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Abstract—This paper focuses on the AUD in a NOMA network.
To do so with a reduced complexity, we propose a new strategy
based on Grover’s quantum algorithm to perform the minimum
searching so as to implement the ML receiver. As current
quantum processors still suffer from noise in the so-called NISQ
era, we propose to use Grover’s routine with a reduced number
of iterations but with several trials. We show that this approach
presents a complexity advantage and allows to reach higher
success probabilities than Grover’s. This strategy may permit to
timely deploy such AUD receiver even without perfect quantum
devices.

Index Terms—NOMA, AUD, Grover’s algorithm, hybrid quan-
tum computing, NISQ

I. INTRODUCTION

Scenarios of 5G applications address several cases, one
of them being ultra reliable low latency communications
(uRLLC) [1]. Resource allocation prior to transmission is no
longer adapted for uRLLC use of cases such as Industrial
IoT. Non orthogonal multiple access (NOMA) appears as a
promising solution to allow all users on the network to share
the same resources, and for a subset of them to simultaneously
transmit information to an access point with high success prob-
ability. That is why it has gained interest from the scientific
community [2].

In a code domain NOMA system, each node is identified
with a unique sequence ci ∈ CM . The activity of the network
is encoded in b(0) ∈ {0, 1}n where b

(0)
i = 1 (resp. b(0)i =

0) corresponds to an active (resp. inactive) user. Assuming
that one has perfect channels, the access point receives the
following signal y ∈ CM :

y =

n∑
i=1

b
(0)
i ci +w, (1)

where w ∼ N (0, σ2IM ) is an additive Gaussian noise and
IM is the M ×M identity matrix.

Estimating a posteriori the activity bit-string b(0) from
the received signal is a key challenge in NOMA networks
called active user detection (AUD). To do so, several decoders
exist and the choice of the decoder usually results from a
compromise between reliability and complexity. For instance,
the conventional correlation receiver (CCR) b̂CCR [3] allow to
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estimate b(0) with O(n) operations but with a limited relia-
bility. Meanwhile, the most reliable estimator is the maximum
likelihood (ML) decoder. As discussed in [4], the probability
P(b̂ = b(0)) is significantly higher for the ML than for the
CCR. However, the ML is obtained with the expression [4]:

b̂ML = arg min
b∈{0,1}n


∥∥∥∥∥ŷ −

n∑
i=1

bici

∥∥∥∥∥
2
 , (2)

which clearly shows that it is NP-hard to compute since it
requires O(2n) tests.

Quantum algorithms offer promising results to deal with
such minimisation problems. The so-called Grover’s algorithm
[5] allows to find an element x0 in {0, 1}n verifying a boolean
constraint of the type f(x0) = 1 with O(2n/2) iterations
and without any prior knowledge of x0. It offers a quadratic
speedup over a classical exhaustive search. Thus, it has al-
ready been considered for use in for wireless communications
systems [4], [6]. Thanks to the adaptation of the algorithm for
minimum searching [7], one can use Grover’s routine to build
the ML decoder of Eq. 2.

Despite the excellent properties of this algorithm, there is
room for improvement. Indeed, its implementation on today’s
NISQ quantum processors yields a degradation of the relia-
bility of the algorithm [8], [9]. Inspired by BBHT’s approach
[10] that launches Grover several times when the number of
solutions is unknown, we propose an hybrid version of the
algorithm that relies on this principle. The paper is organized
as follows. First, we review the Grover’s algorithm principle.
Then, we show that our approach presents a complexity advan-
tage over Grover when one targets a reliability reachable by
the latter in the presence of noise. Finally, we emphasize that
our algorithm is able to reach a higher success probability than
Grover’s algorithm in a noisy environment without increasing
the complexity.

II. GROVER’S ALGORITHM

A. Qubits and gates

Quantum information uses the so-called qubit as the support
of information, which is a superposition of two reference states
|0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ , (3)



where |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
form an orthonormal basis

of C2. The coefficients α and β are two complex numbers
such that:

|α|2 + |β|2 = 1. (4)

The probability to measure the qubit in the state |0⟩ or |1⟩ is
respectively given by |α|2 and |β|2.

One can physically act on a qubit, which is modelled by
the action of a unit operator U 1 on |ψ⟩. In the common
terminology, U is called a gate. It allows to apply logical
operations on a qubit. For instance, the NOT gate usually
denoted X is given by:

NOT ≡ X =

(
0 1
1 0

)
(5)

As expected, X |0⟩ = |1⟩ and X |1⟩ = |0⟩. Another often used
gate is the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
, (6)

which permits to have an equiprobable superposition of the
basis states.

A system of n qubits, often called a register, is represented
by a state vector living in the tensor product space

(
C2
)⊗n

=
C2⊗· · ·⊗C2 of dimension N = 2n, with ⊗ the tensor product.
One can apply the gates U1, . . . , Un on each qubit by using
the gate U = U1⊗· · ·⊗Un. For instance, a NOT gate applied
on the first qubit of a 2-qubit register is realized with X ⊗ I2.

B. Grover’s algorithm description

Basic Grover’s algorithm [5], denoted BG throughout this
work, consists in the routine described in Alg. 1

Algorithm 1 Grover’s algorithm

Input: k ∈ N∗

1: Initialize the register to the uniform superposition state:
|s⟩ = 1√

N

∑
x∈{0,1}n |x⟩

2: remainingIterations ⇐ k
3: while remainingIterations > 0 do
4: Apply the oracle Uf

5: Apply the diffusion operator Us = 2 |s⟩ ⟨s| − IN
6: remainingIterations ⇐ remainingIterations - 1
7: end while
8: Perform a measure of the register

Output: |x⟩

Within one iteration, the oracle first marks the states which
verify f(x) = 1 by acting on the register as:

Uf |x⟩ =

{
−|x⟩ if f(x) = 1

|x⟩ if f(x) = 0
, (7)

and the diffuser Us amplifies the probability amplitude of the
marked states by the use of inverse mean (Fig. 1). After the

1The unitarity constraint aims to preserve the normalization |α|2+|β|2 = 1

One Grover’s iteration

. . .
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. . .

|0⟩ H
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2 |s⟩ ⟨s| − IN
|0⟩ H

|0⟩ H

Figure 1: Grover Scheme with for 2 qubits. The last qubit is
an ancilla qubit needed for marking the solutions.

k iterations, a measure of the register’s final state returns one
of the marked state with a probability of almost 1 when the
number of iterations is wisely chosen.

As mentioned in the introduction, BG can be used for
minimum searching problems. In our AUD scenario, we can
define the function T of Ref. [7] as:

b̂ML = arg min
b∈{0,1}n

T [b] (8)

and execute the routine detailed in [7]. One can thus compute
the ML decoder for AUD using Grover’s algorithm as done
in [4]. However, the success probability of BG is likely to be
reduced due to quantum perturbations in the algorithm.

C. Quantum noise model

Grover’s algorithm on today’s NISQ processors presents a
lower success probability than the theoretical expectations. A
simple model that allows to implement those noise effects is
the total depolarizing channel (TDCh) [11].

In the density matrix formalism, TDCh maps the current
state of the register ρ to a maximally mixed state 2 with
probability λ and leaves it unchanged with probability 1− λ:

ε(ρ) = (1− λ)ρ+ λ
IN
N
. (9)

We adopt the model of Ref. [11], where each action on the
register of G = UsUf is followed by one action of the TDCh
error model. Assuming that t elements verify f(x) = 1, [11]
showed that the success probability of the algorithm is:

P
(λ)
BG(k) = (1− λ)k sin2((2k + 1)θG) +

(
1− (1− λ)k

) t

N
,

(10)

where sin2 θG = t/N . The term (1 − λ)k in Eq. 10 encodes
that the more iterations, the more errors due to the TDCh. The
optimal number of iterations required to reach the maximum
of this probability is [11]:

L
(λ)
opt = max

{⌊
π − arcsin(δ(λ))− arcsin((1− 2/N)δ(λ))

4θG

⌋
, 1

}
,

(11)

2The maximally mixed state corresponds to a uniform mixture where the
register might occupy any state of {0, 1}n with the same probability 1/N .



Figure 2: Effect of the TDCh error on the success probability
of BG with n = 10 qubits (L(0)

opt = 25).

Figure 3: Reachable success probability by Grover’s algorithm
for n = 10 users

where δ(λ) is defined by:

δ(λ) =

(
1 +

(
4θG

log(1− λ)

)2
)−1/2

. (12)

For latter convenience, we denote this maximum by:

S
(λ)
BG = P

(λ)
BG

(
L
(λ)
opt

)
(13)

As λ increases, this quantity is reduced. However, L(λ)
opt is also

reduced which means that BG needs less iterations to reach
S
(λ)
BG as shown on Fig. 2. This plot also shows that one cannot

expect a better reliability from Grover’s algorithm by using
more iterations than L

(λ)
opt. Indeed, increasing k increases the

probability to accumulate errors along the iterations.
Thus, we can define a boundary of success that cannot be

crossed by Grover’s algorithm as shown on Fig. 3. The dashed
curve corresponds to S

(λ)
BG and the white region represents

the reachable success probabilities when λ increases. The
reliability of Grover’s algorithm is significantly reduced when
the noise increases.

III. MIXED GROVER’S ALGORITHM

A. Proposed algorithm

We propose to use and evaluate an hybrid enhancement of
Grover’s algorithm denoted Mixed Grover (MG). It consists in

Start

remainingTrialNumber = T

Perform Grover with k iterations

remainingTrialNumber > 0

Solution remainingTrialNumber = remainingTrialNumber − 1

Report Success Report Failure

yes

no

yes

no

Figure 4: Proposed searching scheme for reducing the number
of iterations in Grover’s search problem.

running BG with k iterations deliberately lower than L(λ)
opt as a

reduced number of iterations will limit the effect of the noise.
Then, we test with a classical algorithm whether the output |x⟩
effectively verifies f(x) = 1. If it does, the computation can
stop which allows to use less iterations than Grover’s routine.
Otherwise, a new trial is launched. A maximum number of
trials T is set to bound computational time. We expect that,
on average, MG requires less iterations than BG. The process
is depicted on Fig. 4

Notice that each trial is independent of each other. Indeed,
the measurement performed after each trial suppresses the
quantum superposition. Thus, a new trial cannot exploit the
previous ones.

B. Metrics for performance evaluation

Let us now define the metrics to evaluate the performances
of our MG proposal. We first focus on its success probability.
One retrieves a solution after exactly j trials with probability(
P

(λ)
BG(k)

)
×
(
1− P

(λ)
BG(k)

)j−1

. Thus, the success probability
is obtained by considering all the trials values up to T :

P
(λ)
MG(k, T ) =

T∑
j=1

(
P

(λ)
BG(k)

)
·
(
1− P

(λ)
BG(k)

)j−1

= 1−
(
1− P

(λ)
BG(k)

)T (14)

On the other hand, we evaluate the complexity with the
number of iterations. In the worst case, MG parameterized
with the pair (k, T ) will cost k×T total iterations. Fortunately,
it often costs less resources since one stops the algorithm as
soon as a marked element is found. Hence the number of
iterations is rather a random variable whose mean value is
meaningful. Thus, we define the expected number of iterations



(a) p = 0.3 (b) p = 0.62

Figure 5: Comparison between the complexity of MG and BG
to reach the targeted success p for n = 10, λ = 0.02.

to evaluate MG’s complexity:

E
(λ)
i (k, T ) =

T−1∑
j=1

(
j · k ·

(
P

(λ)
BG(k)

)
·
(
1− P

(λ)
BG(k)

)j−1
)

+ T · k ·
(
1− P

(λ)
BG(k)

)T−1

(15)

From this expression, one can show that:

E
(λ)
i (k, T ) =

k

P
(λ)
BG(k)

P
(λ)
MG(k, T ). (16)

IV. BENEFITS OF MIXED GROVER

In this section, we compare the MG performances with the
BG ones.

A. Complexity comparison

We first focus on n = 10 users and λ = 0.02 so that
BG’s reliability is not too low (S(λ=0.02)

BG = 0.624, see Fig. 3)
An appropriate parameterization of the MG algorithm (k, T )
must fulfill a reliability requirement while consuming as less
iterations as possible. Thus, given a targeted success p and a
number of users n, we define the optimal pair as:

(k∗, T ∗) = arg min
(k,T )∈(N∗)2

{
E

(λ)
i (k, T ) s.t P (λ)

MG(k, T ) ≥ p
}
(17)

One can find it by an exhaustive search over a well chosen
region for k and T . First, it is easy to show that:

E
(λ)
i (k, T ) ≥ k, (18)

hence MG with k > L
(λ)
opt cannot provide any complexity

advantage over BG. Thus, k can be bounded in [1, L
(λ)
opt]. As for

T , one can notice that P (λ)
MG, and so E(λ)

i (k, T ) from Eq. 16,
both grow with T at fixed k. Hence (k∗, T ∗) can be obtained
by an exhaustive search over the pairs (k, T (k, p)) where k is
bounded in [1, L

(λ)
opt] and T (k, p) is the smallest integer such

that P (λ)
MG(k, T ) ≥ p.

We have reported on Fig. 5 the expected number of itera-
tions obtained with the pairs (k, T (k, p)) for two values of p.

Figure 6: Complexity of BG and MG to reach the success p
for n = 10, λ = 0.02.

The configuration (k∗, T ∗) that must be chosen to minimize
the complexity is indicated with a red star. For p = 0.3, Fig.
5a shows that the minimum is obtained for T ∗ = 1 which
amounts to use BG algorithm. However, Fig. 5b shows that
there exists a pair with T ∗ = 3 and k∗ = 3 for p = 0.62 such
that 3:

E
(λ=0.02)
i (k∗, T ∗) <

(
P

(λ)
BG

)−1

(p) (19)

It means that in this case, MG presents a complexity advan-
tage over BG while the reliability is still guaranteed by the
constraint P (λ)

MG(k, T ) ≥ p.
The tendency shown on Fig. 6 underlines that this advantage

shows up when p is close to S(λ)
BG for n and λ fixed. We can see

that MG amounts to use BG when p < 0.6 and then becomes
the better solution above this critical value of p.

B. Reliability comparison

Contrarily to BG, the maximum success probability of MG
algorithm is always 1. Indeed, for a given value of k:

lim
T→∞

P
(λ)
MG(k, T ) = 1 ∀λ > 0 (20)

However, T is an additional degree of freedom corresponding
to a classical operation, namely restart Grover’s algorithm
from scratch. Thus, naively pushing T too high might result
in a lost of the quadratic speedup.

An interesting compromise might be to find the following
parameterization for a given level of noise λ:

(k+, T+) = arg max
(k,T )∈(N∗)2

{
P

(λ)
MG(k, T ) s.t E(λ)

i (k, T ) ≤ C × L
(0)
opt

}
(21)

where C is a constant. This way, we enforce MG to keep a
complexity with the same magnitude as the BG one without
noise. Similarly to the previous part, we obtain (k+, T+) by an
iterative search over the pairs (k, T (k, λ)) where k is bounded
in [1, L

(λ)
opt] but this time T (k, λ) is the biggest integer such

that E(λ)
i (k, T ) ≤ CL(0)

opt.

3
(
P

(λ)
BG

)−1
(p) gives the minimum number of iterations in [1, L

(λ)
opt]

required by Grover’s algorithm to reach the success probability p



(a) λ = 0.02 (b) λ = 0.05

Figure 7: Success probability of MG under the constraint
E

(λ)
i ≤ L

(0)
opt (C = 1) compared to S(λ)

BG for n = 10.

Figure 8: Reliability boundary of MG bounded to CL(0)
opt

iterations compared to S(λ)
BG for n = 10.

Fig. 7a (resp. Fig. 7b) shows that MG bounded to 25 iter-
ations for 10 users can reach a success p ≈ 0.8 for λ = 0.02
while BG is limited to S

(λ=0.02)
BG = 0.62 (resp. p ≈ 0.5 for

λ = 0.05 while S
(λ=0.05)
BG = 0.33). In those examples, our

algorithm increases of 20% the success probability of Grover’s
search without increasing the complexity.

We can plot an analogue of the reliability boundary for MG
when its expected number of iterations is bounded. Fig. 8 con-
firms that our algorithm pushes forward the maximum reach-
able success at a level of noise λ. This effect is significantly
amplified as C increases. Thanks to the additional degree of
freedom, MG permits to improve the success probability for
a given complexity budget.

V. CONCLUSION

In this work, we proposed to use Grover’s algorithm in an
hybrid format which consists in performing the usual routine
several times but with a reduced number of iterations. It might
permit to run the ML detector on a noisy quantum processor.
Our approach is promising for two main reasons:

• It presents a complexity advantage in the region of suc-
cess probabilities reachable by BG. Either MG amounts
to use BG when T ∗ = 1, or MG beats BG in terms of
number of iterations when p is close to S(λ)

BG

• It allows to reach success probabilities out of the ac-
cessible range for Grover’s algorithm for a given value
of the depolarizing rate λ. It is true even if we bound
the expected number of iterations so that MG keeps the
quadratic speedup property of Grover’s algorithm.

This way, Grover’s algorithm is a promising way to perform
AUD in a more efficient way. Indeed, the computation of
the ML detector (Eq. 2) for n = 10 users costs 210 ∼ 103

iterations with a classical algorithm. On the other hand, our
proposal would require

√
210 = 32 iterations to get a potential

solution of the problem. We considered a simple model for
the quantum errors. The next step would consist in testing the
algorithm on a real quantum processor to further validate this
approach.
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