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Abstract—Cavitation produced by high-intensity focused ul-
trasound needs to be monitored for specific applications such
as sonoporation. Passive acoustic mapping using adaptive or
non-adaptive beamforming methods has been proposed in the
literature for this task, but lacks of spatial (primarily axial)
resolution. This is mainly due to the absence of a time reference,
a common specificity of passive imaging compared to standard
pulse-echo ultrasound. In this paper, we propose an inverse
problem-based method for passive cavitation imaging, aiming
to increase the spatial resolution through sparsity constraints.
Results on simulated data are presented and compared to state-
of-the-art approaches, such as the frequential delay-and-sum and
the frequential robust Capon beamformer.

Index Terms—Passive ultrasound imaging, beamforming, in-
verse problems, sparsity, cavitation imaging

I. INTRODUCTION

High intensity focused ultrasound (HIFU) waves are used
for a wide range of therapeutic applications, exploiting differ-
ent effects such as heat, shock waves or cavitation [1]. For the
latter, the pressure variations of the focused ultrasound waves
cause bubble gas oscillation and implosion, creating either a
harmonic or broadband response.

For safety and performance reasons, cavitation shall be
localized during such treatments to monitor its effects and
possibly to provide closed-loop control. Due to interference
with the HIFU signals, active ultrasound imaging using ul-
trasound wave transmissions is not applicable. Gyöngy et
al. [2] first introduced passive temporal acoustic mapping of
the cavitation, that is more precisely a passive delay-and-
sum (DAS) beamforming algorithm. Despite its interest, DAS
fails in accurately localizing the cavitation, mainly because
of its low axial resolution, intrinsically related to the lack of
time reference. To overcome this major limitation, adaptive
beamforming methods, such as robust Capon beamformer
(RCB) [3], [4] have been adapted to passive imaging of the
cavitation in [5]. Furthermore, the interest of frequency-based
adaptive beamformers in cavitation imaging has been evalu-
ated [6]. Both temporal and frequential adaptive beamformers
improved the spatial resolution of DAS, at the cost of higher

computational time, especially for temporal methods. Despite
these improvements, classical beamformers initially proposed
for active imaging and adapted to passive imaging, fail in
achieving an axial spatial resolution equivalent to the lateral
one, required for clinical applications.

Passive beamformers have been extensively studied in num-
ber of applications, such as for example in aeroacoustics [7].
One class of methods, that expresses the beamforming as the
inversion of a direct model relating the raw radio-frequency
(RF) data to the map of interest, is particularly interesting due
to its ability of considering prior information about the imaged
medium [7]. To the best of our knowledge, such methods have
not been yet adapted nor evaluated in the cavitation imaging
context. This represents the main objective of this work, with
a particular focus on a cross spectral matrix fitting [8] and
an elastic net regularization promoting the sparsity of the
cavitation maps [9].

The remainder of the paper is organized as follows. We first
present the developed method, then compare it with the state-
of-the-art DAS and RCB on different simulations and conclude
with a discussion.

II. PROPOSED METHOD

This section presents the model used in this work, as well
as the inversion method that permits to estimate a cavitation
map from the raw RF data exploiting its spatial sparsity. Let us
consider the case of an N -element linear array, that operates
in passive mode and records N RF signals of T samples
originating from a medium exposed to HIFU waves. We denote
by Y ∈ RN×T the matrix containing all the N RF signals,
and by Ȳ ∈ CN×F its corresponding version in the frequency
domain, i.e., in which each RF signal is replaced by its discrete
Fourier transform containing F frequencies. In the following,
we focus on one frequency, and thus consider as acquired
data a vector ȳ ∈ CN×1, that gathers the frequency samples
corresponding to the same frequency for each of the N RF
signals.



A. Cross-spectral matrix

From ȳ, one can estimate the cross-spectral matrix (CSM)
at a given frequency, denoted by C ∈ CN×N and defined by:

C = E[ȳȳH ], (1)

where ·H stands for the complex conjugate and E[·] is the
expected value. Note that the CSM is also the central point
of cavitation imaging beamformers working in the frequency
domain. In practice, to improve the robustness of the CSM
estimate, the temporal RF signals are divided in K overlap-
ping time windows of length Tsnap assimilated to different
snapshots [4]:

Ĉ =
1

K

K∑
k=1

ȳkȳHk , (2)

where Ĉ is a robust estimation of C and ȳk is the frequency
vector corresponding to the k-th snaphot.

B. CSM-based forward model

Let us denote by s ∈ RM×1 a discrete vectorized version
of the cavitation map to be beamformed, where M is the total
number of potential source positions on a rectangular grid. The
signals received from one source at a given location impinging
on N elements are related to that source by the corresponding
steering vector. In the Fourier domain and considering the M
potential source positions, a forward model can be established
relating the frequency vector ȳ to the source map s using the
model of spherical wave propagation described in [8]:

ȳ = Hs, (3)

where H ∈ CN×M is a matrix whose columns represent the
steering vectors relating one source position to all elements.
Injecting (3) in the model (1) gives:

C = HE[ssH ]HH . (4)

Note that E[ssH ] represents the cross-correlation matrix be-
tween the source grid positions. Assuming that cavitation
sources are independent of each other, E[ssH ] becomes a diag-
onal matrix, where the main diagonal, denoted by x ∈ RM×1,
holds the power of each potential source on the beamforming
grid.

Using basic algebra rules, the model in (4) can be rewritten
as:

ĉ = Ax + n, (5)

where ĉ ∈ CN2×1 is the vectorized version of the robust CSM,
A ∈ CN2×M is a reshaped steering matrix, n ∈ CN2×1 is
an additive white Gaussian noise accounting for measurement
noise and model imperfections, and x ∈ RM×1 is the vector-
ized form of the power map to be estimated.

C. Elastic net-based inversion

Inverting the model in (5), i.e., estimating the power map x
from the CSM robustly estimated from the acquired raw RF
data, can be treated as a typical inverse problem. One common
way to solve such an inverse problem is to express it as the
minimization of a cost function, composed of a data fidelity
term and a regularizer. In our case, based on the assumption
that cavitation maps are sparse (only a few cavitation clouds
can occur at the same time), the regularizer is a classical elastic
net penalty [9], as follows:

min
x

1

2
∥ĉ − Ax∥22 + λ1∥x∥1 +

λ2

2
∥x∥22, (6)

where the first term is a quadratic data fidelity term resulting
from the assumption of additive Gaussian noise, the second is
an ℓ1-norm promoting sparsity of the cavitation map, and the
third one is an ℓ2-norm ridge penalization, that slightly relaxes
the sparsity constraint, thus allowing smooth cavitation spots.
The two latter terms are respectively weighted by λ1 and λ2.
We used a FISTA algorithm based on [10] for minimization.

III. RESULTS

A. Simulation setup

To validate the proposed beamforming method, three simu-
lations have been done, as described hereafter:

• a unique inertial cavitation source, representing a bubble
placed at (−5, 70) mm;

• two inertial cavitation sources laterally distributed at
(−0.7,70) and (0.7,70) mm;

• two inertial cavitation sources axially distributed at (0,65)
and (0,75) mm.

For all configurations, the cavitation signal was simulated as
a broadband noise [11]. The linear probe simulated to generate
the received RF signals had N = 128 elements, a central
frequency of 5.5 MHz, a bandwidth at −6 dB spanning from
3.5 to 7.5 Mhz and a pitch of 300 µm.

The proposed method, referred to as CMF-Elastic-net, was
compared to DAS from [6], [12] and frequency RCB [5],
[6]. The hyperparameters were fixed, for each method, to
their best values and kept constant over the three simulation
configurations. In particular, the parameter used to condition
the inversion of the CSM with RCB was fixed at 10, and
λ1 = 90 and λ2 = 10 for CMF-Elastic-net.

The imaging was done at 3 MHz for all the methods and
for all the configurations.

For all configurations, the three methods are compared
through a power map, the profile of the lateral and axial lobe
of those maps, as well as the size of the lobes at −3dB.
Average position and standard deviations of the maximum of
the sources were calculated from 100 different simulations.

B. One bubble

Figure 1 shows the reconstruction of one inertial bubble in
highly noisy conditions (SNR of −5 dB) obtained with the
three beamforming algorithms.
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Fig. 1. Power maps of a unique bubble at (-5,70mm) for an SNR of −5 dB.
The red cross indicates the true location of the bubble.

Figure 2 highlights lateral and axial profiles of the power
maps in Figure 1, passing through the bubble. The averaged
position of the maxima are regrouped in Table I. CMF-Elastic-
net lateral lobe at -3dB is 0.1 mm, while it is 0.2 mm for RCB
and 0.9mm for DAS. Its axial lobe is 1 mm, compared to 1.8
mm for RCB and 9.2 mm for DAS. It is also noticeable on
this particular example that the maximum of RCB is shifted
compared to the ground truth. The power map maximum
averaged on 100 images is however close to the ground truth.
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Fig. 2. Axial and lateral profiles of the power map for the one bubble
configuration.

TABLE I
METRICS FOR ONE-BUBBLE CONFIGURATION

Beamformer

Metrics DAS RCB CMF-
Elastic net

Mean maximum
position (mm)
Truth: (-5,70)

(-5, 69.93) (-5, 69.90) (-5, 69.99)

Standard
Deviation (mm) 0.35 0.28 0.34

C. Two bubbles laterally distributed

Figure 3 shows the power maps of two inertial sources with
a lateral separation of 1.4 mm, for an SNR of 10dB.
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Fig. 3. Power maps of two bubbles laterally separated of 1.4 mm.

The lateral and axial profiles of the different maps are
plotted on Figure 4. The lateral profile shows a good separation
of the two bubbles for RCB and CMF-Elastic-net, while for
DAS, there is a difference of 10 dB between the position of
the bubbles and the pit between them. Table II regroups the
quantitative metrics. For this configuration, the axial lobe is
3.4 mm for CMF-Elastic-net, 4.7 mm for RCB and 10 mm
for DAS. Comparing the unique bubble configuration with the
two bubbles one, one can see that the axial lobe of CMF-
Elastic-net is larger (+2.4mm). The maxima are respectively
calculated on different ROI (cf. Fig.3 .b).
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Fig. 4. Axial and lateral profiles for the configuration with 2 bubbles laterally
spaced.

TABLE II
METRICS FOR TWO-BUBBLE LATERALLY DISTRIBUTED CONFIGURATION

Beamformer

Metrics DAS RCB CMF-
Elastic net

Mean maximum
left ROI (mm)
Truth: (-0.7,70)

(-0.7,
69.96)

(-0.7,
69.98)

(-0.7,
70.03)

Standard
deviation left

ROI (mm)
0.53 0.25 0.41

Mean maximum
right ROI (mm)
Truth: (0.7,70)

(0.7,70.06) (0.7,70.04) (0.7,70.11)

Standard
deviation right

ROI (mm)
0.55 0.26 0.43

D. Two bubbles axially distributed

Figure 5 shows the power maps of two inertial sources with
an axial separation of 10 mm, at an SNR of 10dB.
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Fig. 5. Power maps of two bubbles 10 mm axially spaced.

Figure 6 shows the lateral and axial profiles of the sources
extracted from the different maps. It can be observed from



the axial profile that there is no clear separation between the
two bubbles with RCB and DAS. Conversely, it is possible
to distinguish the two bubbles with CMF-Elastic-net, where
the axial lobes at -3dB ar 4.7mm. However, as for the two
laterally distributed sources, this axial profile shows a higher
axial lobe for CMF-Elastic-net compared to the one bubble
configuration (+3.7mm).
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Fig. 6. Axial and lateral profiles of the configuration with 2 bubbles axially
distributed.

TABLE III
METRICS FOR TWO-BUBBLE AXIALLY DISTRIBUTED CONFIGURATION

Beamformer

Metrics DAS RCB CMF-
Elastic net

Mean maximum
upper ROI (mm)

Truth: (0,65)
(0, 68.5) (0, 66.86) (0, 65.64)

Standard
Deviation upper

ROI (mm)
1.67 1.67 1.37

Mean maximum
lower ROI (mm)

Truth: (0,75)
(0, 71.28) (0, 73.15) (0, 74.18)

Standard
Deviation lower

ROI (mm)
1.83 1.45 1.78

IV. DISCUSSION AND CONCLUSION

This paper showed the interest of using inverse problems-
based approaches for passive acoustic mapping of the inertial
cavitation. Compared to the state-of-the-art, the proposed
method improves the axial resolution and allows a better
separation of sources in axially and laterally distributed
sources. However, the axial lobes are more important when
multiple sources are present than with one source. This effect
could be due to partial coherence between the sources, that
is not accounted for in this model. It is also important to
notice that the choice of the penalization coefficients λ1 and
λ2 is important. If λ1 is too high, the algorithm tends to
promote one source only. Conversely, if λ2 is too high or
λ1 too small, the size of the lobes, primarily axial, would
increase. Future work could focus on an automatic choice of
penalization coefficients, accounting for coherence between
sources, more complex regularization terms to penalize the
presence of axial lobes and to combine multiple frequencies
into the model.
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