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GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR
SCHRÖDINGER EQUATION WITH PERIODIC BOUNDARY

CONDITION

HAJER BAHOURI AND GALINA PERELMAN

Abstract. We prove global well-posedness for the derivative nonlinear Schrödinger
equation on the torus in the Sobolev space H1(T) provided that the mass of initial
data is strictly less than 8π.
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1. Introduction

The goal of this paper is to address global well-posedness for the derivative nonlinear
Schrödinger equation (DNLS) on the torus:

(1.1) iut + uxx = −i∂x(|u|2u), x ∈ T = R/Z,

with Cauchy data

(1.2) u|t=0 = u0 ∈ H1(T).

Date: July 19, 2024.
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2 H. BAHOURI AND G. PERELMAN

Note that the equation is L2 critical as it is invariant under the scaling

(1.3) u(t, x) −→ uµ(t, x) = 1
√
µ
u( t
µ2 ,

x

µ
), µ > 0·

The DNLS equation first appears in the literature in [26, 27] as a model for the propaga-
tion of circular polarized nonlinear Alfvén waves in magnetized plasmas and in the study
of the one-dimensional compressible magneto-hydrodynamic equation in the presence of
the Hall effect.

In [20], Kaup and Newell showed that the DNLS equation is completely integrable,
and since that time DNLS has received enduring attention. As a completely integrable
equation, DNLS possesses an infinite family of polynomial conservation laws, including
the conservation of the mass, the momentum and the energy:

(1.4) M(u) =
∫
|u|2dx ,

(1.5) P (u) = Im
∫
uuxdx+ 1

2

∫
|u|4dx,

(1.6) E(u) =
∫ (
|ux|2 −

3
2Im(|u|2uux) + 1

2 |u|
6
)
dx·

To avoid any confusion, all along this paper we will denote byMR, PR, ER andMµT, PµT, EµT
the mass, the momentum and the energy on the real line and on the torus R/µZ respec-
tively.

Local well-posedness for the DNLS equation in Hs for s ≥ 1
2 has been known for

some time both on the real line [33] and on the torus [16]. This range is optimal if one
requires the solutions to be locally uniformly continuous with respect to initial data, see
for instance [5, 28, 34]. The gap between the s = 1

2 threshold and the scaling critical
regularity can be (almost) closed by leaving the Hs-scale and working in more general
Fourier-Lebesgue spaces [6, 10, 11].

Concerning global well-posedness on the real line, Wu [35] and Guo-Wu [12] showed
that the H1-norm of solutions is controlled by their momentum and energy provided that
the mass is strictly less than 4π. More precisely, they proved the following inequality (see
Lemma 2.2 in [12])

(1.7) ‖u‖2
Ḣ1(R) .

P 2
R(u) + |ER(u)|(

1− 1
2
√
π
‖u‖L2(R)

)2 , ∀u ∈ H1(R), ‖u‖2L2(R) < 4π,

which gives immediately global well-posedness of DNLS in H1(R) under the restric-
tion MR(u) < 4π. This global well-posedness result was subsequently extended to H

1
2 (R)

and H
1
2 (T) by Guo-Wu [12] and Oh-Mosincat [29], Mosincat [28] respectively, and more

recently to Hs, for 1/6 ≤ s < 1/2 both on the real line and the torus by Killip-Ntekoume-
Visan in [21].

The 4π restriction is related to the lack of coercivity of the DNLS conservation laws
that can be readily detected by considering the algebraic solitons:

(1.8) uc(t, x) = 2
√
c e−i

c2
4 t+i

c
2x

cx− c2t+ i

(cx− c2t− i)2 , c > 0,

for which MR(uc) = 4π, while all other polynomial conservation laws vanish.
In the case of the real line, the first evidence that global existence persists beyond the 4π

barrier was obtained by means of the inverse scattering techniques [25, 17, 18, 19, 30, 31].
The most definite result is due to Jenkins, Liu, Perry and Sulem who have proved in [17]
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that the Cauchy problem for the DNLS equation is globally well-posed for any initial
data u0 in H2,2(R) =

{
f ∈ H2(R) : x2f ∈ L2(R)

}
.

In Sobolev spaces Hs(R), the 4π barrier was overcome only very recently. In [2], the
authors proved that the DNLS equation is globally well-posed in H

1
2 (R) regardless of the

size of the mass. Afterwards, Harrop-Griffiths, Killip, Ntekoume and Visan [13, 14, 21]
established global well-posedness of the DNLS equation in the critical space L2(R).

The periodic case is more challenging. To the best of our knowledge, large data global
well-posedness for DNLS on the torus is not known even for C∞ data. In the present
paper, we improve the 4π bound to 8π in the H1-setting. Our main result is the following:

Theorem 1. The Cauchy problem (1.1)-(1.2) is globally well-posed in H1(T) under
the restriction MT(u) < 8π. Furthermore, for any R > 0 and 0 < δ < 8π, there ex-
ists C(R, δ) > 0 so that

(1.9) sup
t∈R
‖u(t)‖H1(T) ≤ C(R, δ),

for any H1(T)-solution to (1.1) with MT(u) ≤ 8π − δ and ‖u(0)‖Ḣ1(T) ≤ R.

The structure of the paper is as follows. In Section 2, we record some preliminary
results related to the integrability of the DNLS equation, that will be needed in the proof
of Theorem 1. In Section 3 we prove Theorem 1. As in [2], we proceed by contradiction,
combining the profile decomposition techniques with the integrability structure of the
equation. There are also two appendices: in the first one, we recall some properties of
the regularized determinants required for the results of Section 2 and the second one is
devoted to the proof of some technical results.

Throughout this article, we shall use the following convention for the Fourier transform
on the real line

f̂(ξ) = 1√
2π

∫
R
e−ixξf(x)dx.

We will use the notation ‖·‖2 for the Hilbert-Schmidt norm, and ‖·‖ for the operator norm
on L2 either on the real line or on a torus, while the standard hermitian norm in C2 and
the induced operator norm in the space of complex 2× 2 matrices will be denoted by | · |.
Finally, we mention that the letter C will be used to denote universal constants which
may vary from line to line. If we need the implied constant to depend on parameters, we
shall indicate this by subscripts. We also use the notation A . B to denote bounds of the
form A ≤ CB, and A .α B for A ≤ CαB, where Cα depends only on α. For simplicity,
we shall still denote by (un) any subsequence of (un).

2. Kaup-Newell spectral problem

2.1. Lax pair formulation of the DNLS equation. Kaup and Newell showed in [20]
that the DNLS equation can be obtained as a compatibility condition of the following
linear system

(2.1) ∂xψ = U(λ)ψ,
∂tψ = Υ(λ)ψ ,

with

U(λ) = −iσ3(λ2 + iλU), U =
(

0 u
u 0

)
,

Υ(λ) = −i(2λ4 − λ2 |u|2)σ3 +
(

0 2λ3u− λ|u|2u+ iλux
−2λ3u+ λ|u|2u+ iλux 0

)
,
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where λ ∈ C, ψ is a C2-valued function of (t, x, λ), and σ3 is the Pauli matrix given

by σ3 =
(

1 0
0 −1

)
. In other words, u satisfies the DNLS equation if and only if

∂U
∂t
− ∂Υ
∂x

+ [U ,Υ] = 0.

The first equation of (2.1), viewed as a spectral problem, will play a central role in our
analysis. We will write it in the form
(2.2) Lu(λ)ψ = 0,
where Lu(λ) = L0 − λ2 − iλU , with L0 = iσ3∂x. In the next three subsections, we collect
the properties of the Kaup-Newell spectral problem (2.2) that will be used in the proof of
Theorem 1, we refer to [2, 8, 13, 19, 20, 24, 25, 30, 31] and references therein as well as to
Appendices for the proofs and further details.

2.2. Kaup-Newell spectral problem in the periodic case. Given u ∈ L2
loc(R), we

denote Eu(x, λ) the canonical fundamental solution of (2.2):

(2.3)
{
Lu(λ)Eu(λ) = 0
Eu(0, λ) = Id .

For each x ∈ R, the fundamental matrix Eu(x, λ) is an analytic function of (λ, u, ū) with
the following properties:
(2.4) detEu(x, λ) = 1,

(2.5) Euµ(x, λ) = Eu(µ−1x,
√
µλ),

(2.6) σ3Eu(x,−λ)σ3 = Eu(x, λ), σ1Eu(x,−λ)σ1 = Eu(x, λ),

where σ1 =
(

0 1
1 0

)
.

In the case where u is periodic with period T > 0: u(x+T ) = u(x), we denote by Mu(λ)
the corresponding monodromy matrix:

(2.7) Mu(λ) =
(
M11(λ, u) M12(λ, u)
M21(λ, u) M22(λ, u)

)
= Eu(T, λ),

which satisfies detMu(λ) = 1, and by ∆u(λ) the trace of Mu(λ):
(2.8) ∆u(λ) = M11(λ, u) +M22(λ, u).
It follows from (2.1) that ∆u(λ) is time independent if u is a T -periodic solution of
the DNLS equation.

The values of λ for which ∆u(λ) = ±2 correspond to the eigenvalues of the spectral prob-
lem (2.2) with periodic/antiperiodic boundary conditions on [0, T ]: ψ(T ) = ±ψ(0). They
can be also viewed as eigenvalues of Lu(λ) considered on [0, 2T ] with periodic boundary
conditions. We will refer to them as periodic eigenvalues of Lu(λ).

We also need to introduce the functions

ADu (λ) = i

2
(
M11(λ, u) +M12(λ, u)−M21(λ, u)−M22(λ, u)

)
,(2.9)

ANu (λ) = i

2
(
M11(λ, u)−M12(λ, u) +M21(λ, u)−M22(λ, u)

)
.(2.10)

Zeros of the function ADu (resp. ANu ) are the eigenvalues of (2.2) considered on [0, T ]
with the Dirichlet (resp. Neumann) boundary condition (ψ1 − ψ2)(T ) = (ψ1 − ψ2)(0) = 0

(resp. (ψ1 + ψ2)(T ) = (ψ1 + ψ2)(0) = 0), where we denote ψ =
(
ψ1
ψ2

)
.
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Obviously, in the case of u = 0, the fundamental solution of (2.2) is given by

(2.11) E0(x, λ) = exp
(
− ixλ2 σ3

)
=
(
e−iλ

2x 0
0 eiλ

2x

)
and so
(2.12) M0(λ) = e−iTλ

2 σ3 , ∆0(λ) = 2 cos(Tλ2) ,
and
(2.13) AD0 (λ) = AN0 (λ) = sin(Tλ2) .

Thanks to the symmetry relations (2.6), one has

(2.14) σ3Mu(−λ)σ3 = Mu(λ), σ1Mu(−λ)σ1 = Mu(λ), Muµ(λ) = Mu(√µλ),
and therefore,

∆u(−λ) = ∆u(λ), ∆u(λ) = ∆u(λ), ∆uµ(λ) = ∆u(√µλ)(2.15)

ADu (−λ) = ADu (λ), ADu (−λ) = ANu (λ).(2.16)
Note that if ADu (λ) = 0 or ANu (λ) = 0, then since detMu(λ) = 1, we have

∆2
u(λ)− 4 = (M12(λ, u) +M21(λ, u))2,

which together with (2.14) implies that

(2.17) |∆u(λ)| ≥ 2 if ADu (λ) = 0 or ANu (λ) = 0 with λ ∈ iR.

To study the behavior of the matrix Eu(x, λ) for |λ| large, it is more convenient to
transform (2.2) into a Zakharov-Shabat system following [20, 30]. Setting

(2.18) ψ̃(x) = exp
( iσ3

2

∫ x

0
dy|u(y)|2

)( 1 0
−u(x) 2iλ

)
ψ(x),

one can easily check that ψ is a solution of (2.2) if and only if ψ̃ solves
(2.19) (iσ3∂x −Q− ζ)ψ̃ = 0,

where ζ = λ2 and Q =
(

0 q1
q2 0

)
with

q1(x) = 1
2u(x) exp

(
i

∫ x

0
dy|u(y)|2

)
q2(x) = (iux + 1

2u|u|
2)(x) exp

(
− i

∫ x

0
dy|u(y)|2

)
.

The representation (2.18) allows us to prove the following proposition, see Appendix B
for the proof.

Proposition 2.1. Let Êu(x, λ) = Eu(x, λ)− e−iλ
2xσ3−

iσ3
2

∫ x
0 dy|u(y)|2 ,

Êu(x, λ) =
(
Ê11(x, λ;u) Ê12(x, λ;u)
Ê21(x, λ;u) Ê22(x, λ;u)

)
.

Then for any T > 0 and R > 0, there exists CT,R > 0 such that

|Ê11(x, λ;u)|+ |Ê22(x, λ;u)| ≤ CT,R
e| Imλ2|x

〈λ〉2
,

|Ê12(x, λ;u)|+ |Ê21(x, λ;u)| ≤ CT,R
e| Imλ2|x

〈λ〉
,

(2.20)

for all (x, λ) ∈ [0, T ]× C and all u ∈ H1
loc(R) with ‖u‖H1([0,T ]) ≤ R.
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It follows from (2.20) that as |λ| → ∞,

∆u(λ) = 2 cos
(
λ2T +

‖u‖2L2([0,T ])
2

)
+OT

(e| Imλ2|T

|λ|2
)
,

ADu (λ), ANu (λ) = sin
(
λ2T +

‖u‖2L2([0,T ])
2

)
+OT

(e| Imλ2|T

|λ|

)
,

(2.21)

uniformly with respect to u in bounded sets of H1([0, T ]).
These asymptotics lead to the following localization of large periodic, Dirichlet and

Neumann eigenvalues of the Kaup-Newell spectral problem, that we formulate in the case
of T = 1.

Proposition 2.2. For any R ≥ 0 there exist an integer N = N(R) � 1 and a positive
constant C = C(R) so that, for all u ∈ H1(T) with ‖u‖H1(T) ≤ R and all n ∈ Z with |n| ≥
N , the disk

Dn =
{
λ ∈ C : |λ− λ0

n(u)| < C

|n|

}
, λ0

n(u) =
√
πn− 1

2‖u‖
2
L2(T) ∈ R+ ∪ iR+

contains exactly two periodic eigenvalues (counted with their multiplicities), one simple
Dirichlet eigenvalue and one simple Neumann eigenvalue of Lu(λ). If n < 0, the corre-
sponding Dirichlet and Neumann eigenvalues are purely imaginary. The functions ∆2

u −
4, ADu and ANu have no zeros in the region{

λ ∈ C :
∣∣λ2 + 1

2‖u‖
2
L2(T)

∣∣ ≥ πN − π

4 , |λ± λ
0
n(u)| ≥ C

|n|
, ∀ |n| ≥ N

}
.

Proposition 2.2 has the following consequence that will play an important role in the
proof of Theorem 1.

Lemma 2.1. Let R ≥ 0 and u ∈ C([0, 1], H1(T)) with ‖u(0)‖H1(T) ≤ R such that, for
all τ ∈ [0, 1], ∆u(τ) = ∆u(0). Then for any 0 < γ ≤ π

4 , there exists an integer N0 =
N0(R, γ)� 1 such that, for all n ≤ −N0, the interval1

In = [λ+
n , λ

−
n ] ⊂ iR+, λ±n =

√
nπ − 1

2‖u‖
2
L2 ± γ,

contains at least one Dirichlet eigenvalue and one Neumann eigenvalue of Lu(τ)(λ).

Proof. Asymptotics (2.21) ensure that for all 0 < γ ≤ π
4 , there exist δ1 > 0, and N1 =

N1(R, γ) ∈ N∗ such that

|∆u(0)(λ±n )| ≤ 2− δ1, ∀n ≤ −N1.

Since we suppose that ∆u(τ) is independent of τ , this inequality remains valid for all τ ∈
[0, 1] which together with (2.17) implies that

(2.22) ADu(τ)(λ
±
n ) 6= 0 and ANu(τ)(λ

±
n ) 6= 0, ∀ n ≤ −N1, τ ∈ [0, 1].

Taking into account the symmetry properties of ADu (λ), ANu (λ) with respect to λ and their
continuous dependence on u, one deduces from (2.22) that, for all n ≥ N1, the parity of
the number of zeros of ADu(τ), A

N
u(τ) in the interval In, counted with their multiplicity, is

independent of τ , which thanks to Proposition 2.2 gives the result. �

We end this section by the following estimate for the resolvent of Lu(λ), the proof of
which is given in Appendix B.

1Since u depends continuously on τ , the conservation of ∆u implies the conservation of the masse of u.
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Proposition 2.3. There exists a positive constant C such that, for any periodic func-
tion u ∈ L2 with period T and all λ ∈ C \(R ∪ iR), we have

(2.23) ‖L−1
u (λ)‖ ≤ C exp

(
C
|λ|2

| Imλ2|
eT | Imλ2|

| sin(Tλ2

2 )|2
‖u‖2L2([0,T ])

) ∣∣∣∣∣ cos(Tλ2)− 1
(∆u(λ)− 2) Imλ2

∣∣∣∣∣ ,
provided that ∆u(λ) 6= 2. Here the operator Lu(λ) is considered with the periodic bound-
ary conditions on [0, T ].

2.3. Kaup-Newell spectral problem on the real line. In order to establish The-
orem 1, we also need to recall a few results about the KN system on the real line.
Given u ∈ S(R), for any λ ∈ C with Imλ2 ≥ 0 there are unique solutions2 ψ−1 (x, λ;u)
and ψ+

2 (x, λ;u) to (2.2), the so-called Jost solutions, with the following behavior at ±∞:

ψ−1 (x, λ;u) = e−iλ
2x
[(

1
0

)
+ o(1)

]
, as x→ −∞,

ψ+
2 (x, λ;u) = eiλ

2x
[(

0
1

)
+ o(1)

]
, as x→ +∞.

The solutions ψ−1 , ψ+
2 are holomorphic functions of λ on Ω+ = {λ ∈ C : Imλ2 > 0}, C∞

up to the boundary.
Similarly, for λ ∈ C with Imλ2 ≤ 0, there are unique solutions ψ+

1 (x, λ;u), ψ−2 (x, λ;u)
to (2.2) such that

ψ+
1 (x, λ;u) = e−iλ

2x
[(

1
0

)
+ o(1)

]
, as x→ +∞,

ψ−2 (x, λ;u) = eiλ
2x

[(
0
1

)
+ o(1)

]
, as x→ −∞.

One can easily check that the Jost solutions satisfy the following symmetry relations
(2.24) ψ−1 (x, λ;u) = σ3ψ

−
1 (x,−λ;u), ψ+

2 (x, λ;u) = −σ3ψ
+
2 (x,−λ;u),

(2.25) ψ−1 (x, λ;u) = −σ1σ3ψ
−
2 (x, λ̄;u), ψ+

2 (x, λ;u) = σ1σ3ψ
+
1 (x, λ̄;u).

We denote by au(λ) the Wronskian of the Jost solutions ψ−1 , ψ+
2 defined above:

(2.26) au(λ) = det(ψ−1 (x, λ;u), ψ+
2 (x, λ;u)).

Using the second equation in (2.1), it can be shown that au(λ) is time-independent if u is
a solution of the DNLS equation.

Clearly, au is a holomorphic even function of λ ∈ Ω+, C∞ up to the boundary,
with au(0) = 1, and thanks to the symmetries (2.25), it verifies

|au(λ)|2 ≤ 1, ∀ λ ∈ R,(2.27)
|au(λ)|2 ≥ 1, ∀ λ ∈ iR.(2.28)

According to (2.26), the zeros of au in Ω+ are the eigenvalues of the spectral problem (2.2)
(considered in L2(R)). Let us recall the following result from [2].

Lemma 2.2. For any R ≥ 0 there exists a positive constant CR such that au(λ) 6= 0, for
all λ ∈ Ω+ with Reλ2 ≤ −CR, provided that ‖u‖

H
1
2 (R)
≤ R.

Since au is an even function of λ, it is convenient to introduce ãu(ζ) = au(
√
ζ). The

function ãu(ζ) is holomorphic in the open upper half plane C+, C∞ up to the boundary
and verifies, in view of (2.27)-(2.28),
(2.29) |ãu(ζ)| ≥ 1 for ζ < 0, |ãu(ζ)| ≤ 1 for ζ > 0 and ãu(0) = 1.

2If Imλ2 > 0, the solutions ψ−1 , ψ+
2 remain well defined for u ∈ L2(R).



8 H. BAHOURI AND G. PERELMAN

From the equivalence between the systems (2.2) and (2.19), one deduces that

(2.30) lim
|ζ|→∞, ζ∈C+

ãu(λ) = e
− i

2‖u‖
2
L2(R) .

Furthermore, one has the following asymptotic expansion as |ζ| → +∞, Im ζ ≥ 0:

(2.31) ln ãu(ζ) =
∑
k≥0

Ek(u)ζ−k.

The coefficients3 Ek(u) are polynomial with respect to u, u and their derivatives, and
homogeneous with respect to the scaling u(x) −→ uµ(x) = 1√

µu(xµ), µ > 0, since

(2.32) ãuµ(ζ) = ãu
(
µζ
)
·

As ãu(ζ) is time-independent, the quantities Ek(u) are conservation laws. The first three
of them coincide, up to constants, with the mass, momentum and energy:

E0(u) = − i2‖u‖
2
L2(R), E1(u) = i

4PR(u), E2(u) = − i8ER(u).

Furthermore, one can show that |ãu(ζ)|2 ∈ 1 + S(R).
The analyticity of ãu in C+ allows to express the functionals Ek in terms of the zeros

of ãu in C+ and of its trace on R. In the simplest case where ãu does not vanish4 on R+,
denoting by ζ1, . . . ζN the zeros of ãu in C+ counted with their multiplicity, we have

(2.33) ãu(ζ) = e
− i

2‖u‖
2
L2(R)

N∏
j=1

( ζ − ζj
ζ − ζj

)
exp

( 1
2iπ

∫ ∞
−∞

dξ

ξ − ζ
ln |ãu(ξ)|2

)
, ∀ζ ∈ C+,

which implies that

(2.34) Ek(u) = −2i
k

N∑
j=1

Im ζkj + i

2π

∫ ∞
−∞

dξ ξk−1 ln |ãu(ξ)|2, ∀k ∈ N∗ .

The set of Schwartz functions u such that ãu does not vanish on R+, is dense in S(R) [4,
19, 24, 31]. We will denote this set by S̃reg(R).

The continuity5 of ãu with respect to u, together with (2.29) and (2.30) ensure that for
all u ∈ S(R),

(2.35)
0∫

−∞

ã′u(s)
ãu(s)ds = i

2‖u‖
2
L2(R).

As a straightforward consequence of this formula and of the analyticity of ãu in C+, one
obtains the following result which was crucial for the analysis in [2].

Lemma 2.3. i) Let u ∈ S(R), θ ∈]0, π[ such that ãu(ζ) 6= 0, for all ζ in C+
with arg ζ = θ and let n(u; θ) be the number of zeros of ãu(ζ) in the angle {ζ ∈
C+ : θ < arg ζ < π

}
counted with their multiplicity. Then

(2.36) n(u; θ) = 1
2iπ

+∞ eiθ∫
0

ã′u(s)
ãu(s)ds+ 1

4π‖u‖
2
L2(R),

3We choose the branch of the logarithm so that lim
|ζ|→∞,ζ∈C+

ln ãu(ζ) = − i
2‖u‖

2
L2(R).

4It follows from (2.29)-(2.30) that in that case, ãu has only a finite number of zeros in C+.
5The map H1,1(R) 3 u → ãu ∈ L∞(R) is Lipschitz continuous on bounded sets of H1,1(R) = {u ∈

H1(R) : xu ∈ L2(R)}, see [31].
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where, all along this paper,
+∞ eiθ∫

0

ds denotes the integral along the path γ =
{
z =

ρ eiθ, ρ ∈ R+
}
.

ii) Let u ∈ S̃reg(R) and let ζ1, . . . ζN be the zeros of ãu in C+ counted with their
multiplicity. Then

(2.37) MR(u) = 4
N∑
j=1

arg(ζj)−
1
π

∫ ∞
−∞

dξ

ξ
ln |ãu(ξ)|2,

with, all along this paper, arg(ζ) ∈ [0, 2π[.

Remark 2.1. Observe that due to (2.29) and (2.37), we have:

(2.38) n(u; θ) ≤
‖u‖2L2(R)

4θ ,

for all u ∈ S̃reg(R) and all θ ∈]0, π[.

2.3.1. Regularized determinant realization of au. A convenient way to study the func-
tion au is to use its representation as a regularized perturbation determinant6:
(2.39) au(λ) = det2(I− Tu(λ)), ∀λ ∈ Ω+, u ∈ L2(R),
where

(2.40) Tu(λ) = iλ(L0 − λ2)−1U, U =
(

0 u
u 0

)
.

The operator Tu(λ), considered on L2(R,C2), is a Hilbert-Schmidt operator with

(2.41) ‖Tu(λ)‖22 = |λ|2

Im(λ2)‖u‖
2
L2(R).

The representation (2.39) together with the corresponding properties of the regularized
determinants (see Appendix A) leads immediately to the following bound.

Proposition 2.4. There exists a positive constant C such that the following estimate
holds

(2.42)
|au1(λ)− au2(λ)| ≤ CeC

|λ|2

Im(λ2)

(
‖u1‖2

L2(R)
+‖u2‖2

L2(R)

)
|λ|√

Im(λ2)
‖u1 − u2‖L2(R),

∀λ ∈ Ω+, u1, u2 ∈ L2(R).

Combining this proposition with (2.29), (2.30), Remark 2.1 and Lemma 2.3 i), and
taking into account the density of S̃reg(R) in L2(R), we obtain:

Corollary 2.1. Let u be a function in L2(R).
i) For all 0 < δ < π

2 , there holds

(2.43) lim
ζ→0, ζ∈Γδ

ãu(ζ) = 1, lim
|ζ|→∞, ζ∈Γδ

ãu(ζ) = e
− i

2‖u‖
2
L2(R) ,

where we denote Γδ =
{
ζ ∈ C+ : δ < arg ζ < π − δ

}
.

ii) For all θ ∈]0, π[,

(2.44) n(u; θ) ≤
‖u‖2L2(R)

4θ ,

where, as before, n(u; θ) denotes the number of zeros of ãu(ζ) in the angle {ζ ∈
C+ : θ < arg ζ < π

}
counted with their multiplicity.

6See Appendix A for the definition of the regularized determinants detn and their basic properties.
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iii) Let θ ∈]0, π[ such that ãu(ζ) 6= 0, for all ζ belonging to the ray eiθR+. Then,

(2.45) 1
2iπ

+∞ eiθ∫
0

ds
ã′u(s)
ãu(s) + 1

4π‖u‖
2
L2(R) ∈ N .

Remark 2.2. If u ∈ H1(R), then one has the following lemma, the proof of which is
sketched in Appendix B:

Lemma 2.4. Let u ∈ H1(R). Then,

(2.46) ln ãu(ζ) =
2∑

k=0
Ek(u)ζ−k + o(|ζ|−2), as |ζ| → ∞, ζ ∈ Γδ.

For our proof of Theorem 1, we will also need the following lemma which can be viewed
as a slightly modified version of Lemma 4.3 in [14].

Lemma 2.5. Let M ≥ 0, 0 < θ1 < θ2 < π, and 0 < t ≤ 1
2 . Then there exists a positive

constant C = C(θ1, θ2, t,M) so that

(2.47)
∣∣∣∣ 1
ãu(ζ)

∣∣∣∣ ≤ C,
for all ζ ∈ C+, with (1−t)θ1+tθ2 ≤ arg ζ ≤ tθ1+(1−t)θ2 and all u ∈ L2(R) with MR(u) ≤
M , and such that ãu has no zeros in the angle θ1 ≤ arg ζ ≤ θ2.

Proof. In order to establish the lemma, we proceed by approximation: let (un)n∈N be a
sequence in S̃reg(R) that converges to u in L2(R). Denoting by ζnj , j = 1, . . . , Nn the zeros
of ãun(ζ) in C+ counted with their multiplicity, we have
(2.48)

1
ãun(ζ) = e

i
2‖u‖

2
L2(R)

Nn∏
j=1

(ζ − ζnj
ζ − ζnj

)
exp

( i

2π

∫ ∞
−∞

dξ

ξ − ζ
ln |ãun(ξ)|2

)
, ∀ζ ∈ C+ \{ζn1 , . . . , ζnNn}.

Clearly, for all 0 < δ < π
2 ,

sup
ξ∈R,ζ∈Γδ

∣∣∣ ξ

ξ − ζ

∣∣∣ ≤ Cδ,
and therefore

sup
ζ∈Γδ

∣∣∣ ∫ ∞
−∞

dξ

ξ − ζ
ln |ãun(ξ)|2

∣∣∣ ≤ −Cδ ∫ ∞
−∞

dξ

ξ
ln |ãun(ξ)|2.

Furthermore, the stability estimate (2.42) together with Corollary 2.1 ensure that, for all n
sufficiently large, ãun does not vanish in the angle θ1 ≤ arg ζ ≤ θ2, and as a consequence

Nn∏
j=1

∣∣∣∣∣ζ − ζ
n
j

ζ − ζnj

∣∣∣∣∣ ≤ exp

Cθ1,θ2,t

Nn∑
j=1

arg ζnj

 ,
for all n sufficiently large, and all ζ with (1− t)θ1 + tθ2 ≤ arg ζ ≤ tθ1 + (1− t)θ2.

Combining the two last inequalities with (2.37) and (2.48), and passing to the limit n→
∞, we obtain (2.47). �

We conclude this subsection by the following H1-version of Lemma 2.6 in [2].

Lemma 2.6. Let u ∈ H1(R) be such that the corresponding function ãu has no zeros
in C+. Then ER(u) ≥ 0. Furthermore, ER(u) = 0 if and only if
(2.49) ãu(ζ) = 1 , ∀ζ ∈ C+ .

In that case, one also has ‖u‖2L2(R) ∈ 4πN and PR(u) = 0.
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Proof. We proceed as in the proof of Lemma 2.5. Let (un)n∈N be a sequence in S̃reg(R)
that converges to u in H1(R). Let ζnj , j = 1, . . . , Nn, be the zeros of ãun(ζ) in C+, counted
with their multiplicity. Thanks to (2.34), we have

(2.50) ER(un) = 16
∑

1≤j≤Nn
Re ζnj <0

Re ζnj Im ζnj + 16
∑

1≤j≤Nn
Re ζnj >0

Re ζnj Im ζnj

︸ ︷︷ ︸
≥0

− 4
π

∫ ∞
−∞

dξ ξ ln |ãun(ξ)|2︸ ︷︷ ︸
≥0

.

Combining Corollary 2.1 with the fact that ãu does not vanish on C+, and taking into
account the stability estimate (2.42), we infer that

(2.51) sup
j=1,...,Nn

Im ζnj
|Re ζnj |

n→∞−→ 0 ·

Therefore, invoking Lemma 2.2 together with the bound
(2.52) ]

{
ζni ,Re(ζnj ) < 0

}
. ‖u(n)‖2L2(R) . ‖u‖

2
L2(R) ,

we obtain
(2.53)

∑
1≤j≤Nn
Re ζnj <0

Re ζnj Im ζnj
n→∞−→ 0,

which, after passing to the limit in (2.50), gives ER(u) ≥ 0.
In the case of ER(u) = 0, we deduce from (2.50) and (2.53) that

(2.54)
∑

1≤j≤Nn
Re ζnj >0

Re ζnj Im ζnj
n→∞−→ 0,

and

(2.55)
∫ ∞
−∞

dξ ξ ln |ãun(ξ)|2 n→∞−→ 0.

By (2.37) and (2.51), we also have

(2.56) −
∫ ∞
−∞

dξ

ξ
ln |ãun(ξ)|2 . ‖un‖2L2(R) . 1,

and

(2.57)
∑

1≤j≤Nn

Im ζnj
|Re ζnj |

. ‖un‖2L2(R) . 1,

for all n sufficiently large. Combining (2.53), (2.54), (2.55) and (2.56), we obtain

(2.58)
∫ ∞
−∞

dξ
∣∣ ln |ãun(ξ)|2

∣∣ n→∞−→ 0,

and
(2.59)

∑
1≤j≤Nn

Im ζnj
n→∞−→ 0,

which in light of (2.33) implies that ãun(ζ) n→∞−→ e
− i

2‖u‖
2
L2(R) , for all ζ ∈ C+, and there-

fore ãu ≡ e
− i

2‖u‖
2
L2(R) . In view of Corollary 2.1 this means that ‖u‖2L2(R) ∈ 4πN and ãu ≡ 1.

Conversely if ãu ≡ 1, then by (2.46) ER(u) = PR(u) = 0. �

Remark 2.3. The set of potential verifying the condition ãu ≡ 1 is not trivial: it contains
the algebraic solitons, see for instance [2, 14]. Furthermore, they are the only potentials
with ãu ≡ 1 and ‖u‖2L2(R) = 4π:
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Lemma 2.7. Let u ∈ H1(R) such that ãu ≡ 1 and ‖u‖2L2(R) = 4π. Then

u(x) = 2
√
ceiϕ+icx/2 c(x− x0) + i

(c(x− x0)− i)2 ,

for some ϕ, x0 ∈ R and c > 0.

This result is an immediate consequence of the following sharp Gagliardo-Niremberg
inequality due to Agueh [1]:

(2.60) ∀ f ∈ L4(R) ∩ Ḣ1(R), ‖f‖L6(R) ≤ CGN‖f‖
8
9
L4(R)‖f‖

1
9
Ḣ1(R) , CGN = 3

1
6 (2π)−

1
9 ,

with equality if and only if there exist z ∈ C, c > 0, and x0 ∈ R such that f(x) =
z√

c2(x−x0)2+1
. For the sake of completeness, we give the proof of Lemma 2.7 in Appendix B.

2.4. Bäcklund transformation. In this paragraph, we define the Bäcklund transform
for the Kaup-Newell spectral problem following closely [30] (see also [15] and the references
therein).

Given u ∈ S(R), λ ∈ C++ = {λ ∈ C : Reλ > 0, Imλ > 0} and ψ =
(
ψ1
ψ2

)
a non

zero smooth solution of the KN spectral problem Lu(λ)ψ = 0, one defines the Bäcklund
transformation Bλ(ψ) by7

(2.61) Bλ(ψ)u = Gλ(ψ)
[
−Gλ(ψ)u+ Sλ(ψ)

]
,

where

(2.62) Gλ(ψ) =
dλ(ψ)
dλ(ψ) , Sλ(ψ) = 2i(λ2 − λ2) ψ1ψ2

dλ(ψ)
,

with dλ(ψ) = λ|ψ1|2 + λ|ψ2|2. Since ψ depends implicitly of u, the transformation (2.61)
is nonlinear with respect to the potential u. One can easily check that Bλ(ψ)u ∈ S(R).
Observe also that
(2.63) |Gλ(ψ)| = 1 and |Sλ(ψ)| ≤ 4 Imλ ·
Moreover, by straightforward computations, one can check that (see [2] for the proof)

(2.64)
∣∣∣ d
dx
Gλ(ψ)(x)

∣∣∣ ≤ 8(Imλ)2 + 4 Im(λ)|u(x)| ·

Setting

(2.65) ψ(1) =
(
ψ

(1)
1
ψ

(1)
2

)
, ψ

(1)
1 = ψ2

dλ(ψ) , ψ
(1)
2 = ψ1

dλ(ψ) ,

one gets a solution of the KN system associated with the potential u(1) = Bλ(ψ)u:
Lu(1)(λ)ψ(1) = 0. The Bäcklund transformation Bλ(ψ(1)) is a left inverse of Bλ(ψ):

(2.66) u = Bλ(ψ(1))u(1).

The key property of the Bäcklund transformation (2.61) is that it allows to add or to
remove eigenvalues of the Kaup-Newell spectral problem. In particular, assume that ãu(ζ)
has a simple zero ζ1 ∈ C+ and let ψ ∈ L2(R,C2) \ {0} be the corresponding eigen-
function: Lu(λ1)ψ = 0, λ1 =

√
ζ1 ∈ C++. Then the function ãu(1) associated to the

potential u(1) = Bλ1(ψ)u is given by (see for instance [15, 30])

(2.67) ãu(1)(ζ) = ãu(ζ)ζ1(ζ − ζ1)
ζ1(ζ − ζ1)

.

7Note that, for any constant C 6= 0, Bλ(ψ) = Bλ(Cψ).
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Thus, ãu(1) does not vanish at ζ1. Note also that thanks to (2.31) and (2.35), we have

(2.68) MR(u(1)) = MR(u)− 4 arg ζ1,

and

(2.69) Ek(u(1)) = Ek(u) + 2i
k

Im ζk1 , ∀ k ≥ 1.

The Jost solutions of the KN system associated with the new potential u(1) = Bλ1(ψ)u
can be obtained from the old Jost solutions by means of the following transformation
matrix:

(2.70) A(x, λ;ψ, λ1) = λ1

λ1

1
λ2 − λ2

1

(
λ2Gλ1(ψ)− |λ1|2 −λ

2i Sλ1(ψ)
λ
2iSλ1(ψ) −λ2Gλ1(ψ) + |λ1|2

)
.

More precisely, one has the following result (see Lemma 4 in [30]).

Lemma 2.8. Let λ1 ∈ C++ be an eiganvalue of the Kaup-Newell spectral problem (2.2)
and ψ ∈ L2(R,C2)\{0} a corresponding eigenfunction. Then the Jost solutions associated
with the new potential u(1) = Bλ1(ψ)u are given by

ψ−(x, λ;u(1)) = A(x, λ;ψ, λ1)ψ−(x, λ;u)
ψ+(x, λ;u(1)) = −A(x, λ;ψ, λ1)ψ+(x, λ;u) .

Remark 2.4. It follows from (2.67) that under the assumptions of Lemma 2.8, one has

detA(x, λ;ψ, λ1) = −λ
2
1(λ2 − λ2

1)
λ

2
1(λ2 − λ2

1)
.

3. Proof of the main theorem

3.1. Strategy of proof. Thanks to the local well-posedness result of Herr [16], to prove
Theorem 1 it is enough to show that, for any R > 0 and any 0 < δ < 8π, there exists C =
C(R, δ) > 0 such that

(3.1) sup
0≤t≤T

‖u(t)‖H1(T) ≤ C,

for any solution u ∈ C([0, T ], H1(T)) of the DNLS equation with u(0) ∈ C∞(T), ‖u(0)‖H1(T) ≤
R and ‖u‖2L2(T) ≤ 8π−δ. In order to establish the bound (3.1), we proceed by contradiction,
assuming that there exists a sequence of initial data (u(n)

0 ) in C∞(T), bounded in H1(T)
with sup

n∈N
‖u(n)

0 ‖2L2(T) < 8π, and a sequence of times (tn) ⊂ R+ such that, denoting un

the solution of the DNLS equation with initial data u(n)
0 we have: un ∈ C([0, tn], C∞(T))

and ‖un(tn)‖H1(T) → +∞, as n goes to infinity. After eventually passing to a subsequence,
we can assume that ‖u(n)

0 ‖L2(T) → m, with8 4π ≤ m < 8π. Setting

(3.2) U (0)
n (y) = 1

√
µn
un(tn,

y

µn
) with µn = ‖un(tn)‖Ḣ1(T),

we obtain a sequence of C∞ functions satisfying
(3.3)
U (0)
n (y + µn) = U (0)

n (y), ‖U (0)
n ‖L2(µn T) = ‖u(n)

0 ‖L2(T) and ‖∂yU (0)
n ‖L2(µn T) = 1, ∀n ∈ N .

8We assume that m ≥ 4π since the case of m < 4π is precluded by the global well-posedness results
of Oh-Mosincat [29] and Killip-Ntekoume-Visan [21]. The bound m ≥ 4π can be also recovered from
Theorem 3.
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We next truncate U (0)
n as follows. We fix a sequence (Nn)n∈N ⊂ N∗ such that

(3.4) Nn
n→∞−→ ∞ and µn

Nn

n→∞−→ ∞,

and for each n, split [0, µn] into Nn intervals of the same length. Then we choose k ∈
{0, . . . , Nn − 1} such that

(3.5) ‖U (0)
n ‖2H1([ kµn

Nn
,

(k+1)µn
Nn

])
≤
‖u(n)

0 ‖2L2(T) + 1
Nn

,

and set

(3.6) V (1)
n (y) = χ

( y
Rn

)
U (1)
n (y)χ

(µn − y
Rn

),
where U (1)

n (y) = U
(0)
n
(
y + (k + 1

2)Rn
)
, Rn = µn

Nn
and χ is a C∞ function valued in the

interval [0, 1] and such that

(3.7) χ ≡ 1 on R+ and χ ≡ 0 on (−∞,−1
2]·

The constructed function V
(1)
n is supported in [−Rn

2
,µn + Rn

2 ], equal to U
(1)
n on [0, µn],

and according to (3.5) satisfies
(3.8) ‖V (1)

n ‖2H1((−∞,Rn2 ]∪[µn−Rn2 ,+∞))
n→∞−→ 0.

Therefore the sequence (V (1)
n )n∈N is bounded in H1(R) and

lim
n→∞

‖V (1)
n ‖2L2(R) = m, lim

n→∞
‖V (1)

n ‖2Ḣ1(R) = 1.

The first step towards proving Theorem 1 consists in analyzing the profile decomposition
of the sequence (V (1)

n )n∈N with respect to the Sobolev embedding H1(R) ↪→ Lp(R), p > 2,
and showing that after eventually passing to a subsequence9, we have

V (1)
n (y) = V (y − y(1)

n ) + r(1)
n (y),

where the profile V coincides, up to the symmetries, with the algebraic soliton (1.8), the
core y(1)

n satisfies y(1)
n

n→∞−→ +∞ , µn − y(1)
n

n→∞−→ +∞ and ‖∂yr(1)
n ‖L2(R)

n→∞−→ 0. Compared
to the profile decomposition of [2], the situation is much simpler here since we are working
in the H1-setting which will allow us to obtain this result essentially as a consequence of
the conservation of energy.

We next refine the above construction introducing a family of H1 functions V K
n de-

pending on an additional parameter K ∈ N, M2 ≤ K ≤ M−2µn, for some large fixed
constant M , so that the following properties hold: for all n and K, the function V K

n is
supported in the interval [−M,µn+M ], on [0, µn] it coincides up to a translation with U (0)

n ,
and it is of order 1√

µn
in a M -vicinity of 0 and µn and of order 1√

K
in a µn

K vicinity of these

points (see further (3.26)). The decomposition proved for the sequence (V (1)
n ) ensures that

there exists (yn(K)) ⊂ [0, µn] so that
V K
n (y) = V (y − yn(K)) + r(K)

n (y),

with max
K
‖r(K)
n ‖Ḣ1(R)

n→∞−→ 0.

To arrive to a contradiction, we perform a refined study of the monodromy matrix
associated to V K

n

∣∣
[0,µn] for some suitable choice of K = Kn. First, following [2], we show

that for all n sufficiently large and all K, the function ãV Kn has a unique zero ζ
(K)
0,n in

the angle θ0 ≤ arg ζ < π provided that θ0 is chosen sufficiently close to π, and that this
9See Theorem 2 for a precise statement.
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zero is simple and satisfies maxK Im ζ
(K)
0,n

n→∞−→ 0, and −c1 ≤ Re ζ(K)
0,n ≤ −c2 < 0, for some

constants c1, c2. We next remove this zero by applying to V K
n the corresponding Bäcklund

transformation. The resulting potential r̃(K)
n has mass strictly less than 4π, and energy

and momentum of order Im ζ
(K)
0,n + 1

µn
, which in view of (1.7) ensures that

‖r̃(K)
n ‖2Ḣ1(R) . Im ζ

(K)
0,n + 1

µn

n→∞→ 0.

Accordingly to this bound, we distinguish two regimes:
• µn minK Im ζ

(K)
0,n

n→∞−→ ∞,
• up to a subsequence, µn minK Im ζ

(K)
0,n

n→∞−→ β ∈ R+.
Then, we fix Kn in such a way that Kn

n→∞→ ∞, Kn

µn min
K

Im ζ
(K)
0,n

n→∞→ 0 in the first case,

and Im ζ
(Kn)
0,n = minK Im ζ

(K)
0,n in the second case.

The smallness of r̃n = r̃(Kn)
n in Ḣ1(R), allows to approximate the Jost solutions ψ±r̃n

by a suitable WKB ansatz. Thanks to Lemma 2.8, this leads to an explicit approxima-
tion of the monodromy matrix of V Kn

n

∣∣
[0,µn]. In the case of µn Im ζ

(Kn)
0,n

n→∞−→ ∞, we use
the conservation of the Floquet discriminant to show that the obtained approximation
is in contradiction with the asymptotics given by (2.21). In the second case, we get a
contradiction by invoking Lemma 2.1.

3.2. Profile decomposition. The goal of this section is to prove the following profile
decomposition for the sequence (V (1)

n )n∈N defined by (3.6).

Theorem 2. Under the notations of Section 3.1, there exist γ ∈ R, c > 0, and a se-
quence (y(1)

n )n∈N of [0, µn], such that, up to a subsequence,

(3.9) V (1)
n (y) = V (y − y(1)

n ) + r(1)
n (y) with V (y) = 2

√
ceiγ+icy/2 cy + i

(cy − i)2 ,

where ‖∂yr(1)
n ‖L2(R)

n→∞−→ 0, and where in addition,

(3.10) y(1)
n

n→∞−→ ∞ and µn − y(1)
n

n→∞−→ +∞.

In fact we will prove a more general result given by the following theorem.

Theorem 3. Let (u(n)
0 ) be a bounded sequence in H1(T) and let m = lim sup

n→∞
‖u(0)

n ‖2L2(T).

Denote by un ∈ C([0, Tn[, H1(T)) the solution of the DNLS equation with initial data u(n)
0

and assume that there exists a sequence (tn) ⊂ R+ with tn < Tn such that lim
n→∞

‖un(tn)‖H1(T) =

+∞. Let (V (1)
n ) be the corresponding H1(R)-sequence constructed as in Section 3.1.

Then there exist an integer 1 ≤ L0 ≤
m

4π , a family of profiles (ϕ`)1≤`≤L0 in H1(R) \ {0}
with ãϕ` ≡ 1, for all ` ∈ {1, . . . , L0}, and a family of orthogonal cores10 (y(`))1≤`≤L0 , in
the sense that for all ` 6= `′, we have |y(`)

n − y(`′)
n | n→∞−→ ∞, such that, up to a subsequence,

V (1)
n (y) =

L0∑
`=1

ϕ`(y − y(`)
n ) + r(1)

n (y),

where ‖∂yr(1)
n ‖L2(R)

n→∞−→ 0, and where in addition, for all 1 ≤ ` ≤ L0,

(3.11) y(`)
n

n→∞−→ ∞ and µn − y(`)
n

n→∞−→ +∞.
10Following the vocabulary of P. Gérard in [7], we designate by a core y(`) any real sequence (y(`)

n )n∈N.
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We start the proof of Theorem 3 with the following proposition which can be easily
derived from the work of P. Gérard [7].

Proposition 3.1. There exist a sequence of profiles (ϕ`)`≥1 in H1(R) which are not all
zero and a sequence of orthogonal cores (y(`))`≥1 such that, up to a subsequence extraction,
we have, for all L ≥ 1,

(3.12) V (1)
n (y) =

L∑
`=1

ϕ`(y − y(`)
n ) + rLn(y),

where
(3.13) rLn(·+ y(`)

n ) n→∞⇁ 0 in H1(R), ∀ ` = 1, . . . L,
and
(3.14) lim sup

n→∞
‖rLn‖Lp(R)

L→∞−→ 0,

for all 2 < p <∞.
In addition we have

(3.15) y(`)
n

n→∞−→ +∞ and µn − y(`)
n

n→∞−→ +∞, ∀ ` ≥ 1.

Proof. The sequence (V (1)
n ) is bounded inH1(R), and for all 2 < p, lim sup

n→∞
‖V (1)

n ‖Lp(R) > 0.

Indeed, ‖V (1)
n ‖Lp(R)

n→∞−→ 0 would imply that

Eµn T(Un) = ‖U (0)
n ‖2Ḣ1(µn T) + o(1) = 1 + o(1), n→∞,

which is impossible since by the conservation of energy and the boundedness of (u(n)
0 )

in H1(T), we have

(3.16) Eµn T(Un) = µ−2
n ET(u(n)

0 ) n→∞−→ 0.
Therefore applying [7], we obtain the existence of a sequence of profiles (ϕ`)`≥1 in H1(R)
which are not all zero and a sequence of orthogonal cores (y(`))`≥1 such that, up to a sub-
sequence extraction, the properties (3.12)-(3.14) are satisfied. Finally, the property (3.15)
is a direct consequence of (3.8). �

Remark 3.1. Note that thanks to (3.12)-(3.14) we have, for all L ≥ 1,

‖V (1)
n ‖2L2(R) =

L∑
`=1
‖ϕ`‖2L2(R) + ‖rLn‖2L2(R) + o(1),(3.17)

‖∂yV (1)
n ‖2L2(R) =

L∑
`=1
‖∂yϕ`‖2L2(R) + ‖∂yrLn‖2L2(R) + o(1),(3.18)

ER(V (1)
n ) =

L∑
`=1

ER(ϕ`) + ER(rLn) + o(1),(3.19)

as n→∞. In particular,
∞∑
`=1
‖ϕ`‖2L2(R) ≤ m and

∞∑
`=1
‖ϕ`‖2Ḣ1(R) ≤ 1.

To conclude the proof of Theorem 3, it remains to show that lim supn→∞ ‖∂yrLn‖L2(R)
L→∞−→

0 and that, for all `, ãϕ` ≡ 1, which, in view of Remarks 2.3 and 3.1, will also imply that
the number of non-zero profiles in (3.12) is bounded by m

4π . These properties will be de-
duced by combining (3.19) with Lemma 2.6. In order to apply this lemma, we have to
check first that the functions ãϕ` do not vanish on C+.
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Lemma 3.1. For each profile ϕ` involved in the decomposition (3.12), the spectral coef-
ficient ãϕ` does not vanish on C+.

Proof. We proceed by contradiction, assuming that there exist `0 ≥ 1, λ0 ∈ C++ and ψ0 ∈
H1(R) such that ‖ψ0‖L2(R) = 1 and

(3.20) Lϕ`0 (λ0)ψ0 = 0.

Let Θ be a C∞ finction supported in [−1, 1] and such that Θ ≡ 1 on [−1
2 ,

1
2 ]. Set Θn(y) =

Θ
(
y−y(`0)

n
An

)
and ψn = Θn(y)ψ0(y − y(`0)

n ), with An = min(y(`0)
n , µn − y(`0)

n ). Then, we have

(3.21) L
V

(1)
n

(λ0)ψn = Rn,

where
Rn(y) = ΘnR1

n(y) + i(∂yΘn)σ3ψ0(y − y(`0)
n ),

with

R1
n(y) = −iλ0


0

∑
` 6=`0

1≤`≤L

ϕ`(y − y(`)
n ) + rLn(y)

∑
6̀=`0

1≤`≤L

ϕ`(y − y(`)
n ) + rLn(y) 0

ψ0(y − y(`0)
n ).

Combining the orthogonality condition between the cores with (3.14) and (3.15), one can
easily check that

‖Rn‖L2(R)
n→+∞−→ 0.

Given that V (1)
n coincides with U

(1)
n on [0, µn] and ψn satisfies the periodic boundary

conditions on [0, µn], we can apply Proposition 2.3 to deduce, in view of (2.21),

‖ψn‖L2([0,µn]) ≤ C(λ0, ‖u(n)
0 ‖L2(T))

∣∣∣∣∣∣ cos(µnλ2
0)− 1

∆u0(µ
1
2
nλ0)− 2

∣∣∣∣∣∣ ‖Rn‖L2(R)
n→+∞−→ 0,

which leads to a contradiction since by construction, ‖ψn‖L2([0,µn])
n→+∞−→ ‖ψ0‖L2(R) = 1.

�

We are now in position to finish the proof of Theorem 3. Due to (3.8) and (3.16), we
have

ER(V (1)
n ) n→+∞−→ 0,

which together with (3.14) and (3.19) implies that

(3.22) lim sup
n→∞

∣∣∣∣∣
L∑
`=1

ER(ϕ`) + ‖rLn‖2Ḣ1(R)

∣∣∣∣∣ L→∞−→ 0.

Since by Lemmas 2.6 and 3.1, ER(ϕ`) ≥ 0 for all ` ≥ 1, we obtain that

lim sup
n→∞

‖rLn‖2Ḣ1(R)
L→∞−→ 0,

ER(ϕ`) = 0, ∀ ` ≥ 1,
and thus ãϕ` ≡ 1, for all ` ≥ 1. Accordingly to Remark 3.1, this ensures that the number
of non zero profiles in the decomposition (3.12) is finite and bounded by m

4π . Denoting
this number by L0 and setting rn = rL0

n , we get
lim
n→∞

‖rn‖Ḣ1(R) = 0,

which concludes the proof of Theorem 3.
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3.3. Preliminary results. To proceed further, we need to introduce a refined version
of the construction of Subsection 3.1. We fix once forever a large integer M � 1. For
each11 K ∈

{
M2, . . . , [ µn

M2 ]
}

, we split the interval [0, µn] into K subintervals of the same
length and choose k0 = k0(K) ∈ {0, . . . ,K − 1} such that

(3.23) ‖U (1)
n ‖2H1([ k0µn

K
,

(k0+1)µn
K

])
≤
‖u(n)

0 ‖2L2(T) + 1
K

.

Next we take the interval I0
n(K) =

[ (k0+ 1
4 )µn
K ,

(k0+ 3
4 )µn
K

]
and divide it into K1 = [ µn

8MK ]
subintervals of the same size and choose again k1 ∈ {0, . . . ,K1 − 1} such that

(3.24) ‖U (1)
n ‖2H1(I1

n(K)) ≤
‖U (1)

n ‖2H1(I0
n(K))

K1
.
‖u(n)

0 ‖2L2(T) + 1
µn

,

where I1
n(K) =

[
µn
K

(
k0 + 1

4 + k1
2K1

)
, µnK

(
k0 + 1

4 + k1+1
2K1

) ]
.

Finally, we set

(3.25) UKn (y) = U (1)
n (y + ỹn(K)), V K

n (y) = χ
( y
M

)
UKn (y)χ

(µn − y
M

)
,

where ỹn(K) is the center of the interval I1
n(K) and χ is the function defined by (3.7).

The function V K
n is supported in [−M

2 , µn+ M
2 ], coincides with UKn on [0, µn] and satisfies

‖V K
n ‖2H1((−∞,M ]∪[µn−M,+∞)) .

‖u(n)
0 ‖2L2(T) + 1

µn
,

‖V K
n ‖2H1((−∞, µn4K ]∪[µn− µn4K ,+∞)) .

‖u(n)
0 ‖2L2(T) + 1

K
,

(3.26)

for all n sufficiently large and all K ∈
{
M2, · · · , [ µn

M2 ]
}

. As a consequence, we get

|MR(V K
n )−MT(u(n)

0 )| . 1
µn
,(3.27)

|PR(V K
n )| . 1

µn
,(3.28)

|ER(V K
n )| . 1

µn
.(3.29)

Furthermore, from (3.9) and (3.24), we deduce that

(3.30) min
M2≤K≤ µn

M2

|ỹn(K)− y(1)
n |

n→∞−→ ∞.

According to (3.9), we write

(3.31) V K
n (y) = V (y − yn(K)) + r(K)

n (y),

where yn(K) ∈ (0, µn) is given by

yn(K) =
{

y
(1)
n − ỹn(K) if y

(1)
n ≥ ỹn(K)

y
(1)
n + µn − ỹn(K) if y

(1)
n < ỹn(K).

Thanks to (3.24), (3.30) and Theorem 2, we have

(3.32) max
M2≤K≤ µn

M2

‖r(K)
n ‖Ḣ1(R)

n→∞−→ 0,

11We assume that n is sufficiently large so that [ µn
M2 ] ≥M2.



THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION ON THE TORUS 19

which in particular, implies that

(3.33) max
M2≤K≤ µn

M2

∣∣∣‖V K
n ‖2L2(R) − ‖r

(K)
n ‖2L2(R) − 4π

∣∣∣ n→+∞−→ 0.

Taking into account (3.27) we obtain that

(3.34) max
M2≤K≤ µn

M2

|MR(r(K)
n )−m+ 4π| n→∞−→ 0.

Consider the spectral coefficients ãV Kn (ζ). The following result inspired by [2] will play
a crucial role in our arguments.

Lemma 3.2. Let m
8 < θ0 < π. Then, for all n sufficiently large and allK ∈

{
M2, . . . , [ µn

M2 ]
}
,

the function ã
V

(K)
n

has a unique zero ζ
(K)
0,n in the angle {ζ ∈ C : θ0 ≤ arg ζ < π}. This

zero is simple and satisfies

(3.35) max
K

Im ζ
(K)
0,n

n→∞−→ 0 .

Furthermore, there exist c1 > c2 > 0 such that

(3.36) − c1 ≤ Re ζ(K)
0,n ≤ −c2,

for all n sufficiently large and all K ∈
{
M2, . . . , [ µn

M2 ]
}

.

Proof. We shall establish Lemma 3.2 following the arguments used in the proof of Lemma 3.4
in [2]. For that purpose, we need the following proposition which is a particular case of
Proposition 3.3 in [2].

Proposition 3.2. Let V ∈ H1(R) such that ãV ≡ 1. Then, for all 0 < δ <
π

2 and
all m > 0, we have,

(3.37) ãV+r(ζ)− ãr(ζ) −→ 0 ,

as ‖r‖L4 → 0, r ∈ L2(R) ∩ L4(R) with ‖r‖L2 ≤ m, uniformly with respect to ζ ∈ Γδ.

To go further, let us recall that we have:

V K
n (y) = V (y − yn(K)) + r(K)

n (y),

where V (y) = 2
√
ceiγ+icy/2 cy+i

(cy−i)2 , for some γ ∈ R and c > 0, and where r(K)
n satisfies (3.32)

and (3.34). Since θ0 >
m
8 > m

4 − π, it follows from (2.44) and (3.34) that, for all n large
enough and all K ∈

{
M2, · · · , [ µn

M2 ]
}

, the function ãr(K)
n

does not vanish in the angle {ζ ∈
C : θ0 ≤ arg ζ < π}, which in view of Lemma 2.5, ensures that for any θ ∈ [θ0, π) there
exists a positive constant Cθ such that

(3.38) 1
Cθ
≤

∣∣∣∣∣∣ 1
ãr(K)
n

(ζ)

∣∣∣∣∣∣ ≤ Cθ,
for all n sufficiently large, all K ∈

{
M2, · · · , [ µn

M2 ]
}

and all ζ ∈ eiθR+.

Invoking Proposition 3.2, we deduce from (3.32), (3.34) and (3.38) that, for all θ ∈
[θ0, π),

(3.39) max
M2≤K≤ µn

M2

sup
ζ∈C+

arg ζ=θ

∣∣∣1− ãV Kn (ζ)
ãr(K)
n

(ζ)

∣∣∣ n→+∞−→ 0.
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In particular, for n large enough, ãV Kn does not vanish on the ray eiθR+. Applying
Lemma 2.3 i) and Corollary 2.1 iii), we get:

n(V K
n ; θ) ≥ 1

2iπ

+∞ eiθ0∫
0

 ã′V Kn (s)
ãV Kn (s) −

ã′
r(K)
n

(s)

ãr(K)
n

(s)

 ds+ 1
4π
(
‖V K

n ‖2L2(R) − ‖r
(K)
n ‖2L2(R)

)
.

By virtue of (3.39), we have

max
M2≤K≤ µn

M2

∣∣∣∣∣∣
∫ +∞ eiθ

0

 ã′V Kn (s)
ãV Kn (s) −

ã′
r(K)
n

(s)

ãr(K)
n

(s)

 ds
∣∣∣∣∣∣ n→+∞−→ 0,

which together with (3.33) ensures that for all θ ∈ [θ0, π) there exists N(θ) such that

n(V K
n ; θ) ≥ 1, ∀n ≥ N(θ), K ∈

{
M2, · · · , [ µn

M2 ]
}
.

Given that ‖V K
n ‖2L2(R) < 8θ0, we have necessarily n(V K

n ; θ) = 1, which means that for

all n large enough and K ∈
{
M2, · · · , [ µn

M2 ]
}

, the function ã
V

(K)
n

has a unique zero ζ(K)
0,n in

the angle {ζ ∈ C : θ0 ≤ arg ζ < π}, and furthermore this zero is simple and satisfies:

(3.40) min
K

arg ζ(K)
0,n

n→+∞−→ π.

To complete the proof of the lemma, it remains to prove the bounds (3.36). The
family V K

n being bounded in H1(R), Lemma 2.2 readily ensures that there exists c1 > 0
such that
(3.41) − c1 ≤ Re ζ(K)

0,n .

In order to establish the upper bound, we remove the zero ζ
(K)
0,n by applying to V K

n the
corresponding Bäcklund transformation. More precisely, invoking (2.61), we define, for
all n sufficiently large and K ∈

{
M2, · · · , [ µn

M2 ]
}

,

(3.42) r̃(K)
n = B

λ
(K)
0,n

(ψ(K)
n )V K

n ,

with λ(K)
0,n =

√
ζ

(K)
0,n ∈ C++, ψ(K)

n ∈ L2(R,C2) \ {0} such that LV Kn (λ(K)
0,n )ψ(K)

n = 0. It then
follows from (2.68) that

(3.43) ‖r̃(K)
n ‖2L2(R) = ‖V K

n ‖2L2(R) − 4arg(ζ(K)
0,n ),

which in view of (3.27) and (3.40) implies that

(3.44) max
K

∣∣‖r̃(K)
n ‖2L2(R) −m+ 4π

∣∣ n→+∞−→ 0.

Recall that, according to (2.61),

(3.45) B
λ

(K)
0,n

(ψ(K)
n )V K

n = G
λ

(K)
0,n

(ψ(K)
n )

[
−G

λ
(K)
0,n

(ψ(K)
n )V K

n + S
λ

(K)
0,n

(ψ(K)
n )

]
,

where, by virtue of (2.63),

(3.46)
∣∣G

λ
(K)
0,n

(ψ(K)
n )

∣∣ = 1 and
∣∣S
λ

(K)
0,n

(ψ(K)
n )

∣∣ ≤ 4 Imλ
(K)
0,n .

Furthermore, combining (3.43) with (3.45), we infer that there exists a positive constant C
such that, for all n large enough and K ∈

{
M2, · · · , [ µn

M2 ]
}
, there holds

(3.47) ‖S
λ

(K)
0,n

(ψ(K)
n )‖L2(R) ≤ C.

Taking into account (3.31), we deduce from (3.45) and (3.46) that
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‖r̃(K)
n ‖2L2(R) = ‖V (· − yn(K)) +R(K)

n ‖2L2(R),

with R(K)
n = r(K)

n −G
λ

(K)
0,n

(ψ(K)
n )S

λ
(K)
0,n

(ψ(K)
n ). Therefore, for all 2 ≤ p <∞ we have

‖r̃(K)
n ‖2L2(R) ≥ 4π + ‖R(K)

n ‖2L2(R) − Cp‖R
(K)
n ‖Lp(R),

which implies that
‖R(K)

n ‖Lp(R) ≥ Cp(4π − ‖r̃(K)
n ‖2L2(R)).

This leads to the bound

‖S
λ

(K)
0,n

(ψ(K)
n )‖Lp(R) ≥ Cp

(
4π − ‖r̃(K)

n ‖2L2(R)
)
− ‖r(K)

n ‖Lp(R), ∀ p ∈ [2,∞).

Combining this inequality with (3.44), (3.46), (3.47) and (3.31), we obtain that

Imλ
(K)
0,n & 1,

for all n large enough and K ∈
{
M2, · · · , [ µn

M2 ]
}

. Since π
2 < θ0 < π, this gives the desired

upper bound for Re ζ(K)
0,n . �

To go further, we shall distinguish two cases depending on whether

µn min
K

Im ζ
(K)
0,n

n→∞−→ ∞,

or up to a subsequence,
µn min

K
Im ζ

(K)
0,n

n→∞−→ β ∈ R+.

In the first case, we fix K = Kn in such a way that

(3.48) Kn
n→∞→ ∞ and Kn

µn min
K

Im ζ
(K)
0,n

n→∞→ 0.

In the second case, we take K = Kn where the minimum is achieved:

(3.49) Im ζ
(Kn)
0,n = min

K
Im ζ

(K)
0,n .

In both cases, we denote ζ(Kn)
0,n = ζ0,n, V (Kn)

n = Vn, U (Kn)
n = Un, yn(Kn) = yn and r̃Knn =

r̃n, where r̃Kn is defined by (3.42). Explicitly,

(3.50) r̃n = Bλ0,n(ψn)Vn,

with λ0,n =
√
ζ0,n ∈ C++ and ψn in L2(R) \ {0} solving LVn(λ0,n)ψn = 0. It follows

from (3.44) that

(3.51) ‖r̃n‖2L2(R) = m− 4π + o(1), n→∞.

Furthermore we have:

Lemma 3.3. For all n sufficiently large, r̃n is a C∞ function supported in [−M
2 , µn + M

2 ]
and one has:

(3.52) ‖r̃n‖2Ḣ1(R) . Im ζ0,n + 1
µn

n→∞−→ 0.

Proof. The fact that r̃n is supported in [−M
2 , µn + M

2 ] is a direct consequence of the
definition of r̃n. To prove (3.52), we apply (2.69), which gives

(3.53) PR(r̃n) = PR(Vn) + 8 Im ζ0,n, ER(r̃n) = ER(Vn)− 8 Im ζ2
0,n.
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Thanks to (3.26), we have

|PR(Vn))| . 1
µn
|PT(u(n)

0 )|+ 1
µn
.

1
µn
,

|ER(Vn))| . 1
µ2
n

|ET(u(n)
0 )|+ 1

µn
.

1
µn
.

(3.54)

Combining (3.53), (3.54), and taking into account Lemma 3.2, we deduce that

(3.55) |PR(r̃n)|+ |ER(r̃n)| . Im ζ0,n + 1
µn
,

which by virtue of (1.7) ends the proof of (3.52). �

To study the behavior of the monodromy matrixMUn(λ) as n→∞, we apply Lemma 2.8
to express MUn(λ) in terms of the Jost solutions ψ−(x, λ; r̃n) and ψ+(x, λ; r̃n) of the Kaup-
Newell system associated with r̃n:

(3.56) iσ3∂xψ − λ2ψ − iλ
(

0 r̃n
r̃n 0

)
ψ = 0.

Lemma 3.4. For any λ ∈ Ω+, with aVn(λ) 6= 0, there holds
(3.57) MUn(λ) = A−1

n (µn, λ)(ψ−ψ+)(µn, λ; r̃n)(ψ−ψ+)−1(0, λ; r̃n)An(0, λ) ,
where An(x, λ) = A(x;ψn, λ, λ0,n) with ψn in L2(R) \ {0} satisfying LVn(λ0,n)ψn = 0.
Proof. Since, for all λ ∈ Ω+ such that aVn(λ) 6= 0, we have

MUn(λ) = (ψ−ψ+)(µn, λ;Vn)(ψ−ψ+)−1(0, λ;Vn),
the result follows from Lemma 2.8 which asserts that

(ψ−ψ+)(x, λ;Vn) = A−1
n (x, λ)(ψ−ψ+)(x, λ; r̃n)σ3 .

�

The asymptotics of An(0, λ) and An(µn, λ) for large n are described by the following
lemma.
Lemma 3.5. Let Ân(x, λ) = λ0,n

λ0,n
(λ2 − λ2

0,n)An(x, λ) and

Dn(λ) =

λ0,n
λ0,n

(λ2 − λ2
0,n) 0

0 λ0,n
λ0,n

(λ2
0,n − λ2)

 .
Then, ∣∣∣Ân(0, λ)−Dn(λ)

∣∣∣+ ∣∣∣Ân(µn, λ)−Dn(λ)
∣∣∣ . Im ζ0,n√

µn
,

uniformly with respect to λ in bounded subsets of C.
Proof. Given that Vn is supported in [−M , µn+M ], the bounds (3.26) ensure the following
estimates for the Jost solutions ψ−(x, λ;Vn) and ψ−(x, λ;Vn):∣∣∣eiλ2xψ−(x, λ;Vn)−

(
1
0

) ∣∣∣ . 1
√
µn
, ∀x ∈ [−M,M ],

∣∣∣e−iλ2xψ+(x, λ;Vn)−
(

0
1

) ∣∣∣ . 1
√
µn
, ∀x ∈ [µn −M,µn +M ],

(3.58)

uniformly with respect to λ in bounded sets of Ω+. Since by hypothesis ψn is a non zero L2

solution of LVn(λ0,n)ψ = 0, and therefore ψn = C±n ψ
±(λ0,n;Vn) for some constants C−n

and C+
n , invoking (2.62) together with Lemma 3.2, we deduce from (3.58) that∣∣Gλ0,n(ψn)(0)− λ0,n

λ0,n

∣∣ . Im ζ0,n
µn

,
∣∣Gλ0,n(ψn)(µn)− λ0,n

λ0,n

∣∣ . Im ζ0,n
µn

,
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and ∣∣Sλ0,n(ψn)(0)
∣∣ . Im ζ0,n√

µn
,
∣∣Sλ0,n(ψn)(µn)

∣∣ . Im ζ0,n√
µn

.

This completes the proof of the lemma according to (2.70).
�

Next, we investigate the Jost solutions ψ−(x, λ; r̃n), ψ+(x, λ; r̃n) of the system (3.56),
taking advantage of the smallness of ∂xr̃n. To this end, we set

(3.59) ψ(x) = Bn(x, λ)ψ̂(x)

with

Bn(x, λ) = 1√
1 + |̃rn(x)|2/4λ2

(
1 −ĩrn(x)

2λ
−ĩrn(x)

2λ 1

)
e−iσ3Φn(x,λ),

Φn(x, λ) =
∫ x

−M

2λ2 |̃rn(y)|2 + Im(r̃n(y)∂y r̃n(y)
4λ2 + |̃rn(y)|2 dy.

(3.60)

Then the system (3.56) takes the following form

(3.61) (iσ3∂x − λ2 −Qn(λ))ψ̂ = 0,

where

(3.62) Qn(λ) =
(

0 qn(λ)
−qn(λ) 0

)
, qn(x, λ) = −λe

2iΦn(x,λ)(2∂xr̃n(x) + i|̃rn(x)|2r̃n(x))
4λ2 + |̃rn(x)|2 .

Writing
(3.63)
ψ−(x, λ; r̃n) = e−iλ

2xBn(x, λ)η̂−n (x, λ), ψ+(x, λ; r̃n) = e−iΦn(µn+M,λ)+iλ2xBn(x, λ)η̂+
n (x, λ),

where η̂∓n (x, λ) =
(
η̂∓n,1(x, λ)
η̂∓n,2(x, λ)

)
, and taking advantage of (3.51), (3.52), (3.61) and (3.62),

we obtain the following bounds.

Lemma 3.6. For all R ≥ 1, there exists a positive constant C = C(R) such that, for all n
sufficiently large (depending on R) and all λ ∈ Ω+ with 1

R ≤ |λ| ≤ R, one has

‖η̂−n,1(λ)− 1‖L∞(R) + ‖η̂+
n,2(λ)− 1‖L∞(R) ≤ Ce

C
Im ζn,0+µ−1

n

Imλ2
Im ζn,0 + µ−1

n

Imλ2 ,(3.64)

‖η̂−n,2(λ)‖L∞(R) + ‖η̂+
n,1(λ)‖L∞(R) ≤ Ce

C
Im ζn,0+µ−1

n

Imλ2

√
Im ζn,0 + µ−1

n

Imλ2 .(3.65)

Furthermore
(3.66)

‖η̂±n (λ)− η̂±,0n (λ)‖L∞(R) ≤ Ce
C

Im ζn,0+µ−1
n

Imλ2

√
Im ζn,0 + µ−1

n

Imλ2 (|λ− λ0,n|+ (Im ζn,0)
1
2 + µ

− 1
2

n ),

where e−iλ2xη̂−,0n (x, λ) and eiλ
2xη̂+,0

n (x, λ) are the Jost solutions of the system

(iσ3∂x − λ2 −Q0
n)ψ = 0, Q0

n =
(

0 q0
n

q0
n 0

)
,

q0
n(x) = i

4 Imλ0,n
e
i
∫ x
−M |̃rn(y)|2dy(2∂xr̃n(x) + i|̃rn(x)|2r̃n(x)

)
.

(3.67)
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Proof. Since in view of (3.51) and Lemma 3.3, for all n sufficiently large and λ ∈ Ω+
with 1

R ≤ |λ| ≤ R, we have

(3.68) ‖qn(λ)‖L2(R) .R ‖r̃n‖Ḣ1(R) .R
(

Im ζ0,n + µn
−1) 1

2

and

‖qn(λ)− q0
n‖L2(R) + ‖qn(λ) + q0

n‖L2(R) .R |λ− i Imλ0,n| ‖r̃n‖Ḣ1(R) + ‖r̃n‖2Ḣ1(R)

.R |λ− λ0,n|
(

Im ζ0,n + µn
−1) 1

2 + Im ζ0,n + µn
−1,

(3.69)

the bounds (3.64)-(3.66) readily follow from Lemma B.1. �

Remark 3.2. The spectral problem (3.67) is self-adjoint, which leads to the following low

bound for η̂∓,0n =
(
η̂∓,0n,1
η̂∓,0n,2

)
:

(3.70) |η̂−,0n,1 (x, λ)|2−|η̂−,0n,2 (x, λ)|2 ≥ 1, |η̂+,0
n,2 (x, λ)|2−|η̂+,0

n,1 (x, λ)|2 ≥ 1, ∀ (x, λ) ∈ R×Ω+.

Indeed, η̂−,0n solves

(3.71)


i∂xη

−,0
n,1 − q0

nη
−,0
n,2 = 0

i∂xη
−,0
n,2 + 2λ2η−,0n,2 + q0

nη
−,0
n,1 = 0

η−,0n,1
∣∣
x≤−M = 1, η−,0n,2

∣∣
x≤−M = 0.

As a consequence,
∂x(|η−,0n,1 |

2 − |η−,0n,2 |
2) = 4 Imλ2|η−,0n,2 |

2 ≥ 0, ∀ (x, λ) ∈ R× Ω+,

and |η−,0n,1 (x, λ)|2− |η−,0n,2 (x, λ)|2 = 1 for x ≤ −M , which gives the first inequality in (3.70).
The second one follows in a similar way.

3.4. Arriving to a contradiction. To achieve the proof of Theorem 1, we shall investi-
gate separately the regimes (3.48) and (3.49).

3.4.1. First regime. We start by regime (3.48):

(3.72) µn Im ζ0,n
n→∞−→ ∞, Kn

n→∞−→ ∞, µn Im ζ0,n
Kn

n→∞−→ ∞.

Consider ∆Un(λ) with λ =
√

Re ζn,0 + p Im ζ0,n ∈ C++, p ∈ C+. Since ∆Un(λ) =
∆
u

(n)
0

(√µnλ), applying (2.21) we obtain

(3.73) eiµnλ
2∆Un(λ) = e−

i
2m + o(1), n→∞,

uniformly with respect to p in compact subsets of C+. To arrive to a contradiction, we shall
compare this approximation of eiµnλ2∆Un(λ) with the one that can be deduced from Lem-
mas 3.5 and 3.6. Under the assumption (3.72), Lemma 3.6 together with Lemma 3.2 ensure
that, for all n sufficiently large and λ ∈ D =

{
λ ∈ C++ : |λ2−ζ0,n| ≤ (Im ζ0,n)

1
2 , Im(λ2) ≥

1
2 Im ζ0,n

}
, we have

(3.74) ‖η̂±n (λ)‖L∞(R) . 1 and ‖η̂±n (λ)− η̂±,0n (λ)‖L∞(R) . (Im ζn,0)
1
2 .

Building on lemmas 3.4, 3.5 and bounds (3.74), we get the following key result.

Proposition 3.3. There exists a constant C so that, for all n sufficiently large and all λ ∈
D, there holds

(3.75)
∣∣∣eiµnλ2∆Un(λ)− Σn(λ)

∣∣∣ ≤ C (1 + Im ζ0,n
|λ2 − ζ0,n|

) (
e−µn Im ζ0,n + (Im ζ0,n)

1
4
)
,
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where

Σn(λ) = e
− i

2‖un‖
2
L2(T)

λ2 − ζ0,n

λ2 − ζ0,n
η̂−,0n,1 (µn, λ)− e

i
2‖un‖

2
L2(T)

λ2 − ζ0,n
λ2 − ζ0,n

η̂−,0n,2 (µn, λ) η̂+,0
n,1 (0, λ)

η̂+,0
n,2 (0, λ)

.

Proof. In view of (3.63) and Lemma 3.4, we have

∆Un(λ) = Tr[B−1
n (0, λ)An(0, λ)A−1

n (µn, λ)Bn(µn, λ)(η̂−n η̂+
n )(µn, λ)e−iµnλ2σ3(η̂−n η̂+

n )−1(0, λ)].
It follows from Lemmas 3.3 and 3.5 that, for all n sufficiently large and λ ∈ D,

(3.76)
∣∣∣B−1

n (0, λ)An(0, λ)A−1
n (µn, λ)Bn(µn, λ)−Λn(λ2)

∣∣∣ . (1 + Im ζ0,n
|λ2 − ζ0,n|

)
(Im ζ0,n)

1
4 ,

with

Λn(ζ) = e
− i

2‖Vn‖
2
L2(R)

σ3

 ζ−ζ0,n
ζ−ζ0,n

0

0 ζ−ζ0,n
ζ−ζ0,n

 .
We next address the expression (η̂−n η̂+

n )(µn, λ)e−iµnλ2σ3(η̂−n η̂+
n )−1(0, λ). By (3.68), we have∣∣∣η̂−n (0, λ)−

(
1
0

) ∣∣∣+ ∣∣∣η̂+
n (µn, λ)−

(
0
1

) ∣∣∣ . (Im ζ0,n)
1
2 ,

which together with the bounds (3.74) and (3.70) implies that

(η̂−n η̂+
n )(µn, λ)

(
1 0
0 e2iµnλ2

)
(η̂−n η̂+

n )−1(0, λ) =η̂
−,0
n,1 (µn, λ) − η̂+,0

n,1 (0,λ)
η̂+,0
n,2 (0,λ)

η̂−,0n,1 (µn, λ)

η̂−,0n,2 (µn, λ) − η̂+,0
n,1 (0,λ)
η̂+,0
n,2 (0,λ)

η̂−,0n,2 (µn, λ)

+O
(
e−µn Im ζ0,n + (Im ζn,0)

1
2
)
, as n→∞,

(3.77)

uniformly with respect to λ ∈ D. Combining (3.76) with (3.77) and taking into ac-
count (3.27), we obtain (3.75). �

For p ∈ C+, define

ϕ−n (p) = η̂−,0n,2 (µn,
√

Re ζ0,n + p Im ζ0,n),(3.78)

ϕ+
n (p) = η̂+,0

n,1 (0,
√

Re ζ0,n + p Im ζ0,n).(3.79)

The functions ϕ±n are analytic in C+ and in view of Lemma 3.6 are uniformly bounded
on compact subsets of C+. Therefore, there exist ϕ+, ϕ− analytic in C+ such that, after
eventually passing to a subsequence, we have
(3.80) ϕ±n (p) n→∞−→ ϕ±(p),
uniformly with respect to p in compact subsets of C+. We claim that the following property
holds.

Proposition 3.4. With the above notations, we have
(3.81) ϕ±(i) = 0 .

Admitting for a while Proposition 3.4, let us achieve the proof of Theorem 1 in the case
of (3.72). In view of Proposition 3.3 and the bounds (3.74), Proposition 3.4 ensures that

lim
p→i

lim
n→∞

eiµn(Re ζ0,n+p Im ζ0,n)∆Un(
√

Re ζ0,n + p Im ζ0,n) = 0,

which contradicts (3.73).
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Proof of Proposition 3.4. To establish the result, we proceed by contradiction, assuming
for instance that ϕ−(i) 6= 0. Because of (3.51) and (3.52), we clearly have

|η̂−,0n (µn, λ0,n)− η̂−,0n (µn +M,λ0,n)| . (Im ζ0,n)
1
2 .

Therefore, the assumption ϕ−(i) 6= 0 together with (3.66) and (3.80) implies that there
exists ε0 > 0 such that, up to a subsequence,
(3.82) |η̂−n,2(µn +M,λ0,n)| ≥ ε0,

for all n sufficiently large.

Let Ψn =
(

Ψn,1
Ψn,2

)
be the solution of the system Lr̃n(λ0,n)ψ = 0 satisfying

(3.83) Ψn(x) = e−iλ
2
0,nx

(
1
0

)
for x ≥ µn +M.

Then accordingly to (2.65) and (2.66),
(3.84) Vn = Bλ0,n(Ψn)r̃n.
To get a contradiction, it will be enough to show that for all n sufficiently large, there
exists an ∈ [µn − µn

4Kn , µn +M ] such that
(3.85) |Ψn,1(an)| = |Ψn,2(an)|.
Indeed, in view of (3.84), this would imply that

Vn(an) = −r̃n(an) + 2i(λ0,n − λ0,n)Ψn,1(an)
Ψn,2(an) with

∣∣∣Ψn,1(an)
Ψn,2(an)

∣∣∣ = 1,

which together with Lemmas 3.2 and 3.3 gives, for all n sufficiently large,
|Vn(an)| ≥ 4 Imλ0,n − ‖r̃n‖L∞(R) & 1,

contradicting
‖Vn‖H1([µn− µn

4Kn
,µn+M ]) .

1√
Kn

n→∞−→ 0.

Thus to complete the proof of the proposition, it suffices to establish (3.85). To this end
we decompose12 Ψn in the basis of the Jost solutions ψ−(x, λ0,n; r̃n), ψ+(x, λ0,n; r̃n):
(3.86)

Ψn(x) = e−iλ
2
0,n(µn+M)

ψ−1 (µn +M,λ0,n; r̃n)
ψ−(x, λ0,n; r̃n)−e−2iλ2

0,n(µn+M) ψ
−
2 (µn +M,λ0,n; r̃n)
ψ−1 (µn +M,λ0,n; r̃n)

ψ+(x, λ0,n; r̃n).

Taking advantage of (3.63), one can rewrite (3.86) in the form

(3.87) Ψn(x) = −eiλ
2
0,n(x−2(µn+M))+iθn η̂

−
n,2(µn +M,λ0,n)
η̂−n,1(µn +M,λ0,n)

Ψ]
n(x)

with

Ψ]
n = Bn(x, λ0,n)

[
η̂+
n (x, λ0,n)− e2iλ2

0,n(µn+M−x)

η̂−n,2(µn +M,λ0,n)
η̂−n (x, λ0,n)

]
, θn = Φn(µn +M,λ0,n).

The bounds (3.82), (3.74) together with (3.51) and Lemma 3.3 guarantee that, for all n
sufficiently large,

|Ψ]
n(x)− e−

i
2σ3
∫ x
−M |̃rn(y)|2dy

η̂+,0
n (x, λ0,n)| . (Im ζ0,n)1/4 + e−2 Im ζ0,n(µn+M−x), x ∈ R.

Taking x = µn − µn
8Kn and invoking (3.70), (3.72) and (3.74), we obtain∣∣Ψ]

n,2
(
µn −

µn
8Kn

)∣∣2 − ∣∣Ψ]
n,1
(
µn −

µn
8Kn

)∣∣2 > 0,

12Since ãr̃n (ζ0,n) 6= 0, the Jost solutions ψ−(x, λ0,n; r̃n), ψ+(x, λ0,n; r̃n) are linearly independent.
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and therefore, ∣∣Ψn,2
(
µn −

µn
8Kn

)∣∣2 − ∣∣Ψn,1
(
µn −

µn
8Kn

)∣∣2 > 0.

Since in view of (3.83), |Ψn,2(µn +M)|2 − |Ψn,1(µn +M)|2 = −|Ψn,1(µn +M)|2 < 0, this
implies that there exists an in [µn − µn

8Kn , µn +M ] such that

|Ψn,2(an)|2 = |Ψn,1(an)|2 ,

which achieves the proof of the proposition. �

3.4.2. Second regime. We now investigate the second regime where

(3.88) µn Im ζ0,n
n→∞−→ β ≥ 0.

Then, in view of (3.52), we have

(3.89) ‖r̃n‖2Ḣ1(R) .
1
µn
.

We write

(3.90) µn Re ζ0,n = 2πNn + 2παn,

with Nn =
[µn Re ζ0,n

2π
]
∈ Z and αn =

{µn Re ζ0,n
2π

}
∈ [0, 1[. In view of Lemma 3.2, Nn

n→+∞→
−∞. After passing to a subsequence, we can assume that αn

n→+∞−→ α∗.

We first exclude the case of β = 0. To this end, we consider again the function Ψn =(
Ψn,1
Ψn,2

)
used in the proof of Proposition 3.4. Recall that it solves Lr̃n(λ0,n)Ψn = 0, and

satisfies, in view of (3.83) and (2.65),

(3.91) Ψn(x) = e−iλ
2
0,nx

(
1
0

)
if x ≥ µn +M, and Ψn(x) = cne

iλ2
0,nx

(
0
1

)
if x ≤ −M,

for some constant cn. According to (3.59), we write Ψn in the form:

Ψn(x) = Bn(x, λ0,n)Ψ̂n(x).

Then, for Ψ̂n =
(

Ψ̂n,1
Ψ̂n,2

)
we get

(3.92) (iσ3∂x − λ2
0,n −Qn(λ0,n))Ψ̂n = 0,

and

(3.93) Ψ̂n(x) =


cne

iλ2
0,nx

(
0
1

)
if x ≤ −M

e−iλ
2
0,nx+iθn

(
1
0

)
if x ≥ µn +M.

It follows from (3.68) and (3.88) that ‖Qn(λ0,n)‖L1(R) . 1, which leads to the bound

(3.94) ‖Ψ̂n‖L∞([−M,µn+M ]) . 1.

In view of (3.92), we have

∂x
(
|Ψ̂n,1|2 − |Ψ̂n,2|2

)
= 2 Im ζ0,n

(
|Ψ̂n,1|2 + |Ψ̂n,2|2

)
+ 2 Im

(
qn(λ0,n)Ψ̂n,2Ψ̂n,1 − qn(λ0,n)Ψ̂n,2Ψ̂n,1

)
.

(3.95)
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Combining (3.62) together with (3.94), we infer that∣∣ Im (
qn(λ0,n)Ψ̂n,2Ψ̂n,1 − qn(λ0,n)Ψ̂n,2Ψ̂n,1

)∣∣ =
∣∣ Im ((

qn(λ0,n) + qn(λ0,n)
)
Ψ̂n,2Ψ̂n,1

)∣∣
. Re(λ0,n)

(∣∣∂xr̃n
∣∣+ ∣∣̃rn∣∣3)

. Im(ζ0,n)
(∣∣∂xr̃n

∣∣+ µ
− 3

4
n
)
,

which, according to (3.95), ensures that

∂x
(
|Ψ̂n,1|2 − |Ψ̂n,2|2

)
. Im ζ0,n(1 + |∂xr̃n(x)|).(3.96)

Since by (3.93), we have

|Ψ̂n,1(µn +M)|2 − |Ψ̂n,2(µn +M)|2 = |Ψ̂n,1(µn +M)|2 & 1,
|Ψ̂n,1(−M)|2 − |Ψ̂n,2(−M)|2 = −|Ψ̂n,2(µn +M)|2 < 0,

the bound (3.96) implies that
µn Im ζ0,n & 1.

In order to complete the proof of Theorem 1, we start by considering the monodromy
matrices MUn(λ) with λ =

√
Re ζ0,n + µ−1

n p ∈ C+, p ∈ C, and proving the following
convergence result.

Proposition 3.5. Let Mn(p) = MUn(
√

Re ζ0,n + µ−1
n p). There exists q ∈ L2([0, 1]) such

that, up to a subsequence extraction,

(3.97) Mn(p) n→+∞−→ M(p) =
(
M11(p) M12(p)
M21(p) M22(p)

)
,

uniformly with respect to p in compact subsets of C, where

(3.98) M(p) = eiθ
∗σ3

(
p−iβ
p+iβ 0

0 −1

)
M∗(p)

(
1 0
0 −p+iβ

p−iβ

)
, θ∗ = −2πα∗ − m

2 ,

M∗(p) being the monodromy matrix of the system

iσ3∂yψ − pψ +
(

0 q
q 0

)
ψ = 0

on [0, 1]. Explicitly, M∗(p) = E(1, p) with E(y, p) solving
iσ3∂yE − pE +

(
0 q

q 0

)
E = 0,

E(0, p) = Id.

Proof. By Lemma 2.8, we have

MUn(λ) = A−1
n (µn, λ)Er̃n(µn, λ)An(0, λ) ,

where Er̃n(x, λ) solves {
Lr̃n(λ)Er̃n = 0
Er̃n(0, λ) = Id.

According to (3.59), for n sufficiently large uniformly with respect to λ in compact
sets of C \{0}, we can write Er̃n in the form Er̃n(x, λ) = Bn(x, λ)En(x, λ)B−1

n (0, λ),
where En(x, λ) is the fundamental solution of (3.61):

(iσ3∂x − λ2 −Qn(λ))En = 0, En(0, λ) = Id.
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Thanks to (3.69), (3.88) and (3.89), we have:

‖Qn(λ)
∣∣
λ=
√

Re ζ0+µ−1
n p
−Q0

n‖L1(R) .
1
√
µn
, ‖Q0

n‖L1(R) . 1,

uniformly with respect to p in bounded sets of C. Therefore, denoting E0
n(x, p) the fun-

damental solution of the system (3.67) with λ2 = Re ζ0 + µ−1
n p, we obtain:

‖E0
n(p)‖L∞([0,µn]) . 1, ‖En(

√
Re ζ0 + µ−1

n p)− E0
n(p)‖L∞([0,µn]) .

1
√
µn
,

uniformly with respect to p in bounded subsets of C. Combining these bounds with
Lemma 3.5 and taking into account (3.60) and (3.89), we deduce that

(3.99) Mn(p) = e−i
m
2 σ3

(
p−iβ
p+iβ 0

0 −1

)
E0
n(µn, p)

(
1 0
0 −p+iβ

p−iβ

)
+ o(1), as n→∞,

uniformly with respect to p in compact subsets of C \{iβ,−iβ}.
We next set

(3.100) E0
n(x, p) = e−iRe ζ0,nxσ3Ẽ0

n(µ−1
n x, p).

Then Ẽ0
n(y, p) solves

(3.101) iσ3∂yẼ
0
n + pẼ0

n − Q̃0
nẼ

0
n = 0, Ẽ0

n(0, p) = Id,
where

Q̃0
n =

(
0 q̃0

n

q̃0
n 0

)
, q̃0

n(y) = µne
2iRe ζ0,nµnyq0

n(µny),

with q0
n given by (3.67). By virtue of (3.89), the sequence (q̃0

n) is bounded in L2([0, 1])
and therefore there exists q ∈ L2([0, 1]) such that, up to a subsequence extraction,

(3.102) q̃0
n
n→+∞
⇁ q in L2([0, 1]),

which implies that13

(3.103) Ẽ0
n(y, p) n→+∞−→ E(y, p),

uniformly with respect to y ∈ [0, 1] and p in bounded subsets of C. In view of (3.99) and
(3.100), this allows us to conclude that

(3.104) Mn(p) n→+∞−→ M(p) = eiθ
∗σ3

(
p−iβ
p+iβ 0

0 −1

)
E(1, p)

(
1 0
0 −p+iβ

p−iβ

)
,

uniformly with respect to p in compact subsets of C \{iβ,−iβ}. By analyticity of MUn(λ),
the limiting matrix M is an entire function of p and the convergence in (3.104) is in fact
uniform with respect to p in bounded subsets of C.

�

Remark 3.3. Because of the analyticity of M, the matrix M∗ =
(
M∗11 M∗12
M∗21 M∗22

)
has to

satisfy:
M∗11(−iβ) =M∗22(iβ) = 0.

Since detM∗ = 1, this implies that M∗12(±iβ) 6= 0 and M∗21(±iβ) 6= 0. Taking into
account that M12(p) = −eiθ∗M∗12(p) and M21(p) = −e−iθ∗M∗21(p), we get
(3.105) M12(±iβ) 6= 0 and M21(±iβ) 6= 0.

As a by product of the above proposition, we obtain the following corollary.

Corollary 3.1. The matrix M(p) enjoys the following properties:
13See Appendix B.
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(i) TrM(p) = 2 cos
(
p− θ∗);

(ii) M(p) = ei(θ
∗−p)σ3 + o(e| Im p|), as |p| → ∞.

Proof. Recalling that TrMn(p) = ∆un(
√
µn Re ζ0,n + p) and applying (2.21), we obtain

TrMn(p) = cos
(
µn Re ζ0,n + 1

2‖un‖
2
L2(T) + p

)
+ o(1), as n→∞,

which after passing to the limit n→∞, gives (i). Finally, (ii) follows from (3.98) and the
fact that M∗ = e−ipσ3 + o(e| Im p|), as |p| → ∞. �

Since detM = 1, item (i) of Corollary 3.1 implies that for p = pk with pk = πk+θ∗, k ∈
Z, either
(3.106) M(pk) = (−1)kI,
or
(3.107) |AD(pk)|2 + |AN (pk)|2 > 0,
where the functions AD, AN are defined by:

AD(p) = i

2
(
M11(p) +M12(p)−M22(p)−M21(p)

)
,

AN (p) = i

2
(
M11(p)−M12(p) +M21(p)−M22(p)

)
.

We claim that thanks to Lemma 2.1, one necessarily has (3.106), for all k ∈ Z.
Indeed, if not then there exists k0 ∈ Z such that, for example14, |AD(pk0)| = c0 > 0.

SinceM is continuous, there exists η > 0 such that, for all p in [pk0 − η, pk0 + η], we have

|AD(p)| ≥ c0
2 .

SinceMn(p) n→∞−→ M(p), uniformly with respect to p in compact subsets of C, this implies
that there exists an integer n0 such that, for all n ≥ n0, we have

(3.108) |ADUn(λ)| ≥ c0
4

,

for all λ such that λ2 = Re ζ0,n + p µ−1
n with p ∈ [pk0 − η, pk0 + η] and Imλ > 0. Recalling

that ADUn(λ) = ADũn(√µnλ) with ũn(x) = un(tn, x+ xn) for some xn ∈ R, we obtain that,
for all n ≥ n0,

(3.109) |ADũn(λ)| ≥ c0
4

,

for all λ ∈ C+ such that λ2 ∈ [µn Re ζ0,n + pk0 − η, µn Re ζ0,n + pk0 + η].
Taking into account that

µn Re ζ0,n + pk0 = π(2Nn + k0)− 1
2‖un‖

2
L2(T) + o(1), as n→∞,

we deduce that there exists n1 ∈ N such that for all n ≥ n1, ADũn(λ) does not vanish for
all λ ∈

√
Jn ⊂ iR+ with

Jn =
[
π(2Nn + k0)− 1

2‖un‖
2
L2(T) −

η

2 , π(2Nn + k0)− 1
2‖un‖

2
L2(T) + η

2
]
,

where Nn
n→∞−→ −∞. In view of the boundedness of (u(n)

0 ) in H1(T), this contradicts
Lemma 2.1. Thus,
(3.110) M(pk) = (−1)kI, ∀ k ∈ Z.

14The case |AN (pk0 )| > 0 can be treated in the same way.
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To complete the proof of the theorem, we will show that (3.110) can not hold. Indeed, the
property (3.110) means that
(3.111) M12(pk) =M21(pk) = 0,∀ k ∈ Z.
This implies that the function

ϕ(p) = M12(p+ θ∗)
sin p

is an entire function of p ∈ C, which according to Corollary 3.1 (ii), satisfies

(3.112) ϕ(p) |p|→∞−→ 0 .
So M12 ≡ 0 which contradicts (3.105). This completes the proof of the theorem.

Appendix A. Regularized Determinants

In this appendix, we recall the basic properties of the regularized determinants detn(I−
A) for A in Cn, the set of bounded operators A on a separable Hilbert space15 H such
that |A|n is of trace-class, endowed with the norm ‖A‖n =

[
Tr
(
|A|n

)] 1
n . For further details,

we refer to the monograph of Simon [32] and the references therein.
To introduce the regularized determinants, let us start by defining, for any bounded

operator A on H,

Rn(A) = I− (I−A) exp
( n−1∑
k=1

Ak

k

)
·

Clearly,
(A.1) Rn(A) = Anhn(A),
where hn is an entire function on C. This shows that Rn(A) belongs to C1 if A is in Cn,
which justifies the following definition:

Definition A.1. For any operator A in Cn, n ≥ 2, we define

(A.2) detn(I−A) = det(I−Rn(A)) = det
(
(I−A) exp

( n−1∑
k=1

Ak

k

))
·

Note that, for all A in Cn such that ‖A‖ < 1 (or more generally ‖Ap‖ < 1, for some p),
one has:

(A.3) detn(I−A) = exp
(
− Tr

∞∑
k=n

Ak

k

)
·

In the following proposition, we summarize some useful properties of the regularized
determinants:

Proposition A.1. For any integer n ≥ 1, there exists a positive constant Cn such that
the following estimates hold.

(1) For all A ∈ Cn,
(A.4)

∣∣detn(I−A)
∣∣ ≤ exp

(
Cn‖A‖nn

)
,

(A.5) |detn(I−A)− 1| ≤ Cn‖An‖1 exp
(
Cn‖A‖nn

)
.

(2) For all A,B in Cn,
(A.6) |detn(I−A)− detn(I−B))| ≤ ‖A−B‖n exp

(
Cn
(
‖A‖n + ‖B‖n + 1

)n)
.

15In our case H is either L2(R,C2) or L2(T,C2).
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(3) Let A ∈ Cn. Then I − A is invertible if and only if detn(I − A) 6= 0, and
furthermore, one has

(A.7) ‖(I−A)−1‖ ≤ Cn
|detn(I−A)| exp

(
Cn ‖A‖nn

)
.

Appendix B. Proof of technical results

B.1. Some estimates of the solutions of the Zakharov-Shabat spectral problem
and proof of Propositions 2.1 and 2.3. In this subsection, we record some estimates
for the solutions of the Zakharov-Shabat system:

(B.1) (Lq − ζ)ψ = 0, Lq = iσ3∂x −Q, Q =
(

0 q1
q2 0

)
,

with q = (q1, q2) ∈ L2
loc(R,C

2), that have been used in the proof of Theorem 1, and also
prove Propositions 2.1 and 2.3.

B.1.1. Estimates. Let Eq(x, ζ) be the fundamental solution of (B.1) satisfying Eq(0, ζ) =
Id. We denote the columns of Eq(x, ζ) by e1(x, ζ; q) and e2(x, ζ; q). The fundamental
solution Eq can be characterized by the following integral equation

(B.2) Eq(x, ζ) = e−iζxσ3 − i
∫ x

0
e−iζ(x−y)σ3σ3Q(y)Eq(y, ζ)dy,

from which one readily deduces (see for exemple [8, 9]) that for all x ∈ R+, Eq(x, ζ) is an
analytic function of ζ and q admitting the following estimate
(B.3) |Eq(x, ζ)| ≤ exp

(
| Im ζ|x+ ‖q‖L2([0,x],C2)

√
x
)
, ∀(x, ζ) ∈ R+ × C .

Furthermore as |ζ| → ∞, one has

(B.4) Eq(x, ζ) = e−ixζσ3 + o(e| Im ζx|),
locally uniformly with respect to x ∈ R. We also recall the following continuity property
of Eq: if (qn)n∈N converges weakly to q in L2

loc, as n→∞, then

(B.5) Eqn(x, ζ) n→∞−→ Eq(x, ζ),
uniformly on bounded subsets of R× C.

If Im ζ > 0, then one has the following bounds.

Lemma B.1. There exists C > 0 such that the following estimates hold

(B.6)
∣∣∣eiζxpe1(x, ζ; q(1))−

(
1
0

) ∣∣∣ ≤ exp
(‖q(1)‖2L2([0,x])

4 Im ζ

)‖q(1)‖2L2([0,x])
4 Im ζ

, p =
(

1 0
0 0

)
,

and
(B.7)∣∣eiζx(e1(x, ζ; q(1))−e1(x, ζ; q(2))

)∣∣ ≤ Ce C
Im ζ

(
‖q(1)‖2

L2([0,x])
+‖q(2)‖2

L2([0,x])

) ‖q(1) − q(2)‖L2([0,x])√
Im ζ

,

for all (x, ζ) ∈ R+ × C+ and all q(1) = (q(1)
1 , q

(1)
2 ), q(2) = (q(2)

1 , q
(2)
2 ) ∈ L2

loc(R,C
2).

Proof. Set e1(x, ζ,q(i)) = e−iζxf (i)(x, ζ), f (i) =
(
f

(i)
1
f

(i)
2

)
, i = 1, 2. Then f (i) satisfies the

following Volterra equation

(B.8) f
(i)
1 (x, ζ) = 1 +

∫ x

0
k(i)(x, y, ζ)f (i)

1 (y, ζ)dy,

(B.9) f
(i)
2 (x, ζ) = i

∫ x

0
e2iζ(x−y)q

(i)
2 (y)f (i)

1 (y, ζ)dy,
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where
k(i)(x, y, ζ) = q

(i)
2 (y)

∫ x

y
e2iζ(s−y)q

(i)
1 (s)ds.

Since
|k(i)(x, y, ζ)| ≤ |q(i)

2 (y)|
∫ x

y
e−2 Im ζ(s−y)|q(i)

1 (s)|ds, x ≥ y,

and for all (x, ζ) ∈ R+ × C+,∫ x

0
dy|q(i)

2 (y)|
∫ x

y
dse−2 Im ζ(s−y)|q(i)

1 (s)| ≤
‖q(i)

1 ‖L2([0,x])‖q
(i)
2 ‖L2([0,x])

2 Im ζ
,

Equation (B.8) implies that

|f (i)
1 (x, ζ)| ≤ exp

(‖q(i)‖2L2([0,x])
4 Im ζ

)
, i = 1, 2, (x, ζ) ∈ R+ × C+,(B.10)

|f (i)
1 (x, ζ)− 1| ≤ exp

(‖q(i)‖2L2([0,x])
4 Im ζ

)‖q(i)‖2L2([0,x])
4 Im ζ

, i = 1, 2,

and
(B.11)

|f (1)
1 (x, ζ)−f (2)

1 (x, ζ)| ≤ e
‖q(1)‖2

L2([0,x])
+‖q(2)‖2

L2([0,x])
4 Im ζ

(‖q(1)‖L2([0,x]) + ‖q(2)‖L2([0,x]))‖q(1) − q(2)‖L2([0,x])
2 Im ζ

.

Combining (B.10) and (B.11) with (B.9), we get the required bound for f (1)
2 − f (2)

2 . �

In the case where q1 ∈ H1
loc(R), one has the following partial improvement of (B.4).

Lemma B.2. Let q = (q1, q2) ∈ H1
loc(R)×L2

loc(R). Then for all T > 0, there exists CT > 0
so that, for all (x, ζ) ∈ [0, T ]× C, one has

(B.12)
∣∣∣e2(x, ζ; q)− eiζx

(
0
1

) ∣∣∣ ≤ CT exp
(
| Im ζ|x+ CT ‖q‖L2([0,T ])

)‖q1‖H1([0,T ])
|ζ|

.

Proof. Set e2(x, ζ; q) = eiζx
(

0
1

)
+ e| Im ζ|xχ(x, ζ). Then, the function χ satisfies the fol-

lowing integral equation

χ(x, ζ) = χ0(x, ζ)
(

1
0

)
− i

∫ x

0
e(−iζσ3−| Im ζ|)(x−y)σ3Q(y)χ(y, ζ)dy,

where16

χ0(x, ζ) = −ie−(| Im ζ|+iζ)x
∫ x

0
e2iζyq1(y)dy.

Since clearly,
|e−(| Im ζ|±iζ)(x−y)| ≤ 1, ∀x ≥ y, ζ ∈ C,

and by integration by parts,

|χ0(x, ζ)| ≤ CT
‖q1‖H1([0,T ])

|ζ|
, ∀(x, ζ) ∈ [0, T ]× C,

the result follows by Gronwall’s lemma. �

16To avoid heaviness, we omit here the dependence of the functions χ and χ0 on the potential q.
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We are now in position to prove Proposition 2.1. The equivalence between the sys-
tems (2.2) and (2.19) together with the bounds (B.2) and (B.3) ensure that, for any T > 0,
there exists a constant CT > 0 so that

|Ê22(x, λ;u)| ≤ CT e
| Imλ2|x+CT (‖u‖H1([0,T ])+‖u‖3

H1([0,T ])
) ‖u‖H1([0,T ])

〈λ〉2
,

|Ê21(x, λ;u)| ≤ CT e
| Imλ2|x+CT (‖u‖H1([0,T ])+‖u‖3

H1([0,T ])
) ‖u‖H1([0,T ])

〈λ〉
,

for all (x, λ) ∈ [0, T ]×C and all u ∈ H1
loc(R). Since Eu(λ) = σ1Eu(x,−λ)σ1, this concludes

the proof of Proposition 2.1.

B.1.2. Proof of Proposition 2.3. To establish Proposition 2.3, we will use a periodic ana-
logue of (2.39). Because of the scaling invariance of (2.23), it is enough to consider the
case of T = 1. For q = (q1, q2) ∈ L2(T,C2), we define

Tq(ζ) = (L0 − ζ)−1Q, Q =
(

0 q1
q2 0

)
, ζ ∈ C \{2πn, n ∈ Z}.

Using the explicit kernel of the free resolvent (L0 − ζ)−1:
(B.13)

(L0−ζ)−1(x, y) = i

(
e−iζ(x−y)[1{x<y} + 1

e−iζ−1
]

0
0 eiζ(x−y)[1{x>y} + 1

e−iζ−1
]) , (x, y) ∈ T2,

and the fact that (L0− ζ)−1(x, y) = −σ1(L0 + ζ)−1(x, y)σ1, one can easily check that, for
all ζ ∈ C \{2πn, n ∈ Z}, Tq(ζ) is a Hilbert-Schmidt operator on L2(T,C2) admitting the
following bound

(B.14) ‖Tq(ζ)‖22 .
‖q‖2L2(T)

| Im ζ||1− e±iζ |2 , ±ζ ∈ C+, q ∈ L2(T,C2).

We shall deduce the bound (2.23) from the following result:

Lemma B.3. Let q = (q1, q2) ∈ L2(T,C2). Then, for all ζ ∈ C \{2πn, n ∈ Z}, we have:

(B.15) det2(I− Tq(ζ)) =
1− 1

2∆q(ζ)
1− cos ζ ,

where ∆q(ζ) is the Floquet discriminant of the Zakharov-Shabat system (B.1): ∆q(ζ) =
TrMq(ζ), Mq(ζ) = Eq(1, ζ).

Since L−1
u (λ) = (I−Tu(λ))−1(L0−λ2)−1, with Tu(λ) = iλ(L0−λ2)−1U , U =

(
0 u
u 0

)
,

combining (A.7) together with (B.14) and (B.15) and taking into account that ‖(L0 −
λ2)−1‖ ≤ | Imλ2|−1, one readily gets (2.23).

The identity (B.15) is well known in the literature. For completeness, we give a simple
proof here.

Proof of Lemma B.3. Denote

d(ζ) =
1− 1

2∆q(ζ)
1− cos ζ , d(ζ) = det2(I− Tq(ζ)).

Since d and d are holomorphic functions of ζ ∈ C \{2πn, n ∈ Z} and since in view
of (B.4), (B.14) and (A.6),

d(ζ)→ 1, d(ζ)→ 1, as | Im ζ| → ∞,
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it is enough to show that
d′(ζ)
d(ζ) = d′(ζ)

d(ζ) ,

for Im ζ sufficiently large.
Consider d(ζ). The bound (B.14) guarantees that for | Im ζ| ≥ R with R = R(‖q‖L2(T))

sufficiently large, ‖Tq(ζ)‖ < 1 and therefore we may write

d(ζ) = exp
(
−
∞∑
m=2

1
m

Tr(T mq (ζ))
)
,

which implies

d′(ζ)
d(ζ) = −

∞∑
m=2

Tr
(
T mq (ζ)(L0 − ζ)−1)

= Tr
(
(L0 − ζ)−1 − (Lq − ζ)−1

)
, Im ζ ≥ R.

We next compute the trace of (L0 − ζ)−1 − (Lq − ζ)−1 using that

(L0 − ζ)−1(x, y)− (Lq − ζ)−1(x, y) =− i
(
Eq(x, ζ)E−1

q (y, ζ)− e−iζ(x−y)σ3
)

1x≤yσ3

+ i

2−∆q(ζ)Eq(x, ζ)
(
I−M−1

q (ζ)
)
E−1

q (y, ζ)σ3

− i

2(1− cos ζ)(I− eiζσ3)e−iζ(x−y)σ3σ3.

This gives

(B.16) d′(ζ)
d(ζ) = − sin ζ

1− cos ζ −
i

2−∆q(ζ)

1∫
0

Tr
(
Eq(x, ζ) M−1

q (ζ)E−1
q (x, ζ)σ3

)
dx.

Observing that

∂ζEq(x, ζ) = −i
x∫

0

Eq(x, ζ)E−1
q (y, ζ)σ3Eq(y, ζ)dy,

and therefore,

M−1
q (ζ) d

dζ
Mq(ζ) = −i

1∫
0

E−1
q (y, ζ)σ3Eq(y, ζ)dy,

we can rewrite (B.16) as

d′(ζ)
d(ζ) = − sin ζ

1− cos ζ −
1

2−∆q(ζ)
d

dζ
TrM−1

q (ζ).

Since detMq(ζ) = 1 and hence TrM−1
q (ζ) = ∆q(ζ), we obtain

d′(ζ)
d(ζ) = − sin ζ

1− cos ζ −
∆q
′(ζ)

2−∆q(ζ)

= d′(ζ)
d(ζ) .

�
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B.2. Proof of Lemma 2.4. Lemma 2.4 can be recover from the analysis performed in [3],
we sketch its proof here for the convenience of the reader. Recall that17

(B.17) ln au(λ) = −
∞∑
k=1

Tr(Tu(λ)2k)
2k

, if ‖Tu(λ)‖ < 1.

Since clearly

(B.18) ‖Tu(λ)‖ ≤
|λ| ‖u‖L∞(R)

Im(λ2) .
|λ| ‖u‖H1(R)

Im(λ2) , ∀λ ∈ Ω+,

we deduce that (B.17) holds for all λ ∈ Ω+ satisfying λ2 ∈ Γδ, |λ|2 ≥ R0 = R0(‖u‖H1(R), δ)
(where δ is fixed so that 0 < δ < π

2 ).
Thanks to (B.17), (B.18) and (2.41), we have

(B.19) ln au(λ) = −
3∑

k=1

Tr(Tu(λ)2k)
2k + o(|λ|−4), as |λ| → ∞, λ ∈ Γδ.

Following [3], we next write

(B.20) − Tr(Tu(λ)2k)
2k =

2∑
j=k−1

µj,k(u)
λ2j + τk(u, λ) , k = 1, 2, 3 ,

where µj,k(u) are homogeneous polynomials of degree 2k in u, ū, and their derivatives,
satisfying

(B.21) Ej(u) =
j+1∑
k=1

µj,k(u), j = 0, 1, 2.

Since18

(B.22) TrT 2
u (λ) = 2iλ2

∫
R
dξ
|û(ξ)|2

ξ + 2λ2 ,

we have
τ1(u, λ) = i

8λ4

∫
R

ξ3|û(ξ)|2

ξ + 2λ2 dξ.

Applying Lebesgue dominated convergence theorem, we infer that
(B.23) τ1(u, λ) = oδ(|λ|−4), as |λ| → ∞, λ ∈ Γδ.
Finally, according to Lemma 2.1 in [3],

|τ2(u, λ)|+ |τ3(u, λ)| ≤ C(‖u‖H1 , δ)
|λ|6

,(B.24)

which completes the proof of the lemma.

B.3. Proof of Lemma 2.7. Let u ∈ H1(R) such that ãu ≡ 1 and ‖u‖2L2(R) = 4π. Then,
it follows from Lemma 2.6 that ER(u) = PR(u) = 0. Applying the gauge transformation

v(x) = e
3
4 i
∫ x
−∞ |u(s)|2ds

u(x),
one can easily check that

PR(u) = Im
∫
vvxdx−

1
4‖v‖

4
L4(R) = P̃ (v) and ER(u) = ‖∂xv‖2L2(R)−

1
16‖v‖

6
L6(R) = Ẽ(v) .

Then defining, for α ∈ R, wα(x) = e−iαxv(x), we deduce that, for all α,

−Ẽ(wα) = −α2‖v‖2L2(R) + α

2 ‖v‖
4
L4(R).

17In view of (2.41), (B.18) and (B.22), this series expansion is consistent with our definition of ln au(λ).
18see for instance (2.23) in [2]
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A direct computation shows that the function R 3 α→ −α2‖v‖2L2(R) + α
2 ‖v‖

4
L4(R) reaches

its maximum at α∗ =
‖v‖4

L4(R)
4‖v‖2

L2(R)
:

(B.25) − Ẽ(wα) ≤ −Ẽ(wα∗) =
‖v‖8L4(R)

16‖v‖2L2(R)
, ∀α.

Applying the sharp Gagliardo-Niremberg inequality (2.60) to wα∗ we obtain that

(B.26) 1 ≤ ‖v‖2L2(R)Ψ
(‖v‖6L6(R)
‖v‖8L4(R)

)
, Ψ(X) = X

(
1− 16

C18
GN

X2
)
,

with equality if and only if

(B.27) v(x) = z
eiα∗x√

c2(x− x0)2 + 1

for some z ∈ C, c > 0, and x0 ∈ R. Recalling that CGN = 3
1
6 (2π)−

1
9 , one easily gets

(B.28) Ψ(X) ≤ Ψ(X∗) = 1
4π with X∗ = C9

GN

4
√

3
= 3

8π .

Since ‖v‖2L2(R) = 4π, it follows from (B.26) and (B.28) that v has the form (B.27) with |z| =
2
√
c, and since the algebraic solitons satisfy ER(u) = PR(u) = 0, necessarily, α∗ = c

2 .
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[30] D.-E. Pelinovsky, A. Saalmann and Y. Shimabukuro, The derivative NLS equation: global existence
with solitons, Dynamics of Partial Differential Equations, 14, pages 271-294, 2017.

[31] D.-E. Pelinovsky and Y. Shimabukuro, Existence of global solutions to the derivative NLS equation
with the inverse scattering method, International Mathematics Research Notices, pages 5663-5728,
2017.

[32] B. Simon, Trace ideals and their applications, Second edition. Mathematical surveys and Monographs,
120, American Mathematical Society, Providence, 2005.

[33] H. Takaoka, Well-posedness for the one-dimensional nonlinear Schrödinger equation with the deriva-
tive nonlinearity, Advances in Differential Equations, 4, pages 561-580, 1999.

[34] H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and
data in low-order Sobolev spaces, Electronic Journal of Differential Equations, 42, pages 1-23, 2001.

[35] Y. Wu, Global well-posedness on the derivative nonlinear Schrödinger equation revisited, Analysis and
PDE, 8, pages 1101-1112, 2015.
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