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Abstract: The necessary improvement of evaluated nuclear data for nuclear 
applications development is possible through new and high-quality experimental 
measurements. In particular, improving (n, n’) cross-section evaluations for faster 
neutrons than those involved in current reactors is a goal of interest for new reactor 
fuels. 

Our group at CNRS-IPHC has been running an experimental program to measure 
(n, n’ γ) cross-section using prompt γ-ray spectroscopy and neutron energy 
determination by time-of-flight, recording and analyzing data for 182,184,186W, 232Th, 
233,235,238U [1, 2]. 

From the partial γ-transition measurements, the total (n, n’) cross-section has to be 
inferred, either by summing individual contributions [3,4] (a method usually valid 
only up to a certain neutron energy), or by constraining reaction models with 
measured exclusive (n, n' γ) cross sections [5,6]. This interpretation work is made 
difficult in (the usual) cases when not all the transitions going to the ground state 
could be measured. If that happens, one has to rely on filling the missing 
information by models or guess, reducing the accuracy of the final computed cross-
section. 

Here we propose a new method, involving training a Neural Network on a 
calculated data set and using it to predict the (n, n’) cross-section from the 
experimental (n, n’ γ) ones. This allows a quick combination of models and 
experimental data. After detailing the method and checks performed for 
consistency, some test cases will be presented. Potential benefits, as well as the 
identified weakness, and future application will be discussed. 
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Context. 

The advancement of nuclear reactor 
technologies heavily relies on the use of 
evaluated databases to perform numerical 
simulations. Nevertheless, the current 
limitations in these databases lead to 
uncertainties, preventing the calculations 
from reaching the requisite level of 
computational precision [7]. 

To improve the quality of evaluated 
databases and enhance the accuracy of 
numerical simulations, new 
measurements as well as updated 
theoretical models are needed. 
Furthermore, as innovative fuel cycles will 
use fast neutrons and novel fissile 
isotopes, the existing body of knowledge, 
predominantly focused on the 
235U(nthermal, *) reactions, falls short in 
characterizing Generation IV reactor 
designs. Therefore, it is essential to 
conduct comprehensive investigations 
into isotopes such as O, F, Na, Pb, 232Th, 
233U, 239Pu, … with a specific emphasis on 
reactions induced by fast neutrons. 

Inelastic neutron scattering ((n, n’), as well 
as (n, xn) with x⩾2) has some significance 
in the context of reactor operation. This is 
because they change the neutron 
spectrum, modify the neutron population, 
and create new isotopes in the fuel. 
However, due to a scarcity of experimental 
data, evaluations and models are not able 
today to predict (n, n’) cross sections with 
an accuracy high enough to meet the 
requirements of new reactors 
developments. That warrants new 
measurements of high precision. To 
enhance the reliability of nuclear reaction 
codes, and constrain the models using 
precise measurement of exclusive (n, xn γ) 
cross sections is a good option [2].  

 

Improving (n, n’) modeling with 
exclusive (n, n’ γ) measurements. 

To infer total (n, n’) cross section from 
exclusive (n, n’ γ) ones, one can either use 
the many (n, n’ γ) cross sections measured 
to constrain models’ parameters (such as 
level density, spin distribution, gamma 
strength function) and calculate the total 
cross section with the deduced parameters 
[5]. 

Another way, that does not rely on models, 
is to sum a specific set of transitions. 
Indeed, by definition, 𝜎(𝑛,𝑛′) = ∑𝛾→𝑔.𝑠.

𝜎(𝑛,𝑛′𝛾) × (1 + 𝛼𝛾), where 𝛼𝛾 is the 

internal conversion coefficient for the 
given transitions. In other words, one just 
needs to determine the cross section for all 
the transitions going directly to the ground 
state and sum them to get the total (n, n’) 
cross section. Figure 1 shows a schematic 
level scheme, with the transitions of 
interest highlighted.  

 

Fig. 1: Schematic nuclear level scheme, with 
the transitions going to the ground state 
highlighted in green. One transition to the 
ground state is not accessible 
experimentally is in light green, the blue 
transition decaying from the same level can 
be used as a proxy (see text). 
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Unfortunately, in general, it is not possible 
to measure all the transitions going to the 
ground state, either because they are too 
weak, outside the sensitivity range of the 
detector, or simply unknown. In even-even 
nuclei, for example, the transition from the 
first excited state to the ground state 
usually carries most of the (n, n’ γ) cross 
section. If it is missed experimentally, the 
reconstruction of the total (n, n’) cross 
section with this method becomes almost 
impossible.  

It is possible to go around some of these 
issues by using proxy transitions, i.e. 
observed transitions that decay from the 
same state as one of interest (i.e. going to 
the g.s.) that is not available 
experimentally, and apply a branching 
ratio (BR) coefficient to reconstruct the 
transition cross section we wanted 
originally (see the blue arrow in Figure 1). 

However, this method’s accuracy is highly 
dependent on the knowledge of the 
nucleus of interest. In particular, a poorly 
known level structure will make the 
processing difficult. (Additionally, the 
correct conversion coefficient can only be 
known if the transition multipolarity is 
well-defined.) It also introduces new 
uncertainties in the calculations. 
Furthermore, the obtained cross section is 
only exact up to a given incident neutron 
energy, above which only a lower limit can 
be computed (The limit is set by the 
excitation energy of the highest state 
observed in our analysis) [4]. 

To sum up, the weighed summing method 
can be quite time-consuming for limited 
output, as one has to find all the available 
transitions or their proxies, compute the 
branching ratio coefficients, add the 
correction for electronic conversion, … all 
that just to obtain a limit on the total (n, n’) 
cross section. And we also leave out 

potentially a lot of transitions that have 
been measured, but are not used because 
they don’t go to the ground state, or are not 
proxies of ones that do. This is especially 
true for heavy nuclei like actinides, the 
lighter ones (such as Oxygen and around) 
have a sparse level scheme, allowing the 
sum methods to be carried out accurately 
up to a much higher incident neutron 
energy. 

In order to simplify and automatize the 
process, and maximize the use of all 
available (n, n’ γ) cross sections, one can 
try to use a large numerical model, fit it on 
an appropriate set of reference data, and 
then use this model to compute the total 
(n, n’) cross section from the experimental 
(n, n’ γ) ones (as well as, possibly, other 
parameters). 

 

Using Neural Networks 

A Disclaimer 

The authors have no specific 
training in machine learning or 
neural network and the work 
presented here has been 
performed by following tools 
manuals, How-to instructions 
and online examples. 

What’s a Neural Network 

A Neural Network (NN) is a many 
parameters model that performs a 
complex (as in a lot of) series of linear 
combinations, with activation functions 
between nodes, as shown in Figure 2. 
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Fig. 2: Neural network schematic (image 
adapted from wikimedia under license CC-BY-
SA-3). 

Each node is fed by the previous layer 
values with coefficients and function to 
produce the output: 𝐻1 = ∑𝑤𝑖𝑓𝑖,1(𝑋𝑖), 
where the activation function 𝑓 can be 
𝑓(𝑥) = 𝑥, 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), 𝑓(𝑥) =
𝑡𝑎𝑛ℎ(𝑥), 𝑓(𝑥) = 1/(1 + 𝑒−𝑥), … (the last 
two are mostly use for categorisation 
problems). 

Just as for a function, the many parameters 
may be adjusted on a set of data (i.e. fitted). 
This training of the neural network is done 
in a different way than the minimization of 
a 𝜒2 when fitting a function, but the 
general idea is the same. 

The NN is trained and tested on a data set, 
and once that is done, it can be used with 
new input to compute the corresponding 
output. Once all the coefficients are 
determined, computing the final result is 
simple math and quick to compute; it is the 
training of the model that is the long and 
technical part. 

The input can be any variable or element 
that can be represented by a number 
(organized either in vectors or matrices). 
In our cases, it will be (n, n’ γ) cross 

sections, but that could be expanded by 
other variables (like incident neutron 
energy, isotope mass and or charge, …). 
The same holds for output (it can even be 
generalized to outputting several values); 
here we will focus on computing cross 
sections, but any other quantities could be 
used. 

Using a Neural Network with neutron 
inelastic scattering cross sections. 

The objective of this study is to train a 
Neural Network (NN) using model 
calculations to take (n, n’ γ) cross sections 
as inputs and compute either total (n, n’) 
cross section, or level production ones. 

The test cases presented later will study 
the different way to use Neural Networks 
with (n, n’ γ) cross sections as inputs. This 
study will focus on the 184W isotope, 
because a good number of experimental 
(n,  n’ γ) cross sections are available to feed 
the model. 

Tools 

The work presented here uses the 
following tools, codes and libraries: 

• The code Talys 1.8 [8] is used to 
compute cross sections, including 
total (n, n’), exclusive (n, n’ γ) and 
level production. 

• Python 3.8 [9] is used for data 
handling, calculations, … within 
Jupyterlab 3.1 [10] 
environment running on WSL2 [11] 
Ubuntu [12] 20.04 with he 
following dependencies: 

– Numpy 1.21 [13] for data 
handling, 

– Matplotlib 3.4 [14] for 

visualization, 
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– and Scikit-learn 1.3 
[15] for the machine 
learning part. 

The data used will be the cross sections for 
total inelastic neutron scattering 
(𝜎 184𝑊(𝑛,𝑛′)), exclusive γ channels 

(𝜎 184𝑊(𝑛,𝑛′𝛾)), and level productions 

(𝜎 184𝑊(𝑛,𝑛′𝐽𝜋)) computed by Talys. The 

Talys data is split in two subsets, one for 
training the NN, the other for 
testing/validation of the  

Inputs and comparison data will be 
experimental 𝜎 184𝑊(𝑛,𝑛′𝛾) [16, 17] and 

level production cross section from 
Guenther et al., 1982 [18]. 

 

Test case 1: from (n, n’ γ)s to (n, n’ 
𝟐𝟏

+). 

The (n, n’ γ) cross sections measured with 
Grapheme [16,17] are the only data of this 
kind. Therefore, no comparison to similar 
data is possible to check that the 
experimental results are not off because of 
mistake or issues in the analysis. 

The NN approach will first be used to 
perform (n, n’ 21

+) interpolation from 
(n, n’ γ) and compare with existing data 
from Guenther, et al. [18].  To that end, the 
(n, n’ γ) cross section obtained 
experimentally are collected, as well as the 
matching ones computed by Talys, to 
constitute the training set. 

The input (n, n’ γ) are scaled down each to 
2/3 of the maximum valued obtained in 
Talys computation, so that the NN input 
(both in training and use) are between 0 
and 1 (each input transition has its own 
scaling factor). This ensures that no 
specific input is much larger than the 
other, and helps balance the Neural 

Network. With the way we use the Neural 
Network, using the rectified linear unit 
activation function – 𝑓(𝑥) = max(0, 𝑥) – if 
any input is larger than 1, this will not be 
an issue. The experimental data is also 
interpolated so that all (n, n’ γ) input are at 
the same neutron energy (as, depending 
on statistics and thresholds, the 
experimental point may not be all 
extracted at the same incident neutron 
energy). The prepping of input data and 
the reading of the output allows the scaling 
to be completely automatic and 
transparent to the user. 

The workflow of the NN training, 
validation and use is shown in Figure 3. 

Once the NN is trained on Talys data, it is 
validated by running it on the testing part 
of the Talys set. Since the expected results 
is known, we can verify that the Neural 
Network prediction matches the target. 

We then perform a series of tests to verify 
that the model has been trained correctly, 
without stupidly outputting whatever it 
has been trained on whatever the input 
may be. 

 

1. Garbage in / garbage out 
For this test, the input is randomly 
generated between 0 and 1 for all input 
channels. The output of the NN for this 
garbage input is completely random (the 
colored dots in Figure 4), confirming that 
the calculation of the NN is sensitive to the 
input (i.e the NN is not over-trained to 
reproduce the training Talys data 
whatever the input may be). 
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Fig. 3: Workflow of the NN data preparation 
(yellow), training and validation (green) 
and use for the prediction (blue) of a 
(n, n’ 𝐽𝜋 ) cross section. 

 

Fig 4: NN predictions with randomized 
input (using 5 different series of random 
input). The Full line is the Training target. 
The dashed line the NN validation 
prediction. (See text.) 

 

 

 

 

 

2. Input variations around nominal 
value 
Next, the validation input is randomly 
varied around its nominal value by 5, 10, 
and 20 %, we can verify that the output 
varies around the target central value (i.e. 
prediction from the unperturbed input). 
Figure 5 shows the results of these 
different computations. This confirms that 
the model is stable around the central 
value.  
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Fig. 5: NN predictions with input values 
randomized around their nominal values 
using a normal distribution of 5 (red), 10 
(dark gray) and 20 % (light gray). 

 

 

3. Randomize hidden layers size and 
test the stability of prediction 
Finally, we run different NNs that have 
been trained using different size (and 
number) of hidden layers, around the 
values that give a correct output. We could 
check that the prediction of the model is 
stable. With 35 different NNs (in Figure 6), 
there is a clear spread in results, but one 
can see that by using a large series of NN, a 
central value and uncertainty can be 
derived, that’s compatible with Guenther 
et al. [18].  

 

Fig. 6: NN predictions from different NNs 
with randomized number and size of hidden 
layers. Each gray line is the prediction from 
one NN (with experimental data as input), 
and compared to the reference 
experimental values from Guenther et al. 
[18] in black points. 

 

 

Results 

After confirming that the NN works as 
expected with the previous tests, we used 
3 different NNs (different number of nodes 
in the hidden layers), with several 
iterations of randomization of the input 
values (experimental 𝜎 184𝑊(𝑛,𝑛′𝛾)) 

according to their uncertainty. From these 
calculations, we extract 3 central values 
(one for each NN) for the prediction of the 
(n, n’ 21

+) cross section, with an associated 
standard deviation. The results are shown 
in Figure 7. 
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Fig. 7: NN predictions from three different 
NNs with variation of the inputs around 
their central value according to their 
uncertainty. The total (n, n’) cross section 
calculated by Talys is given (for reference) 
in full blue line. The training target is the 
orange line and the dashed blue line is the 
NN validation prediction. The prediction 
from the NNs are the color lines (thick line 
is the central values; thin lines delineate the 
+/- 1 standard deviation range). The 
experimental values from Guenther et al. 
[18] are the black points. 

 

 

The 𝜎𝐿01 derived from experimental 
(n, n’ 𝛾) with NN trained on Talys is 
compatible with previous reference [18].   

This result is particularly important, as it 
shows that the NN approach can help us 
transform the experimental data in 
another form, so that it can be compared to 
previous results. 

This first case gives us confidence in the 
experimental data and encourages us to 
continue investigating the use of NN.  

 

Test case 2 : from (n, n’ 𝜸) cross 
sections to (n, n’). 

The main focus of our work is (n, n’ γ) cross 
sections measured with Grapheme [2, 4, 
16, 17]. Having shown in the previous 
section that NNs can predict, after training 
on model calculations and from 
experimental data as input, a reasonable 
output, we can try to perform the 

{𝜎(𝑛,𝑛′𝛾)}
{𝛾}

→ 𝜎(𝑛,𝑛′) transformation. 

As previously, we will use input scaling, 
multiple NNs with different hidden layers 
size, and variation of the input data around 
their central value, following their 
uncertainty. 

Here, we have two data sets to train the 
NNs: one is a default Talys calculation 
performed by the authors, the other is a 
Talys calculation done by P. Romain [19]. 
The two different calculations use 
different model parameters (optical model 
potential, γ strength functions, level 
densities, …). The default ones use a 
general all-purpose parameter set, while P. 
Romain’s one uses parameters optimized 
for deformed nuclei like Tungsten 
isotopes. This will help us study the 
dependence of the prediction to the 
training set (both training sets represent 
the same reaction). 
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Fig. 8: NN predictions from two different 
NNs trained on different model calculation 
sets (see text), with variation of the 
experimental inputs around their central 
value according to their uncertainty and the 
means. The resulting red and purple lines 
show the average NN predicted values for 
the cross section with the default Talys 
training (red) and P. Romain’s computation 
for training (purple). 

Results are shown in Figure 8. The two NN 
models predict very similar (n, n’) cross 
section from the experimental (n, n’ 𝛾) 
ones (well within the uncertainties limit of 
each other), suggesting only a very small 
dependence to the training set.  

Still, the NNs derived total (n, n’) cross 
section predictions are below Talys 
calculations in amplitude, they are 
consistent with what we see in the 
individual (n, n’ 𝛾), where the observed 

                                                        

1 Talys labels the transitions LiiLff with 
ii and ff the indices of the initial and 

L01L001 transition from the first excited 
state to the ground state is also 
significantly below model calculations [16, 
20]. 

 

Test case 3: from (n, n’ 𝜸)s to 
(n, n’ 𝜸𝑳𝟎𝟏𝑳𝟎𝟎). 

This leads us to our third investigation: 
checking the consistency of our 
experimental L01L00 cross section against 
all the others. 

Indeed, the experimental cross section for 
the 184W(n, n’ 𝛾𝐿01𝐿00) is below the values 
computed using reaction models, as seen 
in Figure 9. 

 

Fig. 9: Experimental 184W(n, n’ 𝛾𝐿01𝐿00) 
cross section compared to reaction code 
calculations. (from [16]). 

final levels, in order of increasing 
excitation energy. 
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The goal is now to test with the Neural 
Network the consistency of the 
184W(n, n’ 𝛾𝐿01𝐿00) experimental data with 
the other γ-ray cross sections obtained in 
the same experiment. 

To that end, following the same steps as 
before, NNs are trained with the 
experimental (n, n’ 𝛾) cross sections as 
input, with the specific (n, n’ 𝛾𝐿01𝐿00) one 
excluded from the input, and used as 
target. The inputs are interpolated over a 
range of incident neutron energy, in order 
to have a meaningful number and position 
of points. 

The processed is repeated with multiple 
NNs, with different hidden layers size, and 
with variation of the inputs around their 
central value according to their 
uncertainty. The resulting central value 
and standard uncertainty is displayed in 
Figure 10. 

 

Fig. 10: Predictions averaged from many 
different NNs fitted on the experimental 
(n, n’ 𝛾) cross sections as input, with the 

specific (n, n’ 𝛾𝐿01𝐿00) one used as target. 
The Talys training and validation curve are 
in full and dashed blue lines respectively. 
The experimental values from [17] in black 
points. And the predictions from NNs in 
green points. 

The output is not very conclusive: in 
average, the NN predictions are 
compatible with the experimental 
184W(n, n’ 𝛾𝐿01𝐿00) without being too far 
off from the Talys values. Therefore, it is 
not possible to directly conclude that the 
experimental 184W(n, n’ 𝛾𝐿01𝐿00) cross 
section is not consistent with the other 
experimental (n, n’ 𝛾) cross sections. 

However, the possibility to check the 
consistency of experimental value is a 
good application of the NN computation, 
and could be applied to other results, in 
particular when possible contamination 
may be suspected. 

Conclusion. 

The objective was to try using Neural 
Networks to help interpret experimental 
(n, n’ γ) cross sections. In this paper, we 
present preliminary results, using NNs 
naïvely. 

The NNs have been trained on Talys 
calculations and were able to transform 
𝜎(𝑛,𝑛′)𝛾 into level excitation cross section, 

which allowed a comparison with existing 
experimental data. The NNs were tested 
for stability, consistency, … using various 
tests and variations in the hidden layers 
size, training set, … 

The interest of the method is that it can be 
used to check data consistency, and 
validate experimental data when no direct 
comparison is possible. It provides a way 
to constrain model calculations with 
experimental input very quickly, in 
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particular, when the amount of available 
experimental data is too low to allow the 
use of a more direct method. 

This first tries being successful (or at least 
not too disastrous), we will, in the future, 
improve on the NN hyper parameters with 
a cross validation search for the optimum 
ones [21], and generalize the process to 
incorporate better inputs and streamline 
the testing and validation. 

Finally, we started a collaboration with the 
ion therapy team in IPHC, in order to 
evaluate the possible use of Neural 
Networks for large scale nuclear reaction 
cross-section inference using models and 
experimental values.  
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