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An inverse method using Cross spectral Matrix
Fitting for passive cavitation imaging

Célestine Lachambre, Adrian Basarab, Jean-Christophe Béra, Barbara Nicolas, François Varray, Bruno
Gilles

Abstract— High intensity focused ultrasound (HIFU) can
produce cavitation, which requires monitoring for spe-
cific applications such as sonoporation, targeted drug
delivery or histotripsy. Passive acoustic mapping has
been proposed in the literature as a method for moni-
toring cavitation, but it lacks spatial resolution, primarily
in the axial direction, due to the absence of a time
reference. This is a common issue with passive imaging
compared to standard pulse-echo ultrasound. In order
to improve the axial resolution, we propose an adapta-
tion of the Cross spectral Matrix Fitting (CMF) method
for passive cavitation imaging, which is based on the
resolution of an inverse problem with different regu-
larizations that promote sparsity in the reconstructed
cavitation maps: Elastic Net (CMF-ElNet) and sparse
Total Variation (CMF-spTV). The results from both simu-
lated and experimental data are presented and compared
to state-of-the-art approaches, such as the frequential
Delay-and-Sum (DAS) and the frequential Robust Capon
Beamformer (RCB). We show the interest of the method for improving the axial resolution, with an axial Full
Width Half Maximum (FWHM) divided by 3 and 5 compared to RCB and DAS, respectively. Moreover, CMF based
methods improve Contrast-to-Noise Ratio (CNR) by more than 15 dB in experimental conditions compared to
RCB. We also show the advantage of the sparse Total Variation prior over Elastic Net when dealing with cloud
shaped cavitation sources, that can be assumed as sparse grouped sources.

Index Terms— Cavitation imaging, Constrained optimization, Frequential beamforming, Inverse problems, Pas-
sive ultrasound imaging, Total Variation

I. INTRODUCTION

H IGH intensity focused ultrasound (HIFU) finds diverse
therapeutic applications relying on various underlying

mechanisms [1]: for example, HIFU can generate thermal en-
ergy for tissue ablation or induce mechanical effects conducive
to lithotripsy [2], [3]. The phenomenon of cavitation, where
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clouds of gas bubbles oscillate and potentially implode due
to pressure variations caused by focused ultrasound waves, is
utilized in numerous applications [1], such as sonoporation [4],
[5], targeted drug delivery [6]–[8], opening of the blood-brain
barrier [9], [10] and histotripsy [11]–[13].

In treatments involving cavitation effects, it is necessary
to accurately locate and measure its activity, monitor its
effects, and possibly establish closed-loop control. To avoid
interference with HIFU signals, Gyöngy et al. adapted passive
temporal acoustic mapping method from seismic imaging [14],
[15] to cavitation localization, known as time-exposure acous-
tic or passive -and-Sum (DAS) [16]. However, unless very
specific high aperture arrays are used, DAS is limited in its
ability to accurately localize cavitation because it lacks a time
reference, resulting in limited axial resolution. Moreover, pas-
sive temporal beamforming is computationally cumbersome as
it requires delaying and adding signals for each pixel in the
power map. Spatial resolution has been improved by various
adaptive beamforming techniques, including the Robust Capon
Beamformer (RCB) [17], [18], which has been adapted for
passive cavitation imaging in the temporal domain [19], [20],
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Highlights

• We introduce CMF-spTV: an inverse reconstruction in passive cavitation imaging with a Sparse Total Variation penalization.
• CMF-spTV reduces the axial lobe by 5 and 10 compared to RCB and DAS, respectively, and better reconstructs the cloud sources.

• Using inverse methods in passive cavitation imaging allows the introduction of prior information to the reconstruction.

as well as phase coherence factor [21] and Pisarenko [22]
beamformers, at the cost of increased computational time.

Therefore, frequency-based beamformers, widely developed
in domains requiring array processing such as aeroacoustics
[23], have been explored, initially with Passive Delay-and-
Sum [24], as a means to reduce computational complexity
while maintaining comparable spatial resolution to temporal
beamformers. Adaptive beamformers, including Capon and
Robust Capon, Pisarenko and MidWay beamformers [25]–
[28], have then been adapted to frequency-based passive
cavitation imaging. These frequency-based beamformers in-
troduce the Cross-Spectral Matrix (CSM) [29] to quantify
the correlation between the Radio-Frequency (RF) signals
in the Fourier domain. In parallel, angular-spectrum based
beamformers have been adapted to passive cavitation imaging
to maintain a temporal resolution close to time-domain based
methods while reducing computational cost [30], [31]. Despite
these advances, these beamformers continue to face challenges
in achieving better axial resolution, a requirement for clinical
applications.

In other domains, such as aeroacoustics [23], some source
localization methods based on regularized inverse problems
are noteworthy for their ability to incorporate prior information
into the reconstruction [32]. Regularization techniques are
used to address the ill-posed nature of inverse problems, such
as when they are underdetermined. Sparsity-based regular-
ization appears suitable for cavitation imaging due to the
inherent sparsity of the resulting maps and the limited number
of sensors compared to the grid size, making the problem
underdetermined. The Deconvolution Approach for the Map-
ping of Acoustic Sources (DAMAS) [33], which deconvolves
RF signals in the Fourier domain with steering vectors, has
been first developed but lacks stability. Another method which
formulates beamforming as the inversion of a direct model
relating the cross-spectral matrix to the power map [32],
appears to be more stable due to the use of the cross-spectral
matrix, which can be robustly estimated [18]. In a preliminary
study [34], we introduced a method that focuses on fitting the
CSM with Elastic Net regularization to promote sparsity in
cavitation maps, thereby improving axial resolution in cavita-
tion imaging [32], [35]. Elastic Net is derivated from the Least
Absolute Shrinkage and Selection Operator (LASSO) method,
originally introduced by Tibshirani [36]. The latter encourages
strong sparsity, which usually results in point-wise solutions.
Elastic Net is known for its ability to relax sparsity compared
to LASSO and can therefore produce more spatially compact
results. Its interest in active medical ultrasound beamforming
was shown in [37], [38]. However, in some cases, such as for
cavitation millimeter clouds, sparsity constraints tend to reduce

the source to multiple sparse points that are not representative
of the true source shapes. To mitigate this problem, we here
propose to also introduce the use of Sparse Total Variation as
a regularization [39], [40], [41].

The remainder of this paper is structured as follows: after
a reminder of the DAS and RCB beamformers that will be
used as references, we present the developed Cross-spectral
Matrix Fitting (CMF) algorithm, followed by a comparative
analysis of the different methods in various simulation and
experimental settings, the results of which are then discussed.

II. IMAGING METHOD: CROSS-SPECTRAL MATRIX
FITTING (CMF)

This section presents the signal model generally considered
in passive acoustic mapping and used in this work, with a
reminder of the two state-of-the-art beamformers considered
for the comparative study, as well as a description of the CMF
and the resolution method used.

We consider the case of an N -element linear array operating
in passive mode and recording N RF signals of T samples
originating from a medium containing acoustic sources. We
denote by Y ∈ RN×T the matrix containing the N RF signals,
and Ȳ ∈ CN×F its corresponding version in the frequency
domain, i.e., in which each RF signal is replaced by its 1D
discrete Fourier transform containing F frequencies. In the
following, we will focus on a single frequency f and thus
consider the acquired data as a vector ȳ ∈ CN×1, which
contains the frequency samples corresponding to the same
frequency for each of the N RF signals.

A. Cross-spectral matrix

The CSM, denoted by C ∈ CN×N , is the cross-correlation
of the Fourier domain representation of the RF signals, given
by:

C = E[ȳȳ∗], (1)

where ·∗ stands for the complex conjugate and E[·] is the
expected value. Note that the CSM can be viewed as the
central point of cavitation imaging beamformers working in
the frequency domain. In the present work, to robustly estimate
the CSM, the temporal RF signals are divided in K time
windows (further denoted snapshots) giving [18]:

C =
1

K

K∑
k=1

ȳkȳ∗
k, (2)

where ȳk are the RF signals in the Fourier domain in the
temporal window corresponding to the k-th snapshot. Snap-
shots are generally overlapped in order to add stability. K is
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therefore expressed as:

K =
Trec

(1−%ov)Tsnap
, (3)

where Trec is the duration of the whole sequence, Tsnap

is the duration of a snapshot and %ov is the proportion of
overlapping. In practice, a compromise between large K,
leading to more stable solutions, and long Tsnap insuring
sufficient spectral resolution, is needed.

Passive DAS applied to cavitation mapping was first intro-
duced in the time domain in [16]. The received raw signals
are virtually focused on each point of the beamforming grid,
which imposes relatively high computational resources. The
spectral version of this beamformer substantially decreased
the computational resources needed compared to temporal
beamformers. Using the CSM, the estimated power at a
particular point r⃗ given by passive DAS [17], [26] can be
written as:

PDAS(r⃗) =
a∗(r⃗)C a(r⃗)

N2
, (4)

where a(r⃗) = e−2πfd(r⃗)/c0 , is the propagation vector of a
given pixel r⃗, with c0 the speed of sound in the medium
and d(r⃗) the estimated time-of-flight of the signal emitted
by a source at location r⃗ to the different array elements.
As in the case of passive DAS beamformer, passive Robust
Capon Beamformer (RCB) can be expressed in both the
temporal and frequency domains, the latter being much less
cumbersome in terms of computational load. It aims to adapt
the steering vectors for each pixel using the CSM data in order
to minimize the noise contribution [20]. The estimated power
can be expressed as:

PRCB(r⃗) =
1

N

∥a0(r⃗)∥2

a∗0(r⃗)C
−1a0(r⃗)

, (5)

with a∗
0(r⃗) the adapted propagation vectors, whose expression

can be found in [26].

B. CMF’s forward model

Fig. 1. Direct Model: potential sources on the grid of size M at position
m are emitting ultrasonic signals received with a known delay by each
element n of the probe. The delays are represented by the steering
vectors h(n,m).

The proposed CMF method is based on the inversion of the
model described below and illustrated in Fig. 1. We denote

s ∈ RM×1 a discrete vectorized version of the cavitation map
to be beamformed, where M is the total number of potential
source positions on a rectangular grid. The signals received
from one source at a given location impinging on N elements
are related to that source by the corresponding propagation
vector. In the Fourier domain and considering the M potential
source positions, a forward model can be established relating
the frequency vector ȳ to the source map s using the model
of wave propagation described in [32]:

ȳ = Hs, (6)

where H ∈ CN×M is a matrix whose columns represent the
steering vectors relating one source position to all elements.

H =
1

N

 h(1, 1) · · · h(1,M)
...

. . .
...

h(N, 1) · · · h(N,M)

 , (7)

with h(n,m) = e−2πfd(n,m)/c0 the steering vector of a source
located at a given pixel m to the array element n and d the
estimated distance between the signal emitted by a source
located at a given pixel m to the array element n.

Injecting eq. (6) in the definition of the CSM in eq. (1)
gives:

C = HE[ss∗]H∗. (8)

Note that E[ss∗] represents the cross-correlation matrix be-
tween the sources located on the beamforming grid. Assuming
that cavitation sources are uncorrelated, E[ss∗] becomes a diag-
onal matrix, where the main diagonal, denoted by x ∈ RM×1,
holds the power of each potential source on the beamforming
grid.

Denoting by xm = sms∗m the power of the m-th source,
the model in eq. (8) becomes:

C = H



x1 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · xm · · · 0
...

...
...

. . .
...

0 · · · 0 · · · xM

H∗. (9)

Finally, considering a vectorized version of the CSM, de-
noted by c, and using simple matrix multiplication calcula-
tions, one can re-write this model as:

c = Ax + b, (10)

with A, the reorganization of the steering vectors matrix
multiplication (see appendix A), defined as:

A =
1

N2



h(1, 1)h∗(1, 1) · · · h(1,M)h∗(1,M)
...

. . .
...

h(1, 1)h∗(N, 1) · · · h(1,M)h∗(N,M)
...

. . .
...

h(N, 1)h∗(1, 1) · · · h(N,M)h∗(1,M)
...

. . .
...

h(N, 1)h∗(N, 1) · · · h(N,M)h∗(N,M)


(11)
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where c ∈ CN2×1 is the vectorized version of the CSM,
A ∈ CN2×M is a reshaped steering matrix, b ∈ CN2×1 is
an additive white Gaussian noise accounting for measurement
noise and model imperfections, and x ∈ RM×1 is the vector-
ized form of the power map to be estimated.

C. Sparsity-based regularization
Inverting the model in eq. (10), i.e., estimating the power

map x from the CSM robustly estimated from the acquired
raw RF data, can be treated as a typical inverse problem. Due
to the ill-posedness of such problems, one common way to
solve them is to express them as the minimization of a cost
function:

min
x

(
1

2
∥c − Ax∥22 + g(x)

)
, (12)

where the first term is a quadratic data fidelity term resulting
from the assumption of additive Gaussian noise and g(x)
is a penalty function that contains prior information on the
cavitation map.

In this work, the regularization functions proposed are based
on the hypothesis that only a low number of cavitation sources
occur in the field of view. Therefore, the cavitation map to be
estimated may be considered sparse. The most classical way to
impose sparsity is to use the ℓ1-norm, turning the optimization
in eq. (12) into the common LASSO problem [36]:

min
x

(
1

2
∥c − Ax∥22 + λl1∥x∥1

)
, (13)

where ∥x∥1 is the ℓ1-norm of x weighed by the hyperparameter
λl1. The choice of λl1 is guided by the trade-off between the
data fidelity and the sparsity of the cavitation map. It is shown
in [42] that its theoretical maximum value, before the solution
degenerates to 0, is:

λmax = ∥AT c∥∞. (14)

where ·T stands for the transpose operator. In the remainder of
the paper, this value is considered for all regularization terms
as their maximum. The regularization terms are then weighted
as a percentage of this maximum value.

However, LASSO tends to give pointwise solutions only,
and, in order to be able to consider spread source configura-
tions, we evaluated two different regularizations. The first one
is a common relaxation of the LASSO regularization, called
Elastic Net [35]. It considers, in addition to the ℓ1-norm , an
ℓ2-norm, that tends to create less pointwise results. In this
case, the optimization problem to solve is:

PCMF−ElNet = min
x

(
1

2
∥c − Ax∥22 + λl1∥x∥1 +

λl2
2

∥x∥22
)
.

(15)
This method will be further denoted CMF-ElNet.

Although CMF-ElNet relaxes the sparsity constraints, it
might not consider the group structure of cavitation bubble
clouds, and reproduces, in its way, the axial bias present
in classical DAS and RCB beamformers. Another class of
regularization, called sparse Total Variation, penalizes the dif-
ference between neighboring pixels. In case of 2D anisotropic
Total Variation, the penalization factor differs between vertical

and horizontal axes, and could force the solution to spread less
in the axial direction than in the lateral one. It is expressed
as:

PCMF−spTV =min
x

(
1

2
∥c − Ax∥22

+ λTVax

∑
|xi,j − xi+1,j |

+ λTVlat

∑
|xi,j − xi,j+1|

+ λl1∥x∥1
)
,

(16)

where i and j represent the position of the pixels on a grid,
λTVlat

and λTVax are respectively weighting lateral and axial
Total Variation. This method will be further denoted CMF-
spTV.

D. Inverse problem optimization

The Alternating Direction Method of Multipliers (ADMM)
is used to solve the two optimization problems introduced in
the previous section. eq. (15) and (16) can be expressed as a
generalized LASSO problem [43], such that:

min
x

(
1

2
∥c − Ax∥22 + ∥Diag(λg)Fx∥1 +

λl2
2

∥x∥22
)
, (17)

where F = [Dax;Dlat; IM ] ∈ RP×M is a stack of Dax, the
axial difference matrix, Dlat, the lateral difference matrix,
and IM the identity matrix promoting sparsity. F is weighted
by λg = [λTV ax,λTVlat

,λl1] ∈ R1×P , a vector allowing
different weights for each penalty.
In the case of CMF-ElNet, λTV ax and λTVlat

are set to
zero while λl1 and λl2 are set to non-zero values. For CMF-
spTV, λTV ax,λTVlat

and λl1 are set to non-zero values while
λl2 = 0.

The general framework of ADMM is described in [44].
Applied to our problem, it becomes:

min f(x) + g(z)
s.t Fx = z,

(18)

where f(x) represents the data fidelity term, g(z) represents
the penalty term, with z dependent of the variable x. By
identification, f(x) and g(z) are defined by:

f(x) = 1

2
∥c − Ax∥22 +

λl2
2

∥x∥22,

g(z) = ∥Diag(λg)z∥1.
(19)

The augmented Lagrangian associated to eq. (18) and eq. (19)
is:

Lp(x, z,u) =
1

2
∥c − Ax∥22 +

λl2

2
∥x∥22

+∥Diag(λg)z∥1 + uT (Fx − z) + (
ρ

2
)∥Fx − z∥22

(20)

Finally, the optimization problems in eq. (15) and eq. (16)
can be solved with ADMM according to the scheme given in
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eq. (21), following [45].

xk+1 = argmin
x

Lp(x, zk, uk)

= ((AtA) + ρ(FtF) + λl2IM )−1(Atc
+ρFt(zk − uk))

zk+1 = argmin
z

Lp(xk+1, z, uk) = Sthr(Fx, λg
ρ )

uk+1 = uk + Fxk+1 − zk+1,

(21)

where ρ is the penalty parameter of the Lagrangian described
in [45]. Sthr(Fx, λg

ρ ) is the soft thresholding operator used to
find the minimum of ℓ1-norm, that are not differentiable [46]:

Sthr(Fx,
λg

ρ
) = max(0,Fx− λg

ρ
)−max(0,−Fx− λg

ρ
). (22)

The stopping criteria of the algorithm are chosen when the
following conditions are met as explained by Boyd et al. [47].{

∥rk∥ = ∥Fxk − zk∥2 < ϵpri

∥sk∥ = ∥ − ρFT (zk − zk−1)∥2 < ϵdual,
(23)

where rk and sk are the primal and dual residuals at iteration
k, respectively, and ϵpri and ϵdual their tolerances, expressed
below as:{

ϵpri =
√
Pϵabs + ϵrel max(∥Fxk∥2, ∥ − z∥2)

ϵdual =
√
Pϵabs + ϵrel∥ρFTuk∥2,

(24)

with
√
P the size of the first dimension of F , ϵabs the absolute

residual, fixed at 10−6 and ϵrel the relative residual, fixed at
10−2 for the application.

III. SIMULATION AND EXPERIMENTAL SETUP

A. Simulation setup

To evaluate the performances of the different methods,
two types of simulations are performed, one considering the
sources as points and the other as elliptic clouds of different
sizes. The coordinates for the described configurations are
given in (lateral-, axial-) directions, with the origin taken at
the center of the imaging probe.

The point source configurations aim to compare the PSF of
the different beamforming methods, as well as their perfor-
mance on close sources separation, in both axial and lateral
directions. Therefore, we define two cases:

• Two inertial cavitation point sources laterally distributed
at (−5,70) and (−3,70) mm;

• Two inertial cavitation point sources axially distributed at
(−3,64) and (−3,72) mm.

The elliptic cloud source configurations aim to compare
both the denoising capabilites and the fidelity to the true
cavitation cloud shape for the different beamformers. Because
of the asymetric extension of the axial and lateral lobes
observed when imaging clouds, three cases are considered:

• A circular source 2 mm in diameter, with its center at
(−7, 70) mm;

• An elliptic source extended in the axial direction, with
principal axis dimensions of (1, 4) mm, and centered at
(−7, 70) mm;

• An elliptic source extended in the lateral direction, with
principal axis dimensions of (4, 1) mm, and centered at
(−5, 70) mm;

For all configurations, each point source emitting is simulated
as broadband noise for 200 µs, traveling to the probe elements
as in [48]. In cloud configurations, we consider a density of
100 point sources/mm² randomly distributed in the cloud area.
In all cases, additional white noise is added independently to
each of the simulated RF signals. The linear probe simulated
to obtain the received RF signals is similar to the L7-4 probe
described in the next section, with N = 128 elements, a pitch
of 298 µm, a center frequency of 5.2 MHz and a bandwidth
at −6 dB ranging from 3.5 to 7.5 MHz.

B. Experimental setup
The experimental setup, represented in Fig. 2, consists of

a degassed water tank in which is immersed a 1 MHz HIFU
spherical transducer (Imasonics, France) and a needle placed
at its focal point, 8 cm away from the transducer surface. The
needle is slightly scratched on a paraffin bloc to trap cavitation
nuclei at the tip. An imaging unit consists of an L7-4 probe
(Verasonics, USA) with the same parameters as in simulation,
placed above the needle. A high-speed camera (Phantom
v12.1; Vision Research Inc., USA) is placed on the side of
the tank to have the same imaging plane as the ultrasound
imaging probe, with an exposure time of 4.68 µs and a frame
rate of 18, 000 frames per second. The imaging probe is
controlled by a Vantage 256 system (Verasonics, USA). The
HIFU transducer is connected to an amplifier unit (GN1000,
PRÂNA, France) connected to a function generator to create
the HIFU sequence (1.5 ms bursts of 1 MHz sinusoidal signal).
For time reference, the Verasonics Vantage unit triggers the
high-speed camera and the function generator at the beginning
of the passive imaging acquisitions.

Fig. 2. Experimental setup. On the left side, the HIFU transducer
focalizes on a needle placed at the focal spot. During the shot, the
propagated ultrasound signals are saved through the L7-4 probe. The
right image represents frame from the high speed camera video on
which cavitation could be seen at the level of the blue circle (see video
in the online supplemental material).

C. Imaging parameters and metrics
We compare the different CMF-based beamformers (CMF-

ElNet and CMF-spTV) to the frequency-domain DAS of [24],
[26] and to the frequency-domain RCB of [20], [26]. The CSM
parameters are: K = 130 and %ov = 0.9.
The regularization parameters were manually set for each
method, as a proportion of the maximum theoretical value
of equation eq. (14), i.e λmax = ∥Atc∥∞, with the circular
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source configuration, and the proportions are kept constant
across the different simulation and experimental configura-
tions:

• For CMF-ElNet: λl1 = 0.5λmax and λl2 = 0.3λmax

( λTV ax = λTVlat
= 0).

• For CMF-spTV: λTV ax = 0.03λmax, λTVlat
=

0.25λmax and λl1 = 0.3λmax ( λl2 = 0).
• For both CMF methods: ρ = 4.

Additional reconstructions illustrates the influence of the
choice of λ values for the axial elliptic source configuration,
as follows:

• Variation of λl1 from 0 to 0.7λmax with a fixed
λTV ax = 0.03λmax and λTVlat

= 0.25λmax (λl2 = 0)
• Variation of λTVlat

from 0 to 0.8λmax with a fixed
λTVax

= 0.12λTVlat
and λl1 = 0.3λmax (λl2 = 0)

For RCB, the adaptive parameter value is fixed at ϵRCB = 5
for all configurations.

Imaging is done at 4 MHz for all the methods and the simu-
lated configurations. It is set to 4.2 MHz for the experimental
configuration in order to reconstruct only the inertial cavitation
components. The pixel size for the reconstructed power maps
is 200 µm for both simulated and experimental configurations.
Trec is set to 200 µs for all simulations, representing the
duration of the emitted cavitation signal. In the experimental
setup, we divide the emitted sequence into 8 sub-sequences
of Trec = 166 µs to have multiple reconstructions to analyze.
The speed of sound is set to 1480 m/s for the experimental
reconstruction.

In point source configurations, four metrics are estimated.
On the one side, we compare the profile of the lateral and
axial lobes of these maps with three metrics: the axial and
lateral Full Width Half Maximum (FWHM), expressed in mm,
and the power of separation of two sources by the minimum
estimated power measured along the line between two sources,
called Pmin, expressed in dB relatively to the maximum of the
power map. On the other side, we measure the position error
as the absolute difference between the true position and the
position of the barycenter of the estimated power for each
cavitation spot, expressed in millimeters.

For simulated elliptic source and experimental configura-
tions, we compare the Contrast-to-Noise Ratio (CNR) of the
different methods, expressed as:

CNR = 10 log10(
|µi − µo|√
σ2
i + σ2

o

), (25)

where µi and µo are respectively the average power within the
signal and noise zones, respectively, and σ2

i , σ2
o are the corre-

sponding standard deviations. For simulated cases, the signal
power zone is defined as the area inside the cavitation cloud.
The noise power zone is defined as the area 2 mm around
the cavitation cloud. For experimental configurations, the size
of the cavitation cloud is difficult to estimate. Therefore, the
noise power zone is located far from the cavitation area, where
only noise should contribute, while the signal power zone is
taken as a 0.4 × 0.7 mm rectangle, based on the high-speed
camera visualization. In elliptic cloud simulations, to measure
the fidelity of the reconstructed cavitation cloud shape, we also

measure the Dice score at −3 dB. We consider true positives
as pixels above or equal to −3 dB within the signal power
zone, false negatives as pixels below −3 dB within the signal
power zone, and false positives as pixels above −3 dB in the
noise power zone. The Dice score is defined as

Dice = 2
|X ∩ Y |
|X|+ |Y | , (26)

where X is the binary image containing the true positive and
the false negative (i.e the signal power zone) and Y is the
binary image containing the true positive and the false positive
(i.e the region above −3 dB).

IV. RESULTS

A. Simulations results
Fig. 3 presents the reconstructions of inertial point source

configurations with a SNR of 10 dB obtained with DAS, RCB,
CMF-ElNet and CMF-spTV. In addition, the lateral and axial
profiles and the position errors are shown in Fig. 4. Table I
summarizes the different metrics. The position errors for the
laterally distributed bubbles are below the wavelength at the
reconstruction frequency (0.375 mm at 4 MHz) for both the
RCB and CMF algorithms. For axially distributed sources,
the position error is the lowest for CMF-ElNet (0.3 mm)
and CMF-spTV (0.4 mm), when it is 0.6 mm for RCB and
1.7 mm for DAS. The axial FWHM is similar for CMF-
spTV and CMF-ElNet (1.7 mm and 1.3 mm, respectively
for the axially distributed case), while it reaches 3.5 mm
for RCB and 14 mm for DAS. This affects the separation
of the 2 lobes, which is better than −20 dB for CMF-ElNet
and CMF-spTV, while for RCB and DAS this separation is
−5.7 and −1.6 dB, respectively. On the other hand, due to its
piecewise constant property, the lateral FWHM of CMF-spTV
is 0.45 mm, larger than the ones of RCB and CMF-ElNet
which are under 0.2 mm, but still better than the one of DAS.

Fig. 3. Power maps of point source configurations. (a) to (d) represent
the power maps of two laterally distributed inertial bubbles simulated
respectively at (-5,70) mm and (-3,70) mm. (e) to (h) are the power maps
of two axially distributed inertial bubbles simulated respectively at (-3,64)
mm and (-3, 72) mm.
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Fig. 4. Metrics for the point source configurations. The profiles are
representative of Fig. 3. The position error is the difference between the
ground truth and the position of the barycenter of the cavitation spots on
the power maps, averaged on 50 different images for each configuration.

The purpose of simulating cloud configurations is to eval-
uate the ability of the different reconstruction algorithms to
maintain shape consistency, as measured by the Dice score,
and their resistance to noise as indicated by the CNR. Fig. 5
shows the reconstructed power maps using DAS (Fig. 5.a,e,i),
RCB (Fig. 5.b,f,j), CMF-ElNet (Fig. 5.c,g,k) and CMF-spTV
(Fig. 5.d,h,l). The size of the estimated source increases in the
axial direction as the lateral size of the cloud increases for
DAS and RCB. However, this behavior is partially corrected
when CMF-based regularizations are used. It can also be seen
that CMF-ElNet produces very sparse and ungrouped results,
especially for laterally extended clouds (Fig. 5.k). Conversely,
the piecewise constant property of CMF-spTV, combined with
the anisotropy of the Total Variation, reconstructs clouds that
are more similar to the ground truth. The metrics presented in
Fig. 6 and Table II support these observations. For the circular
source and the lateral elliptic source configurations, CMF-
spTV has higher Dice scores than the other beamformers, with
an advantage of 0.3 and 0.06 points over DAS, respectively,
and 0.26 and 0.06 points over RCB, while, in the case of
the circular source, CMF-ElNet has a lower Dice score, with
a decrease of 0.29 and 0.34 point over DAS and RCB,
respectively. For the axial elliptic configuration, however, the
Dice score for CMF-spTV is lower than for RCB of 0.11 point,
but still higher than for DAS and CMF-ElNet, with 0.10 and
0.49 point difference, respectively. CMF-spTV improves the

TABLE I
METRICS AVERAGED OVER 50 SIMULATION CASES FOR POINT SOURCE

CONFIGURATIONS. STANDARD DEVIATION IS SHOWN IN PARENTHESES.
BEST VALUES ARE IN BOLD TYPE.

Axial FWHM [mm]

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Laterally
distributed 7.4 (0.5) 3.3 (0.2) 1.3 (0.2) 1.4 (0.1)

Axially
distributed 14 (2) 3.5 (0.5) 1.3 (0.2) 1.7 (0.5)

Lateral FWHM [mm]

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Laterally
distributed

0.61
(0.01) < 0.2 < 0.2 0.44

(0.01)
Axially

distributed
0.67

(0.005) < 0.2 < 0.2 0.45
(0.01)

Separation power [dB]

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Laterally
distributed

-13.9
(0.7) < -20 < -20 < -20

Axially
distributed -1.6 (0.7) -5.7 (0.6) < -20 < -20

Position error [mm]

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Laterally
distributed 1.1 (0.4) 0.10

(0.01) 0.1 (0.1) 0.2 (0.1)

Axially
distributed 1.7 (0.3) 0.6 (0.6) 0.3 (0.2) 0.4 (0.3)

Fig. 5. Power map of clouds with the different reconstruction methods.
First column is for DAS, second column is for RCB, third column is for
CMF-ElNet and fourth column is for CMF-spTV. (a) to (d) are the power
maps of the circular cloud 2 mm in diameter, (e) to (h) are the power
maps of a elliptic cloud of size (1,4) mm and (i) to (l) of size (4,1) mm.
The white dotted zone corresponds to the noise area and the red zone
corresponds to the signal area for CNR and Dice computations.
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CNR on average by 10 dB, 9 dB, and 3.7 dB compared to
DAS, RCB, and CMF-ElNet, respectively. In general, CMF-
ElNet has the second highest CNR after CMF-spTV, except
for the lateral elliptic source configuration, where it completely
fails to reconstruct a cloud type source, which results in the
lowest CNR.

Fig. 6. Metrics for the cloud configurations. (a) shows the averaged
CNR in dB, and (b) shows the averaged Dice score, in the three
configurations imaged in Fig 5. Circular represents the configuration of
Fig 5(a) to (d), axial ellipse of Fig 5(e) to (h), and longitudinal ellipse of
Fig 5(i) to (l) Numerical values are presented in Table II.

TABLE II
METRICS OVER 50 SIMULATIONS FOR ELLIPTIC SOURCES

CONFIGURATIONS. STANDARD DEVIATION IS SHOWN IN PARENTHESES.
BEST VALUES ARE IN BOLD TYPE.

CNR [dB]

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Circular
source

2.39
(0.08)

3.06
(0.01) 4 (4) 7 (4)

Axial
elliptic
source

4.2 (0.1) 6.6 (0.2) 27 (2) 29 (4)

Lateral
elliptic
source

0 (0.1) 0.2 (0.1) -4 (4) 1 (2)

Dice score

Beamformer DAS RCB CMF-
ElNet

CMF-
spTV

Circular
source

0.49
(0.01)

0.54
(0.02) 0.2 (0.1) 0.8 (0.1)

Axial
elliptic
source

0.64
(0.02)

0.85
(0.06)

0.25
(0.07)

0.74
(0.08)

Lateral
elliptic
source

0.34
(0.02)

0.34
(0.03)

0.08
(0.06) 0.4 (0.1)

Fig. 7. CNR (blue curve) and Dice (orange curve) on axial elliptic clouds
with varying (left) λl1 and (right) λTVlat

and λTVax . The arrows point
the value of λ used for all the other configurations.

Fig 7 shows the CNR and Dice scores for the axial elliptic
sources for different λl1 or λTVax and λTVlat

values. When
varying λl1, the CNR stays 20dB with λl1 between 0.2 and
0.7λmax while the Dice score decreases with the augmentation
of λl1, to reach 0.5 when λl1 reaches 0.5λmax. When λTVax

and λTVlat
are varied, the CNR stays over 20dB as long

as λTVlat
< 0.6λmax and that the Dice score increases

with λTVlat
and λTVax , to reach values larger than 0.5 when

λTVlat
> 0.1λmax.The regularization parameters we chose for

the main configurations compromise between the best CNR
and Dice scores.

TABLE III
MEAN COMPUTATION TIME FOR RECONSTRUCTION OVER 50 AXIAL

ELLIPTIC SOURCE CONFIGURATION SIMULATIONS. THE * IS A SINGLE

COMPUTATION TIME REQUIRED FOR THE INVERSION IN EQ. (21)

Reconstruction time [s]

DAS RCB CMF-
based

0.037 8.7 1.9
(+15*)

Optimization-based methods are known to be computa-
tionally expensive. In the present work, we accelerate the
processing time by storing the result of the matrix inversion
in eq. (21) (i.e ((AtA)+ρ(FtF)+λl2IM )−1), that is constant
while imaging a given field-of-view. Table III regroups the
average times for reconstruction over the 50 simulations of
the axial elliptic cloud, with the inverse operator stored for
CMF-based methods. The computation of this inversion takes
several seconds ( 15 − 20s), thus motivating its storage.
All the reconstructions are carried over Matlab (R2023a,The
MathWorks, Natick, MA, USA), using the same configuration
(12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz CPU and
a 32 GB memory).

B. Experimental results

The cavitation is stationary and identifiable on the high-
speed camera images. Fig. 8 presents the experimental cavi-
tation maps overlaid with both a B-mode ultrasound frame in
the first column and with a high-speed camera frame in the
second column. The images show a reduction of the axial lobes
for both CMF-ElNet and CMF-spTV compared to RCB and
DAS. Additionally, CMF-ElNet tends to divide the cavitation
cloud into multiple sources, while CMF-spTV only creates a
single grouped source, as already observed in section IV-A.
The region of interest (ROI) for the signal, located within the
red square in Fig. 8.h, is chosen from the camera images where
the cavitation is visible. The noise ROI, within the striped blue
square of Fig. 8 is chosen in a zone where there is no cavitation
visible on the camera images during the HIFU emission. Using
this configuration, CMF-spTV achieves a median CNR of
33 dB, which represents an improvement of 2 dB, 21 dB, and
26 dB compared to CMF-ElNet, RCB, and DAS, respectively.
This emphasizes the gain of contrast and noise filtering for
CMF-based reconstructions compared to direct beamforming
methods.
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Fig. 8. Experimental results with cavitation on a needle. The passive
cavitation images are overlaid with high active B-mode images taken
before the pulse (first column), and with the high-speed camera images
(second column) are reconstructed with DAS ((a), (b)), with RCB ((c),
(d)), with CMF-ElNet ((e), (f)) and with CMF-spTV ((g), (h).

Fig. 9. Boxplot of the experimental CNR with cavitation on a needle,
estimated over 8 reconstructed power maps.

V. DISCUSSION

In this paper, we propose the first method for passive
cavitation imaging using model based regularized inverse
problems. This method, CMF [32], consists of the inversion
of CSM throughout the steering vectors, along with a prior.
The resolution of the problem is made using an ADMM [45]
algorithm. The introduction of prior information is a true
asset compared to state-of-art beamformers, as they can add
different properties to the reconstruction, such as sparsity [35]
(CMF-ElNet) and grouped sparsity (CMF-spTV) [39].

The main objective is to improve the axial resolution in pas-
sive cavitation imaging while preserving a grouped structure
when imaging cavitation clouds.

Due to the sparsity property, CMF based methods en-
hance the axial resolution compared to state-of-the-art DAS
and RCB. Indeed, in simulated point source configurations
(Fig. 3), both CMF-spTV and CMF-ElNet exhibit improved
axial resolution compared to state-of-the-art methods, with an
axial FWHM reduction by a factor 5 and 3, compared to DAS
and RCB, respectively.

This property allows as well a better separation of sources
distributed along the axial axis, as it can be seen in Fig.
3.e to 3.h. With CMF-based methods, the axial separation
power is better than −20 dB while it −5.7 dB for RCB and
−1.6 dB for DAS (see Table I). This can be explained by the
decrease of FWHM that increases the possibility of separating
close axial sources and by the power concentration due to the
sparsity constraint. This better separation is coupled with a
better estimation of the source position in this configuration for
CMF based method, with a lower error of position for CMF-
ElNet and CMF-spTV than for RCB and DAS (see Table I).

Additionally, the sparsity property of CMF based methods
improves the denoising of the passive cavitation maps. Indeed,
in both simulated and experimental conditions, the CNR is
improved for CMF based methods compared to RCB and DAS,
as shown in Table II and Fig. 9.

When comparing Elastic Net and sparse Total Variation,
particularly in the context of cloud configuration regulariza-
tions, it is evident that the latter better preserves the shape of
the imaged clouds. Sparse Total Variation allows for denoising
due to sparsity constraints and adds an anisotropic piecewise
constant property to the reconstruction, which is a hypothesis
that closely resembles a cavitation cloud. The results on cloud
configurations confirms this, as shown in Fig. 5.l for CMF-
spTV which displays a grouped cloud with a reduced axial
lobe compared to state-of-the-art methods, while Fig. 5.k for
CMF-ElNet shows dispersed points inscribed into an extended
pattern similar to the main lobe of DAS and RCB. The higher
Dice score and CNR of CMF-spTV demonstrate its superiority
over CMF-ElNet in both simulated (Table II) and experimental
(Fig. 9) configurations.

Finally, it is important to note the importance of accurately
tuning the regularization parameters. Setting the sparsity reg-
ularization parameter too high, especially in the presence of
multiple sources, may lead to underestimation of the weakest
source, potentially erasing it. Conversely, setting it too low
could result in denoising performances lower than that of
state-of-the-art methods. Therefore, precise estimation of the
numerous parameters required for CMF-based methods is
crucial: understanding the theoretical maximum values of these
parameters provides insight into their order of magnitude, but
further investigations would be necessary to provide guidelines
to choose those parameters.

VI. CONCLUSION

This study presents the potential application of Cross-
Spectral Matrix Fitting (CMF) combined to two different
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regularizations involving a sparsity a priori, in comparison to
state-of-the-art beamformers for passive cavitation mapping.
The results highlight the improved axial resolution achieved
by CMF based methods for both point sources and millimeter
bubble clouds compared to current state-of-the-art passive
acoustic mapping strategies. Concerning the influence of the
regularization, CMF-Elnet, based on elastic-net aims to pro-
mote only sparsity, while CMF-spTV, based on the sparse
Total Variation, rather promotes grouped sparsity. The results
show that CMF-spTV provides superior shape preservation
compared to CMF-ElNet when imaging cavitation clouds,
due to the Total Variation penalization incorporated into the
regularization method. One difficulty of the developed model
is the parameter tuning. To streamline this parameter tuning
and avoid potential trade-offs between source resolvability
and cloud reconstruction, advanced denoising methods could
be explored while keeping the same inversion model. Addi-
tionally, an isotropic Total Variation regularization could be
implemented in order to give the image of elliptic sources
a more accurate shape. Furthermore, it has to be noted that,
regarding the use of CMF methods in aeroacoustics [32] the
proposed methods could be suited for quantitative analysis of
the cavitation clouds. However, to confirm their potential in
quantitative passive imaging, further investigations needs to
be conducted, with a particular attention on the choice of the
regularization parameters, that can lead to underestimation of
the true power value.

CODE AVAILABILITY AND SUPPLEMENTAL MATERIAL

The code associated to the developed method, as well as
some example and the video of the experiment are available
at https://github.com/creatis-ULTIM/CMF sparseTV.

APPENDIX

This appendix develops how operator A (see eq. ((11))) is
obtained from the steering vectors. If we vectorize C, it gives:

c =
1

N2



x1h(1, 1)h∗(1, 1) + · · ·+ xMh(1,M)h∗(1,M)
...

x1h(1, 1)h∗(N, 1) + · · ·+ xMh(1,M)h∗(N,M)
...

x1h(N, 1)h∗(1, 1) + · · ·+ xMh(N,M)h∗(1,M)
...

x1h(N, 1)h∗(N, 1) + · · ·+ xMh(N,M)h∗(N,M)


(27)

We can write:

c =
1

N2



h(1, 1)h∗(1, 1) · · · h(1,M)h∗(1,M)
...

. . .
...

h(1, 1)h∗(N, 1) · · · h(1,M)h∗(N,M)
...

. . .
...

h(N, 1)h∗(1, 1) · · · h(N,M)h∗(1,M)
...

. . .
...

h(N, 1)h∗(N, 1) · · · h(N,M)h∗(N,M)



 x1

...
xM

 (28)

Therefore:

A =
1

N2



h(1, 1)h∗(1, 1) · · · h(1,M)h∗(1,M)
...

. . .
...

h(1, 1)h∗(N, 1) · · · h(1,M)h∗(N,M)
...

. . .
...

h(N, 1)h∗(1, 1) · · · h(N,M)h∗(1,M)
...

. . .
...

h(N, 1)h∗(N, 1) · · · h(N,M)h∗(N,M)


(29)
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