bound the consistency error. We combine these bounds with the abstract conditional estimate
from Lemma 1 to derive error estimates in the shifted energy norm. Finally, we establish the
convergence rates for the method.

In what follows, we use the convention A . B to abbreviate the inequality A ≤ CB for
positive real numbers A and B, where the constant C > 0 does not depend on h, τ , the solution
of the continuous and discrete problems.

Remark 2 (Domain regularity). The analysis is conducted under the assumption that Ω has
a smooth boundary, as stated in the introduction. The numerical tests are, however, performed
on a square domain (in 2d). Indeed, treating a curved domain would be quite technical, and
the modifications to the implementation would be non-trivial due to the hybrid nature of the
discretization method; see for instance [23]. We conjecture that the analysis also holds true for
a polygonal domain. In particular, a key issue is to establish Lemma 1.

3.1 Residual stability

Recall the broken operator LQ defined in (11) and the notation Gint
h := Gt,int

h ∪ Gx,int
h together

with the unit normal vector ñq ∈ Rd+1. For all (v̂Q, ζ̂Q) ∈ ÛQ × ÛQ,0, we define the residual
norm

|||v̂Q, ζ̂Q|||2 := ‖vQ‖2R + ‖vQ‖2J×$ + sQ(v̂Q, v̂Q) + σQ(ζ̂Q, ζ̂Q), (23)

with

‖vQ‖2R := ‖hLQ(vQ)‖2Q + ‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖

2
Gint , (24)

and ‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖2Gint :=

∑
g∈Gint

h
h‖[[∇̃QvQ]]g·ñg‖2g.

Lemma 2 (Norm). |||·||| defines a norm on ÛQ × ÛQ,0.

Proof. Let (v̂Q, ζ̂Q) ∈ ÛQ × ÛQ,0 be such that |||v̂Q, ζ̂Q||| = 0.
(1) The dual component ζ̂Q := (ζQ, ζG) ∈ ÛQ,0 satisfies σQ(ζ̂Q, ζ̂Q) = 0. Hence, ζQ is

piecewise constant in Q and ζG is equal to the trace of ζQ on all faces. Hence, ζQ is globally
constant, and it vanishes since ζG vanishes on Gx,ext

h and Gt,ext
h . In conclusion, ζ̂Q = (0, 0).

(2) The primal component v̂Q := (vQ, vG) ∈ ÛQ satisfies ‖vQ‖R = ‖vQ‖J×$ = sQ(v̂Q, v̂Q) =
0. Since LQ(vQ) = 0, vQ is a piecewise affine polynomial in space and in time. Moreover,
sQ(v̂Q, v̂Q) = 0 implies that vQ is globally continuous and vG is obtained from the traces of vQ

on the faces of Gh. Combined with the fact that ‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖Gint = 0, we infer that

vQ is globally affine in Q. Finally, invoking that $ contains at least one time-space cell or that
the face components vanish on Gx,ext

h , we conclude that v̂Q = (0, 0).

Our key stability result is the following inf-sup condition.

Lemma 3 (Inf-sup condition). The following holds for all (v̂Q, ζ̂Q) ∈ ÛQ × ÛQ,0,

|||v̂Q, ζ̂Q||| . sup
(ŵQ,η̂Q)∈ÛQ×ÛQ,0\{(0,0)}

AQ((v̂Q, ζ̂Q), (ŵQ, η̂Q))

|||ŵQ, η̂Q|||
. (25)

Proof. Let us denote by S the right-hand side of (25).
(1) Stabilizations. We first use the test functions ŵQ := v̂Q and η̂Q := −ζ̂Q to get

‖vQ‖2J×$ + sQ(v̂Q, v̂Q) + σQ(ζ̂Q, ζ̂Q) = AQ((v̂Q, ζ̂Q), (v̂Q,−ζ̂Q)) ≤ S|||v̂Q, ζ̂Q|||.
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(2) Gradient jumps. Let η̂Q := (0, ηG) ∈ ÛQ,0 with ηg := h[[B∇̃QvQ]]g·ñg for all g ∈ Gint
h

and ηg := 0 otherwise. Since |||0, η̂Q||| = σQ(η̂Q, η̂Q)
1
2 , integration by parts in time and in space

gives

‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖

2
Gint = aQ(v̂Q, η̂Q)

= AQ((v̂Q, ζ̂Q), (0, η̂Q)) + σQ(ζ̂Q, η̂Q)

≤ SσQ(η̂Q, η̂Q)
1
2 + σQ(ζ̂Q, η̂Q)

≤ (S + σQ(ζ̂Q, ζ̂Q)
1
2 )σQ(η̂Q, η̂Q)

1
2 .

Moreover, we also have

σQ(η̂Q, η̂Q) =
∑
q∈Qh

h−1‖η∂q‖2∂q . ‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖

2
Gint .

This implies that

‖h
1
2 [[∇̃QvQ]]Gint ·ñGint‖

2
Gint . S2 + σQ(ζ̂Q, ζ̂Q).

(3) Cell residuals. We now consider η̂Q := (ηQ, 0) with ηQ := h2LQ(vQ). Integration by
parts in time and in space gives

aQ(v̂Q, η̂Q) =
∑
q∈Qh

{
(B∇̃vq, ∇̃ηq)q − (B∇̃vq·ñq, ηq)∂q − (vq − v∂q, B∇̃ηq·ñq)∂q

}
= (LQ(vQ), ηQ)Q −

∑
q∈Qh

(vq − v∂q, B∇̃ηq·ñq)∂q.

Using the definition of η̂Q, we have

‖hLQ(vQ)‖2Q = aQ(v̂Q, η̂Q) +
∑
q∈Qh

(vq − v∂q, B∇̃ηq·ñq)∂q

= AQ((v̂Q, ζ̂Q), (0, η̂Q)) + σQ(ζ̂Q, η̂Q) +
∑
q∈Qh

(vq − v∂q, B∇̃ηq·ñq)∂q

. S|||0, η̂Q|||+ (σQ(ζ̂Q, ζ̂Q) + sQ(v̂Q, v̂Q))
1
2 σQ(η̂Q, η̂Q)

1
2 ,

since a discrete trace inverse inequality implies that∑
q∈Qh

h‖∇̃ηq·ñq‖2∂q . ‖∇̃QηQ‖2Q ≤ σQ(η̂Q, η̂Q).

Furthermore, invoking again inverse inequalities, we have

σQ(η̂Q, η̂Q) =
∑
q∈Qh

(
‖∇̃ηq‖2q + h−1‖ηq‖2∂q

)
. ‖h−1ηQ‖2Q = ‖hLQ(vQ)‖2Q.

Using |||0, η̂Q|||2 = σQ(η̂Q, η̂Q) and Young’s inequality, this implies that

‖hLQ(vQ)‖2Q . S2 + sQ(v̂Q, v̂Q) + σQ(ζ̂Q, ζ̂Q).

Gathering the previous estimates leads to the expected inf-sup condition.

Corollary 1 (Well-posedness). The discrete problems (18) and (21) are well-posed.
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Proof. Since both (18) and (21) amount to square linear systems, it suffices to prove that, for
each system, the only solution with zero right-hand side is zero. For (18), this follows from the
inf-sup condition and Lemma 2. For (21), one needs to adapt the above proofs. First, adapting
the proof of Lemma 2, one observes that the norm

|||vQ, ζQ|||2 := ‖hLQ(vQ)‖2Q + ‖vQ‖2J×$ + sQ((vQ, 0), (vQ, 0)) + σQ((ζQ, 0), (ζQ, 0)),

defines a norm on UQ×UQ. Then, adapting the proof of Lemma 3, one observes that an inf-sup
condition holds true for the above norm when considering the bilinear formAQ(((uQ, 0), (ξQ, 0)), ((wQ, 0), (ηQ, 0))).

3.2 Interpolation operator

In this section, we define the space-time interpolation operator used in the error analysis. Let
q ∈ Qh. For all v ∈ L2(q), we define Iq(v) to be the L2-orthogonal projection of v onto Uq.
For all v ∈ H1(q), we define I∂q(v) as the the L2-orthogonal projection of v|∂q onto U∂q. We
also define Îq(v) := (Iq(v), I∂q(v)). Similarly, for all v ∈ H1(Q), we define the interpolation on
the whole discrete space by ÎQ(v) := (IQ(v), IG(v)), where IQ(v)|q := Iq(v) for all q ∈ Qh and
IG(v)|g := I∂q(v)|g for all g ∈ Gh with g ⊂ ∂q. Notice that ÎQ(v) ∈ ÛQ if v = 0 on J × ∂Ω, and
ÎQ(v) ∈ ÛQ,0 if additionally v(0) = v(Tf ) = 0.

The above interpolation operator enjoys the following convergence properties (the proof is
omitted since it is standard).

Lemma 4 (Approximation). Let k ≥ 1 and ` ≥ 1. The following holds for all q := T t×T x ∈ Qh,
T t ∈ T tτ , T x ∈ T xh , all v ∈ H`+1(T t;H2(T x)) ∩H2(T t;Hk+1(T x)),

‖Iq(v)− v‖q . h`+1‖v‖H`+1(T t;L2(Tx)) + hk+1‖v‖L2(T t;Hk+1(Tx)), (26a)

‖∇̃(Iq(v)− v)‖q . h`‖v‖H`+1(T t;H1(Tx)) + hk‖v‖H1(T t;Hk+1(Tx)), (26b)

h
1
2 ‖∇̃(Iq(v)− v)‖∂q . h`‖v‖H`+1(T t;H2(Tx)) + hk‖v‖H2(T t;Hk+1(Tx)), (26c)

h‖L(Iq(v)− v)‖q . h`‖v‖H`+1(T t;H2(Tx)) + hk‖v‖H2(T t;Hk+1(Tx)). (26d)

Moreover, we have

h−
1
2 ‖Iq(v)− v‖∂q + h−

1
2 ‖I∂q(v)− v‖∂q (27)

. h`‖v‖H`+1(T t;H1(Tx)) + hk‖v‖H1(T t;Hk+1(Tx)).

3.3 Error decomposition, consistency and a priori residual bound

Recall that u denotes the solution to the exact problem (1) and that (ûQ, ξ̂Q) denotes the solution
to the discrete problem (18). The discrete and interpolation errors on the primal unknown are
defined as

êQ := ûQ − ÎQ(u), θ̂Q := (θQ, θG), (28)

where θq := u|q − Iq(u) for all q ∈ Qh and θg := u|g − IG(u)|g for all g ∈ Gh.
We now bound the consistency error. To this purpose, we consider the norm

‖θ̂Q‖2# := ‖∇̃QθQ‖2Q + ‖θQ‖2Q

+
∑
q∈Qh

{
‖hL(θq)‖2q + ‖h

1
2 ∇̃θq‖2∂q + ‖h−

1
2 θq‖2∂q + ‖h−

1
2 θ∂q‖2∂q

}
. (29)

Recall that the stability norm ||| · ||| is defined in (23)-(24). In what follows, we assume that

u ∈ H2(J ;L2(Ω)) ∩ L2(J ;H2(Ω)). (30)
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Lemma 5 (Consistency). Let (ûQ, ξ̂Q) denote the solution to the discrete problem (18). Let êQ
and θ̂Q be the discrete and interpolation errors on the primal unknown defined in (28). Under
the regularity assumption (30), we have, for all (ŵQ, η̂Q) ∈ ÛQ × ÛQ,0,

|AQ((êQ, ξ̂Q), (ŵQ, 0))| .
(
‖θ̂Q‖# + ‖δ‖J×$

)
|||ŵQ, 0|||, (31a)

|AQ((êQ, ξ̂Q), (0, η̂Q))| . ‖θ̂Q‖#|||0, η̂Q|||. (31b)

Proof. Proof of (31a). Since (êQ, ξ̂Q) = (ûQ, ξ̂Q)− (ÎQ(u), 0), the equation (18a) in the discrete
problem, the definition (19) of AQ, and gδ = g + δ imply that, for all ŵQ ∈ ÛQ,

AQ((êQ, ξ̂Q), (ŵQ, 0)) = (gδ, wQ)J×$ − (IQ(u), wQ)J×$ − sQ(ÎQ(u), ŵQ)

= (δ, wQ)J×$ + (θQ, wQ)J×$ − sQ(ÎQ(u), ŵQ).

The Cauchy–Schwarz inequality yields

|(δ, wQ)J×$|+ |(θQ, wQ)J×$| . (‖δ‖J×$ + ‖θQ‖J×$)‖wQ‖J×$,

|sQ(ÎQ(u), ŵQ)| . sQ(ÎQ(u), ÎQ(u))
1
2 sQ(ŵQ, ŵQ)

1
2 .

Moreover, we have

sQ(ÎQ(u), ÎQ(u)) =
∑
q∈Qh

h−1‖Iq(u)− I∂q(u)‖2∂q . ‖θ̂Q‖2#.

The bound (31a) follows by gathering the above estimates.
Proof of (31b). Proceeding as above and using now the equation (18b) and f = L(u), we

have, for all η̂Q ∈ ÛQ,0,

AQ((êQ, ξ̂Q), (0, η̂Q)) = (L(u), ηQ)Q − aQ(ÎQ(u), η̂Q).

Integrating by parts the first term on the right-hand side gives

(L(u), ηQ)Q =
∑
q∈Qh

{
(B∇̃u, ∇̃ηq)q − (B∇̃u·ñq, ηq − η∂q)∂q

}
,

where we used the regularity assumption on u and the fact η∂q vanishes on all the boundary
faces in space and in time. Recalling the definition (12)-(14) of aQ, we infer that

AQ((êQ, ξ̂Q), (0, η̂Q)) =
∑
q∈Qh

{
(B∇̃θq, ∇̃ηq)q − (B∇̃θq·ñq, ηq − η∂q)∂q

− (θq − θ∂q, B∇̃ηq·ñq)∂q
}
.

Using Cauchy–Schwarz and inverse inequalities, we readily obtain (31b).

Lemma 6 (A priori residual bound). Under the regularity assumption (30), we have

|||êQ, ξ̂Q|||+ sQ(ûQ, ûQ)
1
2 . ‖θ̂Q‖# + ‖δ‖J×$. (32)

Proof. Using inf-sup stability (Lemma 3), we have

|||êQ, ξ̂Q||| . sup
(ŵQ,η̂Q)∈ÛQ×ÛQ,0\{(0,0)}

AQ((êQ, ξ̂Q), (ŵQ, η̂Q))

|||ŵQ, η̂Q|||
.

Moreover, owing to consistency (Lemma 5), we have, for all (ŵQ, η̂Q) ∈ ÛQ × ÛQ,0,

|AQ((êQ, ξ̂Q), (ŵQ, η̂Q))| . (‖θ̂Q‖# + ‖δ‖J×$)|||ŵQ, η̂Q|||.
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Combining the two bounds gives

|||êQ, ξ̂Q||| . ‖θ̂Q‖# + ‖δ‖J×$.

Finally, observing that

sQ(ûQ, ûQ)
1
2 ≤ sQ(ÎQ(u), ÎQ(u))

1
2 + sQ(êQ, êQ)

1
2 ≤ ‖θ̂Q‖# + |||êQ, ξ̂Q|||,

concludes the proof.

3.4 Bound on dual error norm

In this section, we prove another important result bounding some dual norm of the error.
Recall the operator L := ∂2

tt − ∆ so that, for all v ∈ H1(Q) and all η ∈ H1
0 (Q), we have

〈L(v), η〉H−1,H1
0

= (B∇̃v, ∇̃η)Q, where 〈·, ·〉H−1,H1
0

stands for the duality product between

H−1(Q) and H1
0 (Q). Observing that the broken operator LQ acting on discrete functions

vQ ∈ UQ satisfies 〈LQ(vQ), η〉H−1,H1
0

= (B∇̃QvQ, ∇̃η)Q, we can consider the extended operator

LQ : H1(Q)+UQ → H−1(Q) (we use the same notation for simplicity). For all v ∈ H1(Q)+UQ,
the corresponding dual norm is

‖LQ(v)‖H−1(Q) := sup
η∈H1

0 (Q)

‖∇̃η‖Q=1

(B∇̃Qv, ∇̃η)Q.

Lemma 7 (Bound on dual error norm). Under the regularity assumption (30), we have

‖LQ(uQ − u)‖H−1(Q) . ‖θ̂Q‖# + ‖δ‖J×$.

Proof. Let η ∈ H1
0 (Q) with ‖∇̃η‖Q = 1. We have

〈LQ(uQ − u), η〉H−1,H1
0

= (B∇̃QuQ, ∇̃η)Q − (L(u), η)Q.

Let η̂Q ∈ ÛQ,0 be such that η̂Q := ÎQ(η). Invoking equation (18b) gives

aQ(ûQ, η̂Q)− σQ(ξ̂Q, η̂Q) = (L(u), ηQ)Q.

Subtracting this equation from the above expression, and re-arranging the terms gives

〈LQ(uQ − u), η〉H−1,H1
0

= A1 +A2 +A3,

with

A1 := (LQ(uQ − u), η − ηQ)Q,

A2 := (B∇̃QuQ, ∇̃η)Q − aQ(ûQ, η̂Q)− (LQ(uQ), η − ηQ)Q,

A3 := σQ(ξ̂Q, η̂Q).

We have∑
q∈Qh

{(B∇̃uq, ∇̃η)q − aq(ûq, η̂q)}

=
∑
q∈Qh

{
(B∇̃uq, ∇̃(η − ηq))q + (B∇̃uq·ñq, ηq − η∂q)∂q + (uq − u∂q, B∇̃ηq·ñq)∂q

}
=
∑
q∈Qh

{
(L(uq), η − ηq)q + (B∇̃uq·ñq, η − η∂q)∂q + (uq − u∂q, B∇̃ηq·ñq)∂q

}
= (LQ(uQ), η − ηQ)Q +

∑
q∈Qh

(uq − u∂q, B∇̃ηq·ñq)∂q,
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where we used the definition (12) of the bilinear form aq, the fact that (B∇̃uq·ñq)|∂q ∈ U∂q and

the definition of η∂q so that (B∇̃uq·ñq, η − η∂q)∂q = 0. We can then rewrite A2 as

A2 =
∑
q∈Qh

(uq − u∂q, B∇̃ηq·ñq)∂q.

It still remains to bound A1, A2, A3.
Bound on A1. Since θQ = u− IQ(u), we have

LQ(uQ − u) = LQ(uQ − IQ(u))− LQ(θQ).

Recalling the definition (24) of the ‖·‖R-norm, we have

|(LQ(uQ − IQ(u)), η − ηQ)Q| . h−1‖eQ‖Rh‖∇̃η‖Q,

where we used that ‖η − ηQ‖Q . h‖∇̃η‖Q. Owing to Lemma 6, we have ‖eQ‖R . ‖θ̂Q‖# +
‖δ‖J×$. Moreover, the above bound on ‖η − ηQ‖Q also gives

|(LQ(θQ), η − ηQ)Q| . h‖LQ(θQ)‖Q‖∇̃η‖Q ≤ ‖θ̂Q‖#‖∇̃η‖Q.

Gathering the above estimates yields

|A1| .
(
‖θ̂Q‖# + ‖δ‖J×$

)
‖∇̃η‖Q.

Bound on A2. Using Cauchy–Schwarz and inverse trace inequalities and interpolation sta-
bility, we have

|A2| =
∣∣∣∣ ∑
q∈Qh

(uq − u∂q, B∇̃ηq·ñq)∂q
∣∣∣∣ . sQ(ûQ, ûQ)

1
2 ‖∇̃QηQ‖Q

. (‖θ̂Q‖# + ‖δ‖J×$)‖∇̃η‖Q,

where we used Lemma 6 and ‖∇̃QηQ‖Q . ‖∇̃η‖Q in the last bound.

Bound onA3. Recalling that σQ(η̂Q, η̂Q) = ‖∇̃QηQ‖2Q+sQ(η̂Q, η̂Q), we infer that σQ(η̂Q, η̂Q)
1
2 .

‖∇̃QηQ‖Q . ‖∇̃η‖Q. This implies that

|σQ(ξ̂Q, η̂Q)| . σQ(ξ̂Q, ξ̂Q)
1
2 σQ(η̂Q, η̂Q)

1
2 . σQ(ξ̂Q, ξ̂Q)

1
2 ‖∇̃η‖Q,

and σQ(ξ̂Q, ξ̂Q)
1
2 is bounded in Lemma 6. Hence, we have

|A3| .
(
‖θ̂Q‖# + ‖δ‖J×$

)
‖∇̃η‖Q.

Combining the above estimates and recalling that ‖∇̃η‖Q = 1 gives the expected bound.

3.5 Main result: error estimate in shifted energy norm

We are now ready to derive our main error estimate. The idea of the proof is to combine the
results of Sections 3.3 and 3.4 with the conditional stability estimate from Lemma 1. We use
the shifted energy norm which we extend to H1(Q) + UQ by setting

‖v‖sft := ‖v‖L∞(J;L2(Ω)) + ‖∂t,Qv‖L2(J;H−1(Ω)) + ‖∇Qv‖H−1(J;L2(Ω)). (33)

We shall invoke the following classical result on finite element interpolation, here written in a
space-time setting using the space-time mesh regularity assumption (i.e. h . τ . h). It is
established first on pairs of the form (vQ, 0) (see for instance [24, 25, 26, 27]) and then extended
to pairs v̂Q ∈ ÛQ by invoking a triangle inequality.
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Lemma 8. For all v̂Q ∈ ÛQ, there exists ṽQ ∈ UQ ∩H1(Q) such that

‖h−1(ṽQ − vQ)‖Q + ‖∇̃Q(ṽQ − vQ)‖Q . sQ(v̂Q, v̂Q)
1
2 .

Recall the constant Cstb > 0 introduced in Lemma 1. Recall that the ‖·‖#-norm is defined
in (29). We have the following convergence result.

Theorem 9 (Error estimate in shifted energy norm). Under the regularity assumption (30) and
Assumption 1, we have

‖u− uQ‖sft . (1 + Cstb)
(
‖θ̂Q‖# + ‖δ‖J×$

)
. (34)

Proof. (1) H1-conforming approximation. Let ũQ be the H1-conforming approximation to ûQ
given by Lemma 8. We have

‖h−1(ũQ − uQ)‖Q + ‖∇̃Q(ũQ − uQ)‖Q . sQ(ûQ, ûQ)
1
2 . (35)

Invoking the triangle inequality yields

‖u− uQ‖sft ≤ ‖uQ − ũQ‖sft + ‖u− ũQ‖sft,

and we are left with bounding the two terms on the right-hand side.
(2) Bound on ‖uQ − ũQ‖sft. We observe that

‖∇Q(uQ − ũQ)‖H−1(J;L2(Ω)) + ‖∂t,Q(uQ − ũQ)‖L2(J;H−1(Ω))

. ‖∇̃Q(uQ − ũQ)‖L2(Q) . sQ(ûQ, ûQ)
1
2 ,

‖uQ − ũQ‖L∞(J;L2(Ω)) . h−
1
2 ‖uQ − ũQ‖L2(Q) . h

1
2 sQ(ûQ, ûQ)

1
2 ,

where we used (35), and an inverse trace inequality for the last estimate. As a consequence,
owing to Lemma 6 and since h . 1, we infer that

‖uQ − ũQ‖sft . sQ(ûQ, ûQ)
1
2 . ‖θ̂Q‖# + ‖δ‖J×$.

(3) Bound on ‖u − ũQ‖sft. Since u − ũQ ∈ H1(Q), recalling Assumption 1, we can invoke
the conditional stability estimate from Lemma 1. This gives

‖u− ũQ‖sft . Cstb

(
‖u− ũQ‖J×$ + ‖L(u− ũQ)‖H−1(Q)

)
.

It remains to bound ‖u− ũQ‖J×$ and ‖L(u− ũQ)‖H−1(Q).
(3.a) Bound on ‖u− ũQ‖J×$. We have

‖u− ũQ‖J×$ ≤ ‖u− IQ(u)‖J×$ + ‖IQ(u)− uQ‖J×$ + ‖uQ − ũQ‖J×$,

where IQ(u) is defined in Section 3.2. We have

‖u− IQ(u)‖J×$ = ‖θQ‖J×$ ≤ ‖θQ‖Q,

‖IQ(u)− uQ‖J×$ = ‖eQ‖J×$ ≤ |||êQ, ξ̂Q|||.

Furthermore, the bound (35) and h . 1 imply that

‖uQ − ũQ‖J×$ . hsQ(ûQ, ûQ)
1
2 . sQ(ûQ, ûQ)

1
2 .

Gathering the above estimates and using Lemma 6 gives

‖u− ũQ‖J×$ . ‖θ̂Q‖# + ‖δ‖J×$.
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(3.b) Bound on ‖L(u− ũQ)‖H−1(Q). Lemma 7 gives

‖LQ(u− uQ)‖H−1(Q) . ‖θ̂Q‖# + ‖δ‖J×$.

Moreover, using the Cauchy-Schwarz inequality and (35), we have

‖LQ(uQ − ũQ)‖H−1(Q) = sup
η∈H1

0 (Q)

‖∇̃η‖Q=1

(B∇̃Q(uQ − ũQ), ∇̃η)Q

≤ ‖B∇̃Q(uQ − ũQ)‖Q . sQ(ûQ, ûQ)
1
2 .

(4) Combining the bounds from the above steps proves (34).

3.6 Convergence

We consider the functional space

U∗ := H`+1(J ;H2(Ω)) ∩H2(J ;Hk+1(Ω)), (36)

equipped with its natural norm. An important consequence of Lemma 4 is that, under the
assumption u ∈ U∗, we have

‖θ̂Q‖# . h`‖u‖H`+1(J;H2) + hk‖u‖H2(J;Hk+1), (37)

where we used that h . 1 to simplify the expression.

Theorem 10 (Decay rates). Assume that u ∈ U∗. We have the following decay rates on the
errors:

|||êQ, ξ̂Q|||+ sQ(ûQ, ûQ)
1
2 . h`‖u‖H`+1(J;H2) + hk‖u‖H2(J;Hk+1) + ‖δ‖J×$, (38a)

‖u− uQ‖sft . (1 + Cstb)
(
h`‖u‖H`+1(J;H2) + hk‖u‖H2(J;Hk+1) + ‖δ‖J×$

)
. (38b)

Proof. This is a consequence of plugging (37) into (32) and (34).

4 Numerical results

In this section, we present numerical experiments to check the convergence rates established in
Theorem 10. We also study the influence of noise in the measurements, and we illustrate the
benefits of using a high-order discretization.

The space domain is Ω := (0, 1)d with d ∈ {1, 2}. All the errors are computed as the
difference between the numerical solution and the L2(Q)-orthogonal projection of the exact
solution onto the cell discretization space. These errors are measured in the L∞(0, Tf ;L2(Ω))-
norm. In practice, this norm is computed as the maximum value over all the Gauss points of
each time interval.

Some noise can be added to the measurements in the following way: (i) the time-space
domain is divided into 10d+1 subdomains; (ii) a random noise level δ := a∗ rand() is assigned to
each subdomain, with a ≥ 0 the noise amplitude and rand() is a C++ function returning a random
number in [−1, 1]. Thus, every subdomain has the same noise during the whole mesh-refinement
process.

The time mesh is considered to be a uniform mesh made of N time cells.
All the tests are run with the DiSk++ library [28], and all the linear systems are solved using

the Pardiso solver from the MKL library. During the matrix assembly process, we compute the
value of the coefficients for the first time interval I1. Then, since the time step is constant, the
coefficients associated with the following time intervals are the same and therefore do not need
to be recomputed.
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4.1 One-dimensional test cases

In this section, we consider the following one-dimensional setting:

Ω := (0, 1), $ :=

(
1

4
,

3

4

)
, Tf := 2, u(t, x) := cos(πt) sin(πx).

We notice that this geometry fulfills Assumption 1, since every wave has to cross the set J ×$
at some point.

Figure 2: L∞(L2)-norm errors for the 1d test case without noise (with respect to the number of
degrees of freedom). Left: space convergence (M ∈ {16, 32, 64, 128}, N = 128, ` = 3). Right: time
convergence (N ∈ {10, 20, 40, 80}, M = 256, k = 3).

We use a uniform mesh in space and in time (N cells in time and M cells in space). Four levels
of refinement are considered in space (M ∈ {16, 32, 64, 128}) and in time (N ∈ {10, 20, 40, 80}).
We run two convergence studies. At first, for a good precision in time (N = 128, ` = 3), we study
the error for several successive space mesh sizes M ∈ {16, 32, 64, 128} and several polynomial
orders k ∈ {1, 2, 3}. Then, for a good precision in space (M = 256, k = 3), we study the
error for several successive time mesh sizes N ∈ {10, 20, 40, 80} and several polynomial orders
` ∈ {0, 1, 2, 3}. The results without noise are reported in Figure 2. We observe optimal space
convergence at rate k for k ∈ {2, 3}. Instead, we obtain superconvergence at rate 2 for k = 1.
Moreover, we also observe the expected time convergence at rate `, for ` ∈ {1, 2, 3}. (Recall that
the errors are computed as the difference between the numerical solution and a projection of
the exact solution.) Another relevant observation is that a higher-order scheme is more efficient
in terms of degrees of freedom.

Notice that the numerical error has also been computed using the L2(Q)-norm, the L2(H1)-
seminorm and the H1(Ω)-seminorm at initial time (using the associated face element). We
observed for these errors the same convergence rate as the one for the L∞(0, Tf ;L2(Ω))-norm
used above. For the sake of clarity, these errors have not been drawn on Figure 2.

We report in Table 1 the number of degrees of freedom in the two situations of whether
or not the static condensation procedure is used (see Section 2.4). We can observe a drastic
reduction in the number of degrees of freedom offered by the static condensation procedure.
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Without static condensation With static condensation
M k = 1 k = 2 k = 3 M k = 1 k = 2 k = 3

16 56320 76800 97280 16 23552 27648 31744
32 113664 154624 195584 32 48128 56320 64512
64 228352 310272 392192 64 97280 113664 130048
128 457728 621568 785408 128 195584 228352 261120

Table 1: Number of degrees of freedom (1d test case) for space refinement with ` = 3 and N = 128.
Left: without static condensation. Right: with static condensation.

4.2 Two-dimensional test case

In this section, we consider the following two-dimensional setting:

Ω := (0, 1)2, $ :=
(

(b, 1)× (0, 1)
)
\
(

0,
7

8

)
×
(

1

8
,

7

8

)
, Tf := 2,

u(t, x, y) := cos(
√

2πωt) sin(πωx) sin(πωy),

where b ∈ [0, 7
8
) is a parameter that may vary and will be used to consider several geometric

configurations, and ω := 3.
One can verify that with Tf := 2 and b := 0, the geometry fulfills the geometric control

condition (Assumption 1). However, this assumption is not fulfilled for b > 0. This latter
configuration will enable us to evaluate the impact of this assumption on the approximation
results.

Figure 3: First, third, fifth, and seventh triangulations used for the 2d test case (b = 1
2 ); all the

triangulations are fitted to $.

The errors in the L∞(L2)-norm are presented in Figure 4 in the absence of noise on the
measurements. On the left panel, we provide a convergence study with respect to the space
discretization. Seven successive meshes are considered (see Figure 3) and the space polynomial
degrees are k ∈ {1, 2, 3}. For this test, the time discretization remains constant (` = 3, N =
40). Keeping in mind that the x-axis of this figure is the number of degrees of freedom (that
scales roughtly as h−2 when we refine the space discretization), we retrieve the expected space
convergence rates for the various values of k. We also observe that the high-order approach is
much more efficient than the low-order one, which is a known behavior for the wave equation.

On the right panel, we provide a study of the time convergence for ` ∈ {1, 2, 3} and for
N ∈ {5, 10, 15, 20, 30, 40}. As stated before for the space convergence study, we observe here
that the high-order approach is much more efficient. Surprisingly, the low-order approach (k = 1
or ` = 1) does not seem to converge for the considered meshes.
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Figure 4: L∞(L2)-norm errors for the 2d test case without noise (with respect to the number of
degrees of freedom). Left: space convergence. Right: time convergence.

In both of these tests, we observe that the configuration b = 1
2

is less favorable than the
configuration with b = 0. However, convergence at optimal rate is still observed in the configu-
ration b = 1

2
. The only visible drawback of that configuration is that the scaling of the errors,

but not their decay rate, seems to be a bit worse. We also considered adding some noise to the
right-hand side f , but this resulted only in a slight degradation of the solution. The results are
not reported for the sake of conciseness.

The same setting is then considered with the presence of noise (a = 10−2). The results are
reported in Figure 5. We observe that the main consequence of noise is that convergence can
be obstructed since the error stagnates at a certain level which depends on the geometry (b = 0
or b = 1

2
).

Figure 5: L∞(L2)-norm errors for the 2d test case with noise a = 10−2 (with respect to the number
of degrees of freedom). Left: space convergence. Right: time convergence.

Computational time and memory usage for the configuration b = 1
2

without noise are re-
ported in Table 2. We observe that, since a direct solver is used, we attain the limits of the
method in terms of memory usage. More refined meshes or 3d-space configurations need the
development of an iterative solver.

Acknowledgement: GD was supported by the Emergence grant of Sorbonne University.
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Computational time (in sec) Memory usage (in GB)
mesh k = 1 k = 2 k = 3 mesh k = 1 k = 2 k = 3

1 8.6 39 100 1 10−3 4.1 8.8
3 38 170 440 3 4.3 11.6 23.7
5 610 2500 6300 5 20.9 54.5 107
7 13000 54000 − 7 135 345 −

Table 2: 2d test case for space refinement with ` = 3 and N = 40 (b = 1
2 ) and without noise. Left:

computational time (in sec). Right: memory usage tip (in GB).

EB was supported by EPSRC grants EP/T033126/1 and EP/V050400/1.

Appendix A Technical proof

Here we prove Lemma 1. The proof is obtained by combining Proposition A.1 and Theorem A.4
from [10] where Ω is assumed to be smooth. Proposition A.1 yields that for v = 0 on J × ∂Ω
we have

‖v‖L∞(J;L2(Ω)) + ‖∂tv‖L2(J;H−1(Ω))

. ‖v|t=0‖L2(Ω) + ‖∂tv|t=0‖H−1(Ω) + ‖L(v)‖H−1(J×Ω).

Moreover, following the proof of Theorem A.4 from [10], we can show that under the geometric
control condition (Assumption 1), we have

‖v|t=0‖L2(Ω) + ‖∂tv|t=0‖H−1(Ω) . ‖L(v)‖H−1(J×Ω) + ‖v‖L2(J×$).

Combining these two relations, we have

‖v‖L∞(J;L2(Ω)) + ‖∂tv‖L2(J;H−1(Ω)) . ‖v‖L2(J×$) + ‖L(v)‖H−1(Q).

To estimate the missing term, we consider

‖∇v‖H−1(J;L2(Ω)) . ‖∆v‖H−1(Q) ≤ ‖L(v)‖H−1(Q) + ‖∂ttv‖H−1(Q),

where, in the first bound, we use ‖∇φ‖Ω . ‖∆φ‖H−1(Ω) for all φ ∈ H1
0 (Ω). Moreover, for

φ ∈ H1
0 (Q) we have

< ∂ttv, φ >H−1(Q),H1
0 (Q)= − < ∂tv, ∂tφ >L2(J;H−1(Ω)),L2(J;H1

0 (Ω))

≤ ‖∂tv‖L2(J;H−1(Ω))‖∂tφ‖L2(J;H1
0 (Ω)).

So that ‖∂ttv‖H−1(Q) ≤ ‖∂tv‖L2(J;H−1(Ω)). This ends the proof.
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[3] N. Burq and P. Gérard, “Condition nécessaire et suffisante pour la contrôlabilité exacte des
ondes,” C. R. Acad. Sci. Paris Sér. I Math., vol. 325, no. 7, pp. 749–752, 1997.
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