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ABSTRACT: Random difunctionalization of dendrimer surfaces, frequently employed in
biological applications, provides the advantage of dual functional groups through a synthetic
pathway that is simpler compared to precise difunctionalization. However, is the random
difunctionalization as efficient as the precise difunctionalization on the surface of
dendrimers? This question is unanswered to date because most dendrimer families face
challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH)
dendrimers present a unique opportunity to obtain precise difunctionalization at each
terminal branching point. The work concerning catalysis we report with PPH dendrimers,
whether precisely or randomly functionalized, addresses this question. Across PPH
dendrimers, from generations 1 to 3, precise functionalization consistently outperforms
random functionalization in terms of efficiency. This finding introduces a novel concept in
dendrimer science, emphasizing the superiority of precise over random functionalization
methodologies. Introducing a groundbreaking concept in the field of dendrimers.

Dendrimers are macromolecules synthesized step-by-step
(generation after generation), to ensure a supposed

perfect structure.1 Paradoxically, a random difunctionalization
of the surface of dendrimers is frequently applied, thus
affording “imperfect” nano-objects from “perfect” ones. The
random difunctionalization is generally applied with the aim of
affording two different properties to the dendrimers, for
instance, one function for increasing the solubility in a given
solvent such as water, the second affording the desired
properties. The random difunctionalization is in particular used
when studying biological properties of dendrimers.2 However,
inconsistencies between batches have been already pointed
out, leading to batches with varying biological activities.3

Meanwhile, to the best of our knowledge, no study up to now
has compared the influence of random versus precise
difunctionalization on all of the surfaces of dendrimers on a
given property. In fact, such a comparison is not easy to carry
out, as the precise difunctionalization of most types of
dendrimers is not possible, except when using difunctionalized
reagents, such as those based on triazine,4 or Janus-type
dendrimers,5 or eventually after tedious purification by HPLC
of one, two, or three functions on the surface of dendrimers.6

Interestingly, polyphosphorhydrazone (PPH) dendrimers7

possess the rare property of an easy sequential difunctionaliza-
tion on one Cl, then on a second Cl, at each P(S)Cl2 terminal
function.8

In this Letter we describe both the precise and random
difunctionalization of PPH dendrimers, from generation 1 to
generation 3, with a perfluoroalkyl chain and an iminophos-

phine, suitable for the complexation of palladium. Both families
were then used in catalytic experiments for detecting their
different or similar properties.

The PPH dendrimers were synthesized as described
previously,6 to have P(S)Cl2 terminal functions at each
generation, from generation 1 (6 P(S)Cl2) to generation 3
(24 P(S)Cl2). The ligand chosen for the catalytic experiments
of type iminophosphine was previously used by us for
complexing palladium on a monomer and a first generation
dendrimer9 and was found efficient and usable in several
catalytic experiments.9,10 The other function that we chose was
a perfluoroalkyl chain, which could potentially modify the
solubility of the PPH dendrimers.

The P(S)Cl2 functions of the PPH dendrimers react easily
with phenols and amines. The easy and precise difunctional-
ization was previously observed essentially with amines.8 It was
carried out only one time with two phenol derivatives,11

affording a difunctional dendrimer with a purity of ca. 95%. As
in our experience, it is generally easier to functionalize the PPH
dendrimers with phenols than with primary amines; we choose
to use a phenol for both types of substituents. The
perfluoroalkyl derivative 1 (HOAr1) was synthesized by a
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substitution reaction between 4-mercaptophenol and
1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-8-iodooctane in the pres-
ence of triethylamine in refluxing THF overnight, instead of
K2CO3 in refluxing acetone for 1 day.12 The ligand 2 (HOAr2)
was synthesized as previously described9 by a condensation
reaction between 2-(diphenylphosphino) benzaldehyde and 4-
aminophenol.

Having both phenols in hand, the first step was to study
their grafting on a model compound (M) bearing a single
P(S)Cl2 function. It was decided to graft first phenol 1, as it is
a very stable compound, contrarily to phenol 2, in which the
phosphine can be easily oxidized. The monofunctionalized
monomer M-mono was isolated and characterized, then
phenol 2 bearing a phosphine was reacted to afford the
difunctionalized monomer 3prc. Both reactions were carried
out under basic conditions, using cesium carbonate, whereas
sodium sulfate was used as a drying agent. The mono-
functionalization with phenol 1 was then attempted with
generations 1 (G1), 2 (G2), and 3 (G3) of the PPH
dendrimers in basic conditions. A very small proportion of
unreacted P(S)Cl2 and of doubly reacted P(S)(OAr1)2 was
observed in all cases by 31P{1H} NMR (less than 5%) (Scheme
1).

The main 31P{1H} NMR signal corresponding to the
monosubstitution is observed at 68 ppm for all generations.
The second phenol (2) was then reacted, also in the presence
of cesium carbonate and sodium sulfate. After completion of
this second reaction, dendrimers 3prc-Gn (n = 1, 2, 3)
(Scheme 1) were isolated, having less than 5% of symmetrical
P(S)(OAr1)2 and P(S)(OAr2)2 terminal functions.

In the next experiment, generations 1, 2, and 3 of the PPH
dendrimers were reacted simultaneously with both phenols 1
and 2 under basic conditions. As expected, this reaction
provided randomly functionalized dendrimers 3rdm-Gn (n =
1, 2, 3), in which ca. 50% of the terminal functions are of type
P(S)(OAr1)(OAr2), ca. 25% of type P(S)(OAr1)2, and ca. 25%
of type P(S)(OAr2)2. Scheme 1 illustrates the reaction for the
first generation and the structure of 3rdm-G1.

Figure 1 displays the 31P{1H} NMR spectra (only the part
corresponding to the P�S groups) of both the 3prc-G1 and
3rdm-G1 dendrimers (only one of the numerous possible
structures is shown for the latter), pointing to the large
difference between both families of dendrimers. It should be
emphasized that 31P NMR is a unique and very precious tool
for the accurate characterization of dendrimers,13 in particular,
of highly sophisticated dendritic structures.14 Indeed, neither

Scheme 1. Synthesis of the (a) Precisely Difunctionalized Monomer (3prc) (b) of the First-Generation Dendrimer (3prc-G1
Reaction Also Carried out to Synthesize 3prc-G2 and 3prc-G3) (c) and of 3rdm-G1 (Reaction Also Carried out to Synthesize
3rdm-G2 and 3rdm-G3); Structure of 3prc-G2 and 3prc-G3
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1H nor 19F NMR were found suitable to detect any difference
between the families of random (3rdm-Gn) and precise (3prc-
Gn) difunctionalization of the dendrimers surface. 13C{1H}
NMR displays slight differences on some signals, but not as

easily interpretable as 31P{1H} NMR spectra (see spectra in
SI). Mass spectrometry is unusable, as cleavages and
rearrangements are always observed with PPH dendrimers in
MALDI-Tof experiments.15

The complexation ability of the iminophosphine was
checked on the model compound 3prc and then on
dendrimers 3prc-Gn and 3rdm-Gn (n = 1−3), respectively,
using Pd(1,5-cyclooctadiene)Cl2 (Scheme 2). The complex-
ation was, in particular, characterized by 31P{1H} NMR, which
displayed the disappearance of the signal corresponding to the
free phosphine at ca. δ = −13 ppm, on behalf of the
appearance of the signal corresponding to the phosphine
complex at ca. δ = 30.8 ppm. It can be noted that there is no
control of the chirality on the P(S)(OAr1)(OAr2) surface
groups, and thus, all catalytic tests were carried out with
nonchiral ligands, reagents, and reactions.

Having in hand two families of dendrimer complexes,
namely, precisely and randomly difunctionalized, from
generations 1−3, they were then tested in the Stille coupling16

of iodobenzene with tributylvinyltin in THF at 50 °C. In order
to have an accurate comparison between the different
generations, the same quantity of catalytic sites was used in
all cases. For instance, the efficiency of 1 equiv of generation 3
having 24 ligands complexing Pd is compared with that of 4
equiv of generation 1 having 6 ligands complexing Pd, and with
that of 24 equiv of the monomeric complex. Even if the
distance between the catalytic sites and their accessibility
changes with the generations, this is the only way to compare
the efficiency between generations. Figure 2 displays the results
of these catalytic experiments monitored by NMR for 7 h. All
experiments were carried out in duplicate, and the uncertainty
is given in Figure 2. The precisely functionalized dendrimers
display a slightly positive dendritic effect on going from
generation 1 to generation 3.17 An analogous, slightly positive
dendritic effect is observed with the randomly functionalized
dendrimers. However, it is important to note that in all cases
from generation 1 to generation 3 the precisely difunctional-
ized dendrimers 3prc-Gn-[Pd] are more efficient catalysts than
the randomly functionalized dendrimers 3rdm-Gn-[Pd]. The
difference is most accurate between the first generations 3prc-

Figure 1. 31P{1H} NMR spectra of the P(S) groups in 3prc-G1 (A)
and 3rdm-G1 (B) dendrimers.

Scheme 2. Example of the Synthesis of the Palladium Complex of the Dendrimer 3prc-G3a

aReaction was also carried out with the monomer 3prc and dendrimers 3prc-Gn (n = 1, 2) and 3rdm-Gn (n = 1−3).
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G1-[Pd] and 3rdm-G1-[Pd], but it is still large with
generations 2 and 3.

Part B of Figure 2 displays the results after 7 h, with
additional information about the use of PdCl2 alone and of the
monomer. There is a large difference in the efficiency between
monomer 3prc-[Pd], which is less efficient than PdCl2 alone,
and the different generations of the dendrimers, illustrating
again a dendritic effect. As we had previously demonstrated a
different efficiency of the Pd-iminophosphine catalysts,
depending on the type of Stille couplings carried out,9 we
decided to test 3prc-G1-[Pd] and 3rdm-G1-[Pd] in another
type of Stille couplings. The reagents used in this case were
methyl-2-iodobenzoate and 2-(tributylstannyl) thiophene, and
the catalysis was carried out for 22 h at 50 °C in THF. As
shown in Figure 3, in this case also the precisely
difunctionalized dendrimer 3prc-G1-[Pd] was more efficient
than the randomly difunctionalized dendrimer 3rdm-G1-[Pd].

In order to confirm more (or not) the large difference in
efficiency between random and precisely difunctionalized
dendrimers observed in the catalysis of Stille couplings, the

model 3prc-[Pd] and the first generations 3prc-G1-[Pd] and
3rdm-G1-[Pd] were tested in another type of cross-coupling
reactions, the Heck reaction.18 The reagents used were
iodobenzene and methyl acrylate, in the presence of NEt3.

18

It was shown previously that the presence of triethylamine
increases the selectivity of the Heck coupling product.19 In our
case, we observed 100% selectivity in the trans product.

As the reaction occurs more slowly than the previous ones,
experiments were carried out for a longer time, 30 h. A weak
dendritic effect was observed on going from monomer 3prc-
[Pd] to 3prc-G1-[Pd]. In this case as previously, the precisely
difunctionalized dendrimer 3prc-G1-[Pd] was found more
efficient than the random difunctionalized dendrimer 3rdm-
G1-[Pd], as illustrated in Figure 4.

In this paper, we have demonstrated for the first time that
the precise difunctionalization on all of the surface of
dendrimers affords different results than their random
difunctionalization. We have shown that the precise function-
alization of PPH dendrimers is more efficient in two types of
cross-coupling catalytic reactions. The difference is clearly
visible for all generations, from the first to the third. Thus,
besides the problems of reproducibility between batches

Figure 2. Stille cross-coupling catalytic experiments with precisely and
randomly difunctionalized dendrimers from generation 1 to
generation 3 and monomers: (A) evolution with time; (B)
comparison of efficiency after 7 h.

Figure 3. Another example of Stille coupling with precisely and
randomly functionalized dendrimer 3-G1-[Pd].

Figure 4. Heck cross-coupling reaction catalyzed by the monomer
3prc-[Pd] and both dendrimers 3prc-G1-[Pd] and 3rdm-G1-[Pd].
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previously known,3 the difference in efficiency between
precisely and randomly difunctionalized dendrimers must be
taken into account and should be checked in each case. Indeed,
examples in which randomly functionalized dendrimers are
more efficient than precisely functionalized dendrimers can
probably also exist. We believe that this original finding is not
limited to catalysis, but can be considered as a global warning
when using randomly functionalized dendrimers in any field,
such as in biology where it is widely used with only very few
questions.20
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