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Abstract: Background: Obesity is a pandemic disease that is rapidly growing into a serious health
problem and has economic impact on healthcare systems. This bleak image has elicited creative
responses, and nanotechnology is a promising approach in obesity treatment. This study aimed
to investigate the anti-obesity effect of superparamagnetic iron oxide nanoparticles (SPIONs) on a
high-fat-diet rat model of obesity and compared their effect to a traditional anti-obesity drug (orlistat).
Methods: The obese rats were treated daily with orlistat and/or SPIONs once per week for 8 weeks.
At the end of the experiment, blood samples were collected for biochemical assays. Then, the animals
were sacrificed to obtain white adipose tissues (WAT) and brown adipose tissues (BAT) for assessment
of the expression of thermogenic genes and mitochondrial DNA copy number (mtDNA-CN). Results:
For the first time, we reported promising ameliorating effects of SPIONs treatments against weight
gain, hyperglycemia, adiponectin, leptin, and dyslipidemia in obese rats. At the molecular level,
surprisingly, SPIONs treatments markedly corrected the disturbed expression and protein content of
inflammatory markers and parameters controlling mitochondrial biogenesis and functions in BAT
and WAT. Conclusions: SPIONs have a powerful anti-obesity effect by acting as an inducer of WAT
browning and activator of BAT functions.

Keywords: obesity; superparamagnetic iron oxide nanoparticles; white adipose tissue browning;
mitochondrial biogenesis; mitochondrial DNA copy number

1. Introduction

Obesity is an increasingly spreading pandemic that is a global health issue and has a
direct economic effect on healthcare services. Its prevalence has tripled globally since 1975,
according to the WHO. More than 1.9 billion (39%) adults were estimated to be overweight,
with 650 million obese, accounting for nearly 13% of the world’s adult population [1].
Obesity is caused by a variety of factors, including, but not limited to, genetic, epigenetic,
biochemical, hormonal, microbial, sociocultural, and environmental influences that disrupt
the balance between calorie intake and energy expenditure [2]. Frequently, it is associated
with several disorders such as type 2 diabetes (T2D), insulin resistance (IR), cardiovascular
disorders, and cancers [3]. It is characterized by a state of chronic low-level inflamma-
tion due to the increased expression level of tumor necrosis factor alpha (TNF-α) from
adipose tissue, which participates in the simulation of lipolysis in adipocytes and in insulin
resistance development [4,5].
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Adipose tissue is one of the most essential organs affected by obesity. It is divided
into white adipose tissue (WAT) and brown adipose tissue (BAT). The WAT is composed
of large lipid droplets and participates in energy storage as triglycerides (TG), whereas
BAT has high mitochondrial content and involves energy consumption via non-shivering
thermogenesis, mostly through tissue-specific uncoupling protein-1 (UCP-1) [6]. Mitochon-
dria are key organelles that control the physiological roles of adipocytes such as regulation
of whole-body energy homeostasis, adipocyte differentiation, lipid homeostasis, insulin
sensitivity, oxidative capacity, and browning of WAT into beige adipose tissue through the
transcriptional control of the brown fat gene program (e.g., UCP-1) [7]. Beige adipocytes
are characterized by possessing more mitochondria than WAT, with enhanced gene expres-
sion of proteins involved in lipolysis and thermogenesis. So, WAT browning and/or BAT
activation constitute a possible clinical target for the treatment of obesity [8].

Mitochondrial biogenesis is controlled by the transcription factor peroxisome
proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) [9]. Sirtuin-1 (SIRT-1)
is an important regulator of adipocyte differentiation and adipogenesis, and it is down-
regulated by a high-fat diet (HFD) in adipose tissue [10,11]. SIRT-1 induces mitochondrial
biogenesis by activating PGC-1α [12]. Sterol regulatory element-binding protein 1c (SREBP-
1c), a master regulator of fatty acid (FA) biosynthesis, is upregulated in WAT metabolic
dysfunction in obesity [13]. The mitochondrial DNA copy number (mtDNA-CN) reflects
the level of mtDNA in a cell relative to the nuclear DNA (nDNA) and is linked to mitochon-
drial enzyme activity and ATP level, all of which are considered indicators of mitochondrial
biogenesis and function [14].

Currently, anti-obesity or weight loss treatments decrease or regulate weight by mod-
ifying calorie absorption or appetite; for example, orlistat serves as an antagonist of the
lipase enzyme, which inhibits TG from being digested, thus inhibiting TG absorption and
hydrolysis. These therapies are only prescribed for short-term consumption, making them
ineffective for chronically obese patients who will need to lose weight over months. As
a result, researchers are looking for new approaches to increase thermogenesis and treat
obesity and its associated health risks [15]. Nanotechnology is a branch of science that
involves design and synthesis of nano-sized materials (1 to 100 nm) for application in
various fields such as medicine, and it is regarded as a promising approach in obesity
treatment [16].

Superparamagnetic iron oxide nanoparticles (SPIONs) are inorganic nanomaterials
that show special properties such as superparamagnetism and low toxicity. SPIONs are
used in a variety of biomedical applications either as a therapeutic, diagnostic, or theranostic
tool for hyperthermia, drug delivery, magnetic resonance imaging, and cell separation [17].
Over several years, we have been developing SPIONs for biomedical applications, and
they showed a non-specific anticoagulant effect with no hemolytic effect on blood, low
cytotoxicity, and powerful diagnostic ability in magnetic resonance imaging in vivo [18,19].

Recently, our lab indicated that SPIONs have an anti-diabetic effect on the diabetic
rat model, with a low toxic effect recorded for the dose (22 µmol Fe/kg) [20]. Sharifi
et al. showed the involvement of SPIONs in the regulation of genes involved in lipid and
glucose metabolism, suggesting that they could be used as therapeutics for diabetes and
obesity [21].

Therefore, our study aims to explore the anti-obesogenic potential of SPIONs com-
pared to the commercial orlistat in the rat model of obesity. In this study, the effect of
SPIONs coating will be evaluated by using two different types of SPIONs coated with dif-
ferent molecular weights of the polyethylene glycol (PEG) (550 and 2000 Da). The SPIONs
will be used alone or combined with orlistat. Finally, we will explore the possible molecular
mechanisms of SPIONs’ effects including inflammation, lipogenesis, IR, mitochondrial
biogenesis, and WAT browning.
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2. Materials and Methods
2.1. Synthesis of Ferrofluids and Characterization

The synthesis was performed in two steps: (a) coating preparation and (b) synthe-
sis of SPIONs coated with PEG (Mw: 550) (SPION-PEG-550) or with PEG (Mw: 2000)
(SPION-PEG-2000), as previously described in [20]. The prepared ferrofluids were puri-
fied by filtration through 0.45 and 0.22 µm nitrocellulose membrane filters (Merck Milli-
pore Ltd., Carrigtwohill, County Cork, Ireland)) followed by magnetic separation using
MidiMACSTM separator and LS column (Miltenyi Biotec GmbH, Bergisch Gladbach, Ger-
many). The collected nanoparticles were dispersed in MilliQ water, and the pH was
adjusted to physiological pH. Samples were sterilized by filtration through Millex®-GP
sterile syringe filters (Merck Millipore Ltd., Carrigtwohill, County Cork, Ireland) with a
0.22 µm pore size and hydrophilic polyethersulfone (PES) membrane in a laminar flow
hood and stored at room temperature till the moment of animal injection. It is worth
mentioning that the nanoparticle samples used in this work are the same used in [20]. A
detailed and full description of the samples was included in this reference.

In order to determine the iron content, inductively coupled plasma optical emission
spectrometry (ICP-OES) in a plasma 40 ICP Perkin-Elmer spectrometer was used. Hy-
drodynamic diameter was determined by dynamic light scattering (DLS) measurements
performed using a Malvern Zetasizer NS (Malvern Instruments Ltd., Worcestershire, UK)
equipped with a HeNe laser (633 nm). Zeta-potential measurements were performed using
a folded capillary cell, DTS 1060 (Malvern Instruments Ltd. Worcestershire, UK). The aque-
ous colloidal suspension stability was verified using DLS. Transmission electron microscopy
(TEM) and high-resolution (HR) TEM images were obtained in an aberration-corrected
transmission electron microscope Tecnai Titan.

Structural characterization by attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR) and thermal analysis (TA) to confirm the attachment of bis
(phophonic) end-capped PEG chains to the iron oxide nanoparticles was performed on
lyophilized samples. ATR-FTIR spectra of SPIONs and SPION-PEG-NPs were recorded
with a Perkin Elmer Spectrum 100 FTIR spectrophotometer equipped with a UATR sam-
pling accessory in the range 4000–380 cm−1. Thermogravimetric (TGA) analysis was
conducted on a TA Instruments SDT 2960 simultaneous DTA-TGA. Samples were heated
from 25 to 700 ◦C at a heating rate of 10 ◦C·min−1 under air flow. The mass remaining at
700 ◦C was taken as the fraction of maghemite present in the nanoparticles.

2.2. Experimental Animals

A total number of 56 albino Sprague-Dawley male rats, 2 months old (80–90 g), was
used. The animals were obtained from the animal house of Medical Research Institute,
Alexandria University, Egypt. Rats were housed in standard cages in a well-ventilated
room (25 ± 2 ◦C), with a relative humidity of (43 ± 3), with free access to water and food
and 12 h light/dark cycle before experimentation.

2.3. Ethical Statement

All experiments pursued the standards of the National Institutes of Health’s Guide
for the Care and Use of Laboratory Animals (NIH, Bethesda, MD, USA, publications no. 8023,
revised 1978) and were performed after the approval of the Institutional Animal Care and
Use Committee (IACUC), Alexandria University, Egypt (approval no. AU01219101613).
The study also followed ARRIVE guidelines and complied with the National Research
Council’s guide for the care and use of laboratory animals.

2.4. Obesity Induction

Obesity was induced in rats by feeding them with an obesogenic diet for 2–3 months.
Rats that became 20% heavier than control rats of the same age were considered obese. The
composition of the obesogenic diet used in this experiment (per 100 g diet) was 30 g protein
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(300 cal), 26.5 g fat (195 cal lard, 70 cal corn oil), 36.5 g carbohydrate (105 cal dextran, 106 cal
corn starch, 140 cal sucrose), 3 g vitamin mix (30 cal), and 4 g mineral mix (40 cal) [22].

2.5. Experimental Design

Animals were classified into the following groups: (1) healthy control group that
consisted of 8 healthy male rats, after the establishment of obesity, with the 48 obese male
rats being divided into six groups (8 rats each) according to the treatment; (2) untreated
obese group, (3) orlistat-treated obese group that was orally treated with orlistat (OrlyR from
EVA PHARMA Product Code: 11659) dissolved in dimethyl sulfoxide at a dose of 30 mg/kg
daily [23]; (4) SPION-PEG-550-treated obese group, in which obese rats were intravenously
injected with SPION-PEG-550 at a dose of 22 µmol Fe/kg once a week [20,23]; (5) SPION-
PEG-550 + orlistat-treated obese group, in which obese rats were intravenously injected
with SPION-PEG-550 at a dose of 22 µmol Fe/kg once a week and were orally treated with
orlistat at a dose of 30 mg/kg daily; (6) SPION-PEG-2000-treated obese group, in which
obese rats were intravenously injected with SPION-PEG-2000 at a dose of 22 µmol Fe/kg
once a week [20,23]; (7) SPION-PEG-2000 + orlistat-treated obese group, in which obese
rats were intravenously injected with SPION-PEG-2000 at a dose of 22 µmol Fe/kg once a
week and were orally treated with orlistat at a dose of 30 mg/kg daily.

All treatments were continued for 8 weeks, and all obese rats were maintained under
the obesogenic diet during the experimental period.

2.6. Collection of Samples

After the end of the treatment period, overnight fasting rats were weighed and fasting
blood glucose (FBG) was determined in the fasted animals with an automatic glucose
meter (Accu-Chek, Roche Diagnostics, Mannheim, Germany) using blood samples from
the tail tip. Afterwards, rats were anesthetized by intraperitoneal injection of ketamine
(75 mg/kg) and xylazine (10 mg/kg) and then sacrificed. The serum samples were prepared
by collecting the blood from the retroorbital vein in anticoagulant free tubes, followed by
centrifugation at 3000× g for 10 min. The serum samples were used for the determination
of insulin, lipid profile (TG, total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C)), alanine aminotransferase (ALT)
activity, aspartate aminotransferase (AST) activity, urea, creatinine, leptin, adiponectin, and
non-esterified fatty acid (NEFA) levels. The WAT and BAT were obtained and divided into
three aliquots: (i) for the extraction of total RNA for quantitative real-time-polymerase
chain reaction (qRT-PCR) analysis, in order to assess the gene expression of TNF-α, PGC-1α,
SIRT-1, SREBP-1c, and UCP-1, (ii) for the extraction of total DNA for the determination of
mtDNA-CN, and (iii) for protein assays.

2.7. Serum Parameters Measurements

Serum insulin concentration was determined following the instructions of the Insulin
rat ELISA kit (EMD Millipore, Burlington, MA, USA), absorbance was measured at 450 nm,
and the homeostasis model assessment index for insulin resistance (HOMA-IR) was then
calculated using the following formula [24]:

HOMA− IR =
Fasting insulin((µIU)/mL)× Fasting glucose(mg/dL)

22.5 × 18

Serum TG, TC, and HDL–C levels were determined by the enzymatic colorimetric
method using reagents obtained from BioMed Diagnostics, Inc. (White City, OR, USA),
and absorbance was measured at 546 nm. Serum LDL-C was calculated from TG, TC, and
HDL-C concentrations using the following equation [25]:

LDL-C (mg/dL) = TC − (HDL-C) − TG/5
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Serum ALT and AST activities were determined using reagents obtained from BioMed
Diagnostics, Inc. (USA), and absorbance was measured at 340 nm. Urea and creatinine were
determined using reagents obtained from BioMed Diagnostics, Inc. (USA), and absorbance
was measured at 570 nm and 510 nm, respectively. Serum leptin was assayed using rat
ELISA kit (eBioscience, San Diego, CA, USA), adiponectin and NEFA were assayed using
rat ELISA kit (Elabscience, Houston, TX, USA), and serum lipase activity was assayed using
colorimetric kit (Spectrum, Alexandria, Egypt). All procedures were performed according
to the manufacturer’s instructions.

2.8. Mitochondrial DNA Copy Number Determination

The qRT-PCR assay was used for the determination of mtDNA number relative to
nDNA. First, the total DNA was extracted from WAT and BAT using DNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions, and then the PCR
reaction was performed using a specific primer pair for mtDNA sequence and a primer
pair specific for nuclear sequence (PGC-1α) to perform the same number of PCR cycles and
calculate the threshold cycle (Ct) of both mtDNA and nDNA sequences. The nuclear gene
was used to quantify nDNA and therefore normalization of the mtDNA amount per the
nDNA of the diploid cells using the equation:

R = 2−∆Ct where ∆Ct = CtmtDNA − Ctnuclear

A specific primer pair for mtDNA (forward: 5′-ACACCAAAAGGACGAACCTG-3′;
reverse: 5′-ATGGGGAAGAAGCCCTAGAA-3′) and a primer pair for the nuclear PGC-
1α gene (forward: 5′-ATGAATGCAGCGGTCTTAGC-3′; reverse: 5′-AACAATGGCAGG
GTTTGTTC-3′) were used. PCR reactions were carried out using Rotor Gene SYBR Green
PCR Kit (Qiagen®, Germantown, MA, USA), 0.5 µM forward and reverse primer, and 50 ng
of extracted DNA under the following conditions: 95 ◦C for 10 min followed by 40 cycles
of 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s [26].

2.9. Gene Expression Detection of TNF-α, PGC-1α, UCP-1, SIRT-1, and SREBP-1c

Total RNA was isolated from WAT and BAT using RNeasy Mini Kit (Qiagen®,
Germany) according to the manufacturer’s instructions, and the concentration and integrity
of extracted RNA were checked using nanodrop. Reverse transcription was conducted
using miScript II RT Kit according to the manufacturer’s instructions. The tissue expression
of TNF-α, PGC-1α, SIRT-1, SREBP-1c, and UCP-1 was quantified in the cDNA using Rotor
Gene SYBR Green PCR Kit (Qiagen®, USA). Quantitative PCR amplification conditions
were adjusted as an initial denaturation at 95 ◦C for 10 min and then 45 cycles of PCR for
amplification as follows: denaturation at 95 ◦C for 20 s, annealing at 55 ◦C for 20 s, and
extension at 70 ◦C for 15 s. The housekeeping gene glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used as a reference gene for normalization. The primers used
for the determination of rat genes are presented in Table 1. The relative change in mRNA
expression in samples was estimated using the 2−∆∆Ct method [27].

Table 1. Primer sets of the gene expression of PGC-1α, SIRT-1, UCP-1, SREBP-1c, TNF-α, and
GAPDH.

Gene Accession Number Primer Sequence

PGC-1α NM_031347.1
F: GTGCAGCCAAGACTCTGTATGG
R: GTCCAGGTCATTCACATCAAGTTC

SIRT-1 NM_001372090.1
F: TGGCAAAGGAGCAGATTAGTAGG
R: CTGCCACAAGAACTAGAGGATAAGA

UCP-1 NM_012682.2
F: AGAGGTGGTCAAGGTCAG
R: ATTCTGTAAGCATTGTAAGTCC

SREBP-1c NM_001276708.1
F: GACGACGGAGCCATGGATT
R: GGGAAGTCACTGTCTTGGTTGTT
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Table 1. Cont.

Gene Accession Number Primer Sequence

TNF-α NM_012675.3
F: GGGCTCCCTCTCATCAGTTC
R: TCCGCTTGGTGGTTTGCTAC

GAPDH NM_017008.4
F: GGGTGTGAACCACGAGAAATA
R: AGTTGTCATGGATGACCTTGG

2.10. Protein Levels Determination of PGC-1α, SREBP-1c, and TNF-α by ELISA

The excised WAT and BAT were homogenized in bicinchoninic acid (BCA) using BCA
protein assay kit (Chongqing Biospes Co., Ltd., Chongqing, China, catalog no. BWR1023)
according to the instructions of the manufacturer. The supernatants were used for deter-
mination of PGC-1α using specific rat ELISA kits (MyBioSource, San Diego, CA, USA,
catalog no. MBS27063799) according to the instructions of the manufacturer. Moreover,
SREBP-1c and TNF-α were assayed using specific rat ELISA kits (Chongqing Biospes Co.,
Ltd., catalog no. BYEK3082 and BEK1214) according to the manufacturer’s instructions.

2.11. Statistical Analysis

Data were analyzed using SPSS software package version 18.0 (SPSS Chicago, IL,
USA). The data were expressed as mean ± standard deviation (SD) and analyzed using
one-way analysis of variance (ANOVA) to compare between different groups. The p-value
was assumed to be significant at p < 0.05. The correlation coefficients (r) between different
assayed parameters were evaluated using the Pearson correlation coefficient; p < 0.05 was
considered as the significance limit for all comparisons.

3. Results
3.1. Ferrofluids Characterization

A detailed and full description of samples characterization is included in reference [20].
The DLS measurements showed that the hydrodynamic size values of SPION-PEG-550 and
SPION-PEG-2000 were 30.1 ± 9.1 nm and 34.2 ± 10.4 nm with polydispersity index (PDI)
values of 0.158 and 0.143, respectively. The aqueous colloidal suspension of ferrofluids
showed great stability over time, up to several years, without any appreciable change in
the stability, as was confirmed by DLS (Figure 1). After 2 years, the hydrodynamic size
values of SPION-PEG-550 and SPION-PEG-2000 were 30.2 ± 8.9 nm and 35.9 ± 10.6 nm
with PDI values of 0.154 and 0.130, respectively.
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The TEM images (Figure 2) showed the polynuclear character of the maghemite (γ-
Fe2O3) nuclei, formed by clusters with a discrete number of maghemite nanoparticles, with
a spherical shape and a mean diameter of DTEM(SD) = 11.2 (2.4) nm.
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The FTIR spectra confirmed the presence of the maghemite SPIONs and the PEG
polymer layer around the magnetic core present in both samples (SPION-PEG-550 and
SPION-PEG-2000), as shown Figure 3. The infrared spectrum of sample SPION-PEG-2000
showed a higher intensity of the characteristic band of PEG at 1105 cm−1 attributed to
the C-O-C stretching vibration band of PEG. These data are consistent with the presence
of polymer chains of higher molecular weight and a higher content in organic polymer
in the SPION-PEG-2000 sample and are in concordance with the data obtained by TGA.
According to the thermograms obtained, the calculated mass of PEG present in the samples
was 13% for sample SPION-PEG-2000 and 6% for sample SPION-PEG-550.
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3.2. Weight Change

Before the start of treatments, all the obese rats were significantly heavier than the
control rats, with no significant difference between the obese groups. After the treatments,
all the obese groups were still significantly heavier than the healthy control group; however,
their body weight was significantly lower than the untreated obese rats (Table 2). The
untreated obese rats and orlistat-treated rats had significantly higher weight gain compared
with the healthy control rats, while the other treated obese rats had significantly lower
weight gain compared with untreated obese rats. The obese rats treated with a combination
of SPION-PEG-550 and orlistat showed the best lowering effect on weight gain, as shown
in Table 2.

Table 2. Statistical analysis of initial and final body weights and weight gain in the different stud-
ied groups.

Groups Initial Weight
(g)

Final Weight
(g)

Weight Gain
(g)

Healthy control 229 ± 10 b 250 ± 11 d 21 ± 5 c

O
be

se
ra

ts

Untreated 370 ± 20 a 439 ± 29 a 69 ± 9 a

Orlistat 355 ± 24 a 411 ± 27 ab 56 ± 13 ab

SPION-PEG-550 352 ± 24 a 393 ± 29 b 41 ± 9 be

SPION-PEG-550 +orlistat 357 ± 16 a 363 ± 15 c 6 ± 4 cd

SPION-PEG-2000 357 ± 22 a 389 ± 29 b 32 ± 17 ce

SPION-PEG-2000 +orlistat 354 ± 19 a 367 ± 18 c 13 ± 6 c

Results are expressed as means ± SD of 8 rats for each group. Groups were compared at p < 0.05 using one-way
ANOVA and Tukey post hoc test, and those which are not assigned with a shared letter (a–e) in the same column
are statistically significant.

3.3. Parameters of Glucose Homeostasis

Untreated obese rats had a significant elevation in glucose homeostasis parameters
(FBG, insulin, and HOMA-IR) compared with the healthy control group. The orlistat treat-
ment did not significantly affect these parameters, except for HOMA-IR, which showed
significant reduction compared with the untreated obese rats. The treatment of obese rats
with the two types of SPIONs (SPION-PEG-550 or SPION-PEG-2000) alone or in combi-
nation with orlistat significantly reduced these parameters compared with the untreated
rats with the exception of insulin which showed no significant changes with SPIONs alone.
Better effects were observed in the obese rats treated with SPION-PEG-2000 combined with
orlistat (Table 3).

Table 3. Statistical analysis of glucose homeostasis parameters in the different studied groups.

Groups FBG
(mg/dL)

Insulin
(µIU/mL) HOMA-IR

Healthy control 104.5 ± 10.6 e 6.8 ± 0.76 c 1.7 ± 0.14 e

O
be

se
ra

ts

Untreated 214.3 ± 38.7 a 10.2 ± 1.2 a 5.4 ± 1.4 a

Orlistat 189.3 ± 17.4 ab 9.08 ± 0.58 a 4.2 ± 0.54 b

SPION-PEG-550 180.5 ± 4.2 b 9.5 ± 0.62 a 4.2 ± 0.21 b

SPION-PEG-550 +orlistat 155.6 ± 18.2 c 8.3 ± 0.38 b 3.2 ± 0.28 c

SPION-PEG-2000 169.5 ± 7.3 bc 9.1 ± 0.69 a 3.8 ± 0.33 b

SPION-PEG-2000 +orlistat 123 ± 20.3 de 8.08 ± 0.64 b 2.4 ± 0.32 de

Results are expressed as means ± SD of 8 rats for each group. Groups were compared at p < 0.05 using one-way
ANOVA and Tukey post hoc test, and those which are not assigned with a shared letter (a–e) in the same column
are statistically significant.
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3.4. Liver and Kidney Function Tests

The untreated obese rats showed significantly higher ALT and AST activities compared
with healthy control rats. Orlistat-treated rats had a significant decline in both ALT and
AST activities compared with the untreated rats. Moreover, the obese rats treated with both
types of SPIONs showed significantly lower activities compared with obese untreated rats,
especially in the rats treated with a combination of SPIONs and orlistat (Table 4).

Table 4. Statistical analysis of parameters of liver and kidney function tests in the different stud-
ied groups.

Groups ALT
(IU/L)

AST
(IU/L)

Urea
(mg/dL)

Creatinine
(mg/dL)

Healthy control 36.7 ± 4.3 c 122 ± 12 c 18 ± 3 b 0.66 ± 0.1 b

O
be

se
ra

ts

Untreated 56 ± 6.2 a 173.1 ±14.1 a 24 ± 3.6 a 0.78 ± 0.05 a

Orlistat 48 ± 3.1 b 154 ± 5.8 b 22 ± 3.2 ab 0.73 ± 0.04 a

SPION-PEG-550 51.2 ± 3.6 a 149.3 ± 5 b 25 ± 3.2 a 0.76 ± 0.07 a

SPION-PEG-550 +orlistat 45.2 ± 4.7 bc 142.7 ± 5.3 b 21 ± 2 ab 0.75 ± 0.04 a

SPION-PEG-2000 48.5 ± 4.5 b 155.1 ± 6.4 b 27 ± 2.6 a 0.72 ± 0.05 ab

SPION-PEG-2000
+orlistat 42.7 ± 3.5 bc 147.3 ± 4.7 b 25 ± 2.4 a 0.77 ± 0.07 a

Results are expressed as means ± SD of 8 rats for each group. Groups were compared at p < 0.05 using one-way
ANOVA and Tukey post hoc test, and those which are not assigned with a shared letter (a–c) in the same column
are statistically significant.

Untreated obese rats had a mild but significant increase in urea and creatinine levels
compared with healthy control rats. The group that was treated with orlistat, treated with
the two different coatings of SPIONs alone, or in combination with orlistat experienced
no significant changes on urea and creatinine levels compared with the untreated group
(Table 4).

3.5. Serum of Lipid Profile

The levels of TG and total and LDL cholesterol were significantly higher while HDL
cholesterol was significantly lower in the untreated obese rats compared with the healthy
control group. The obese rats treated with orlistat showed significantly lower TG and total
and LDL cholesterol and significantly higher HDL cholesterol levels compared with the
untreated group. Moreover, the obese rats treated with the SPIONs with two different
coatings showed significant improvement of lipid profile but to a lesser extent than with
orlistat. The rats treated with a combination of SPIONs and orlistat showed better improve-
ments than orlistat alone, especially those treated with SPION-PEG-2000 combined with
orlistat. A similar pattern of change was observed in the levels of serum NEFA (Table 5).

Table 5. Statistical analysis of lipid profile parameters and NEFA in the different studied groups.

Groups TG
(mg/dL)

TC
(mg/dL)

HDL-C
(mg/dL) LDL-C (mg/dL) NEFA (pg/mL)

Healthy control 37.6 ± 3.1 f 121 ± 9.2 e 49 ± 2.4 a 64.3 ± 9.6 e 0.44 ± 0.05 d

O
be

se
ra

ts

Untreated 62.2 ± 3.1 a 168 ± 8.9 a 33 ± 1.3 d 122 ± 8.9 a 1.2 ± 0.06 a

Orlistat 47 ± 2.9 c 145.6 ± 3.1 c 45 ± 2.2 ab 91 ± 4.5 c 0.67 ± 0.03 c

SPION-PEG-550 57.1 ± 2.2 ab 156.2 ± 2.4 b 36 ± 3.5 d 108 ± 4 b 0.85 ± 0.04 b

SPION-PEG-550 +orlistat 46.1 ± 4.1 c 144 ± 4.7 c 44 ± 2.2 bc 91 ± 4.8 c 0.63 ± 0.03 c
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Table 5. Cont.

Groups TG
(mg/dL)

TC
(mg/dL)

HDL-C
(mg/dL) LDL-C (mg/dL) NEFA (pg/mL)

SPION-PEG-2000 54±3.4 bd 155 ± 3.9 b 40 ± 3.3 c 103.5 ± 5.3 b 0.81 ± 0.05 b

SPION-PEG-2000 +orlistat 44 ± 3.7 ce 142 ± 4.5 cd 44 ± 2.9 bc 89.3 ± 2.2 c 0.59 ± 0.02 c

Results are expressed as means ± SD of 8 rats for each group. Groups were compared at p < 0.05 using one-way
ANOVA and Tukey post hoc test, and those which are not assigned with a shared letter (a–f) in the same column
are statistically significant.

3.6. Serum Leptin and Adiponectin Levels

The untreated obese rats showed significantly higher leptin levels than the healthy
control rats. The orlistat treatment did not show significant correction of leptin level;
however, the obese rats treated with SPIONs alone or in combination with orlistat showed
significantly lower leptin levels compared with untreated rats and orlistat-treated rats.
The best leptin-lowering effect was shown in the obese rats treated with SPION-PEG-550
combined with orlistat, but the levels of leptin were still higher than the healthy control
value, as presented in Figure 4A.
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Figure 4. Serum leptin (A) and adiponectin (B) levels in control rats and obese rats untreated or
treated with SPIONs and/or orlistat. Data presented as mean± SD, and n = 8. Groups were compared
at p < 0.05 using one-way ANOVA and Tukey post hoc test, and those which are not assigned with a
shared letter (a–e) are statistically significant.

The adiponectin levels showed a significant decline in all obese rats compared with
healthy control rats. However, the obese rats treated with SPIONs alone or in combination
with orlistat showed significantly higher adiponectin levels compared with the untreated
rats. The combined treatments have the best amelioration effects on the adiponectin levels,
as shown in Figure 4B.

3.7. TNF-α Expression in WAT and BAT

The untreated obese rats had marked upregulation of TNF-α expression at mRNA
and protein levels in both WAT and BAT compared with the healthy control group. On the
other hand, orlistat-treated rats showed significant downregulation of TNF-α expression
at mRNA and protein levels compared with untreated obese rats in the WAT, while in
BAT the expression is downregulated only at the protein level. The obese rats treated with
SPIONs showed significantly downregulated expression of TNF-α at mRNA and protein
in both tissues compared with untreated obese rats. The combined treatment showed more
reduction in the expression of TNF-α expression at mRNA and protein levels in both tissues
compared with untreated obese rats or with other treated groups (Figure 5A,B).
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Figure 5. TNF-α expression in white and brown adipose tissues at mRNA (A) and protein (B) levels
in control rats and obese rats untreated or treated with SPIONs and/or orlistat. Data presented as
mean ± SD, and n = 8. Groups were compared at p < 0.05 using one-way ANOVA and Tukey post
hoc test, and those which are not assigned with a shared letter (a–f) are statistically significant.

3.8. PGC-1α Expression in WAT and BAT

The expression of PGC-1α at mRNA and protein levels of untreated obese rats showed
significant downregulation in both WAT and BAT compared with healthy control rats. In
WAT, only the combined treatment with SPION-PEG-2000 and orlistat showed significant
upregulation and completely normalized the expression of PGC-1α. In BAT, all treatments
significantly upregulated the expression of PGC-1α at mRNA and protein levels with the
best effects observed in the obese rats treated with combined treatment of SPION-PEG-2000
and orlistat (Figure 6A,B).

3.9. SREBP-1c Expression in WAT and BAT

In both WAT and BAT, the untreated obese rats had a significant upregulation of
SREBP-1c expression at mRNA and protein levels compared with the healthy control
group. In WAT, all treatments significantly downregulated the expression of SREBP-1c
compared with the untreated rats; however, the best effects were observed in the rats
treated with a combined treatment of SPION-PEG-2000 and orlistat, which completely
normalized the expression at mRNA and protein levels. Like WAT, the SREBP-1c expression
in BAT was significantly downregulated by all the treatments used compared with the
untreated rats, with the best effects observed in the rats treated by the combined treatments
SPION-PEG-550 or SPION-PEG-2000 with orlistat (Figure 7A,B).
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3.10. SIRT-1 Expression in WAT and BAT

The mRNA expression of SIRT-1 was significantly downregulated in both WAT and
BAT of the untreated obese rats compared with healthy control rats. The orlistat treatment
did not significantly affect the expression of SIRT-1 in WAT or BAT. However, the treatments
with the two types of SPIONs alone significantly upregulated the expression of SIRT-1 com-
pared with untreated rats in both tissues. In WAT, the expression of SIRT-1 was significantly
upregulated by SPIONs treatment when compared with orlistat. The combined treatment
of obese rats with any of SPIONs (SPION-PEG-550 or SPION-PEG-2000) together with
the orlistat significantly upregulated the expression compared with the other treatments,
with the best effect observed in the rats treated with SPION-PEG-2000 and orlistat, which
showed complete normalization, with no significant difference from healthy controls, of
SIRT-1 expression in both WAT and BAT (Figure 8).
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Figure 8. SIRT-1 expression in white and brown adipose tissues at mRNA level in control rats and
obese rats untreated or treated with SPIONs and/or orlistat. Data presented as mean ± SD, and
n = 8. Groups were compared at p < 0.05 using one-way ANOVA and Tukey post hoc test, and those
which are not assigned with a shared letter (a–d) are statistically significant.

3.11. UCP-1 Expression in WAT and BAT

The expression of UCP-1 was significantly downregulated in BAT of the untreated
obese rats with no significant changes in WAT compared with healthy control rats. The orli-
stat treatment did not significantly affect the expression of UCP-1 in WAT but significantly
upregulated its expression in BAT. In WAT, the treatments with the two types of SPIONs
alone significantly upregulated the expression of UCP-1 compared with untreated rats,
orlistat-treated obese rats, or healthy control rats. The combined treatment of SPION-PEG-
550 or SPION-PEG-2000 together with the orlistat significantly upregulated the expression
compared with the other treatments. In BAT, the treatment of obese rats with the SPIONs
alone or in combination with orlistat showed a significant upregulation of UCP-1 expres-
sion compared with untreated obese rats. The combined treatments completely normalized
the expression of UCP-1 with no significant difference observed compared with healthy
controls (Figure 9).

3.12. Mitochondrial DNA Copy Number in WAT and BAT

In WAT, no significant difference was observed between the untreated obese rats
and healthy control rats regarding the mtDNA-CN, and the treatment with orlistat did
not significantly affect it. However, the treatment of obese rats with SPION-PEG-550 or
SPION-PEG-2000 alone significantly increased the mtDNA-CN compared with the healthy
control, untreated obese, and orlistat-treated groups. The combined treatments showed
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significantly higher mtDNA-CN compared with all other groups and showed about double
the control value (Figure 10).
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Figure 9. UCP-1 expression in white and brown adipose tissues at mRNA level in control rats and
obese rats untreated or treated with SPIONs and/or orlistat. Data presented as mean ± SD, and
n = 8. Groups were compared at p < 0.05 using one-way ANOVA and Tukey post hoc test, and those
which are not assigned with a shared letter (a–d) are statistically significant.
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Figure 10. Mitochondrial DNA copy number (mtDNA-CN) in white and brown adipose tissues in
control rats and obese rats untreated or treated with SPIONs and/or orlistat. Data presented as
mean ± SD, and n = 8. Groups were compared at p < 0.05 using one-way ANOVA and Tukey post
hoc test, and those which are not assigned with a shared letter (a–f) are statistically significant.

In BAT, the untreated obese rats showed a decline in the mtDNA-CN compared with
the healthy control rats. Orlistat-treated rats showed significant elevation of mtDNA-CN
compared to untreated obese rats. The treatment with SPIONs alone or in combination with
orlistat showed a significantly higher mtDNA-CN compared with untreated obese rats and
orlistat-treated rats, with the best effect observed in the combined treatments (Figure 10).

3.13. Correlation Studies

The statistical analysis using Pearson correlation is presented in Table 6, and the
analyses showed the following:
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• PGC-1α expression was positively correlated with UCP-1 expression in both WAT and
BAT. In BAT, PGC-1α expression was positively correlated with SIRT-1 expression
and mtDNA-CN. On the other hand, in WAT, PGC-1α expression was negatively
correlated with SREBP-1c expression, TNF-α expression, and NEFA level.

• SIRT-1 expression was positively correlated with UCP-1 expression and mtDNA-CN
in both tissues. However, it was negatively correlated with SREBP-1c expression and
TNF-α expression in WAT and BAT, whereas in BAT, SIRT-1 expression was negatively
correlated with NEFA level.

• Serum leptin level was positively correlated with TNF-α expression, SREBP-1c expres-
sion, and NEFA level in WAT and BAT. However, it was negatively correlated with
UCP-1 expression, SIRT-1 expression, and mtDNA-CN in both organs.

• UCP-1 expression was positively correlated with mtDNA-CN in these tissues but
was negatively correlated with TNF-α expression in WAT and BAT and negatively
correlated with NEFA level.

• mtDNA-CN was negatively correlated with NEFA level in both WAT and BAT. On the
other hand, it was negatively correlated with TNF-α expression in WAT and BAT.

Table 6. Correlation studies.

Leptin
Level

NEFA
Level

PGC-1α
Expression

SIRT-1
Expression

UCP-1
Expression mtDNA-CN

Leptin level r _ 0.658 *

(WAT)
ns

(WAT)
ns

(WAT)
−0.446 *

(WAT)
−0.759 *

(BAT)
−0.401

(BAT)
−0.358 *

(BAT)
−0.477 *

(BAT)
−0.797 *

PGC-1α
expression

WAT r ns −0.577 * _ 0.606 * 0.803 * 0.419 *
BAT r −0.401 −0.499 * _ 0.785 * 0.765 * 0.535 *

SIRT-1
expression

WAT r ns ns 0.606 * _ 0.438 * ns
BAT r −0.358 * −0.706 * 0.785 * _ 0.844 * 0.382 *

UCP-1
expression

WAT r −0.446 * −0.69 * 0.803 * 0.438 * _ 0.51 *
BAT r −0.477 * −0.692 * 0.765 * 0.844 * _ 0.546 *

SREBP-1c
expression

WAT r 0.41 * 0.547 * −0.388 * −0.331 * −0.599* −0.403 *
BAT r 0.597 * 0.551 * ns −0.428 * −0.418 * −0.518 *

TNF-α
expression

WAT r ns ns −0.455 * −0.533 * −0.295 * ns
BAT r 0.582 * 0.459 * −0.343 * −0.459 * −0.448 * −0.562 *

mtDNA-CN
WAT r −0.759 * −0.756 * 0.419 * ns 0.51 * _
BAT r −0.797 * −0.613 * 0.535 * 0.382 * 0.546 * _

Correlation studies obtained by using Pearson correlation test in which r = Pearson correlation coefficient and
* = statistically significant (p < 0.005); ns means not significant.

4. Discussion

The present study showed for the first time the potential anti-obesity properties of
SPIONs in an HFD rat model. This effect may be mediated through suppression of WAT
expansion, induction of WAT browning, and activation of BAT function.

The HFD-obese rats developed the classical picture of obesity: they were 70% heavier
than the control rats, and the weight gains during the experimental period were more
than three times the control rats. Moreover, they developed hyperglycemia and insulin
resistance, besides elevated liver enzyme activities (AST, ALT) and significantly higher urea
and creatinine levels, though within the normal range. The transition from a metabolically
stable condition to an obese and insulin-resistant state is characterized by a vicious loop
that includes hyperinsulinemia, inflammation, glucose tolerance, dyslipidemia, IR, and
adipose tissue expansion. Furthermore, the circulating NEFA levels in the obese rats were
markedly higher than the controls, which may be due to the release of NEFA from the
enlarged adipose tissue and reduced clearance [28]. The NEFA levels were positively
correlated with the leptin level and negatively correlated with mtDNA-CN and with the
expression of PGC-1α, SIRT-1, and UCP-1 in BAT and WAT. These patterns of correlations
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put the elevated NEFA in the core mechanism of obesity pathogenesis. The elevated NEFA
levels induce insulin resistance and inhibit insulin’s antilipolytic action, which will increase
the rate at which NEFA is released into the circulation [29]. Moreover, the elevated NEFA
activated the proinflammatory pathways [30] and resulted in increased proinflammatory
cytokines expression as TNF-α, IL-1b, and IL-6 [31]. All of these make NEFA the primary
link between high-fat feeding and the development of inflammatory alterations [32].

In obesity, WAT expansion leads to a significant decrease of serum adiponectin lev-
els and an increase in leptin levels that are correlated with insulin resistance [13]. Lep-
tin inhibits appetite and food intake, stimulates energy expenditure, and also has pro-
inflammatory effects contributing to the low-grade chronic inflammation by enhancing
the TNF-α and IL-6 production [33] and vice versa TNF-α stimulated leptin secretion from
adipocytes [34] that induces obesity [35,36]. Our study confirmed the increased levels of
serum leptin and TNF-α expression in WAT and BAT, and the correlation studies indicated
a positive correlation between the leptin levels and TNF-α expression in BAT, which may
explain the impairment of functions of BAT in energy expenditure.

The metabolic and adipocytokine derangements in obese rats are associated with
marked activation of the lipogenic protein SREBP-1c and marked suppression of the expres-
sion of genes encoding essential proteins implicated in adipose tissue differentiation and
activation, as well as mitochondrial biogenesis and function (PGC-1α, UCP-1, and SIRT-1).
Mitochondria play an important function in the maintenance of energy homeostasis in
metabolic tissues, particularly adipose tissues. Mitochondria play an important role in
adipocyte biology and growth, including adipogenesis, lipid metabolism, and thermo-
genesis [37,38]. Furthermore, adipocyte mitochondria can regulate whole-body energy
homeostasis, insulin sensitivity, and glucose metabolism or the crosstalk between muscles
and adipose tissues [39,40].

PGC-1α is the key transcription factor that regulates mitochondrial biogenesis and
functions by controlling the expression of nuclear respiratory factor 1 (NRF-1), nuclear
factor erythroid 2-related factor 2 (NRF-2), and mitochondrial transcription factor A
(Tfam) [41,42]. Moreover, PGC-1α has generally been recognized as a master regulator ther-
mogenic gene programmed in differentiated brown and beige adipocytes [43]. So, PGC-1α
is essential for thermogenic adipocytes (BAT) to perform their functions, and the observed
suppression of PGC-1α expression in BAT impairs their proper functions. PGC-1α is a key
regulator of brown adipogenesis by helping peroxisome proliferator-activated receptor
gamma (PPAR-γ) induce WAT browning. PGC-1α deficiency can cause the downregulation
of UCP-1 and block mitochondria biogenesis [44]. So, the suppressed PGC-1α expression
could explain the marked suppressed expression of UCP-1 in BAT found in the obese rats
in the present study.

Uncoupling protein 1, a mitochondrial protein, plays a major role in the thermogenic
function of BAT [45]. The activity of UCP-1 and thermogenesis in mouse BAT is correlated
with body-weight control and energy homeostasis [46]. In line with our data, the UCP-1
expression is reduced in obese subjects, and the metabolic complications are improved with
the pharmacological activation of UCP-1 [47]. In human adipose tissues, the expression of
UCP-1 was significantly negatively correlated with fasting glucose, and TG was positively
correlated with adiponectin. The visceral obesity was aggravated when UCP-1 expression
was downregulated [6].

The suppressed expression of PGC-1α in obese rats was associated with a significant
decline in mtDNA-CN in adipose tissues, especially BAT, which may indicate impaired
mitochondrial biogenesis, while the suppression of UCP-1 in BAT impairs the mitochondrial
thermogenesis and functions. The correlation studies indicated a causality relationship
between the suppression of PGC-1α and downregulation of UCP-1 expression and the
decline in mtDNA-CN in BAT. The impaired mitochondrial function and biogenesis in
adipocytes can affect whole-body energy dysregulation and insulin resistance.

The HFD-obese rats showed significant downregulation of SIRT-1 expression and up-
regulation of expression and protein level of SREBP-1c compared with control rats in both
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BAT and WAT. SIRT-1 is known to activate the AMP-activated protein kinase (AMPK) sig-
naling pathway and initiate the lipolysis of adipocytes and activate the thermogenic genes
UCP-1 and PGC-1α [48,49]. PGC-1α then upregulates the gene expression of various key
enzymes for beta-oxidation and induces fatty acid oxidation. Moreover, SIRT-1-mediated
deacetylation of PPAR-γ is necessary for the transcriptional activity [50]. So, SIRT-1, AMPK,
PPAR-γ, and PGC-1α cross-regulate each other in energy metabolism [51,52]. The sup-
pressed expression of these machinery genes results in inhibited energy expenditure due to
WAT expansion and impaired BAT functions. The inverse association between obesity and
active BAT mass was previously confirmed [53,54]. SREBP-1c mediated de novo lipogenesis
is an important nutritional regulator in the biosynthesis of FAs and triglyceride, and it
also significantly correlated with both HOMA and serum insulin levels and pro-lipogenic
factors [55].

The current approaches for obesity treatment include diet control, physical activity,
drug therapy, and surgery [56]. However, the applied anti-obesity therapies have shown
several limitations. Today, the modulation of mitochondrial biogenesis and activity in
adipose tissues and induction of WAT browning has been proposed as a promising ap-
proach for the prevention and management of obesity by increasing the energy expenditure
strategy [8]. The current study revealed for the first time the promising effects of SPIONs
as an anti-obesity treatment that outperforms the commonly prescribed medication orlistat.

SPIONs treatments at the weekly i.p. dose of 22 µmol Fe/kg significantly declined
the final body weights and weight gains in the obese rats during the experimental period,
irrespective of the coating (PEG-550 or 2000 Da). Moreover, SPIONs treatment significantly
ameliorates hyperglycemia, insulin resistance, dyslipidemia, leptin, adiponectin, and NEFA.
The weekly dose of SPIONs has similar or even better effects than those observed with
the daily orlistat treatment. The combined SPIONs and orlistat treatments showed more
pronounced ameliorative effects, with the best outcomes observed in the obese rats treated
with the weekly SPION-PEG-2000 and daily orlistat, which nearly normalized most of the
studied metabolic and molecular derangement.

SPIONs treatments significantly decreased the elevated levels of leptin and NEFA
in obese rats and significantly increased the level of adiponectin. The effect of SPIONs
on leptin level and adiponectin level was significantly better than the effect of orlistat,
which may imply a leptin-sensitizing effect of SPIONs, especially those coated with PEG-
2000. Moreover, the anti-obesity action of SPIONs may be partially mediated through its
lipotropic effect, as it significantly ameliorates the lipid profile like orlistat or even better.
Considering SPIONs’ effect on the lipid components, it can be suggested as a potential
hypolipidemic agent, which will be of great advantage for obesity. This effect of SPIONs
may be a consequence of the corrected glucose homeostasis and insulin resistance; however,
such effect needs further investigation

At the molecular level, surprisingly, SPIONs treatments markedly corrected the dis-
turbed expression of inflammatory genes and genes controlling mitochondrial biogenesis
and functions at mRNA and protein levels in BAT and WAT. The observed effects indicated
SPIONs as a powerful inducer of WAT browning and activator of BAT functions where the
SPIONs treatment significantly suppressed the markedly enhanced expression and protein
level of TNF-α in WAT and BAT. This effect may result from declined leptin secretion,
which is supported by the correlation studies which indicate a positive correlation between
leptin level and the expression of TNF-α. This effect indicates the anti-inflammatory role of
SPIONs in the adipose tissues of obese rats.

Obese rats treated with the doses of the two different coatings of SPIONs alone or
in combination with orlistat showed a significant upregulation of PGC-1α, UCP-1, and
SIRT-1 expression compared with untreated obese rats in WAT and BAT. Orlistat treatment
showed a mild but significant effect on the expressions of these genes. Obese rats treated
with combined treatment of orlistat and SPIONs coated with PEG-2000 at the dose of
22 µmol Fe/kg have significant upregulation of PGC-1α expression compared with orlistat-
treated rats in both WAT and BAT. This dose showed the highest upregulation effect on
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PGC-1α expression in WAT, which has a significantly higher expression level compared
with control rats. A similar pattern of changes was observed in the mtDNA-CN. Moreover,
SPIONs coated with PEG-2000 showed better effects than those coated with PEG-550.

In our present study, the enhanced expression of PGC-1α, which is a central player
that regulates the browning program in WAT [57], may cause the enhanced expression of
SIRT-1 and UCP-1 in the WAT to be 1.1 and 3.7-fold control values, respectively, and the
increased mtDNA-CN in WAT to be higher than the control value. The correlation studies
confirm the association between the PGC-1α and WAT browning and BAT activation, as its
expression was positively correlated with SIRT-1, UCP-1, and mtDNA-CN and negatively
correlated with circulating NEFA. These patterns of gene expression changes may indicate
the transformation from WAT into BAT phenotype or browning (or beiging) of the existing
WAT. The browning phenomenon has been recognized based on the expression of these
specific thermogenic markers that regulate beiging transcription [58].

Sirtuin-1’s post-translational modification, such as deacetylation, is a major contributor
to the WAT browning [59]. The present data indicated the central role of SIRT-1 in the
anti-obesity effects of SPIONs, as it was significantly upregulated in the WAT and BAT of
obese rats treated with SPIONs. The correlation studies confirm the critical role of SIRT-1
in the browning of WAT and activation of BAT, as its expression is positively correlated
with PGC-1α and UCP-1 expression and negatively correlated with circulating NEFA.

The exact mechanism of the epigenetic effects of SPIONs in vivo is unclear and needs
extensive investigations. However, both moieties of SPION-PEG-550 and SPION-PEG-
2000 may participate in the observed actions in diabetic rats. PEG moiety facilitates
transport across membranes and penetration into intracellular spaces and mitochondria and
allows distribution into distant tissues after intraperitoneal injection and exerts significant
physiologic effects on the distant organs [60].

The exact molecular mechanism(s) involved in the influence of SPIONs on insulin
sensitivity is unclear. A few experiments have been conducted to investigate the metabolic
effects of SPIONs. Sharifi et al. recorded a decrease in the expression of genes implicated
in the growth of obesity and T2D in human primary adipocytes treated with SPIONs [21].
Interestingly, Ali et al. recently reported the potential anti-diabetic effects of SPIONs
mediated through correction of hepatic PGC-1α expression and other components of insulin
signaling in hepatic tissues and modulation of lipid metabolism and adipocytokines, leptin,
and adiponectin [20]. The last study indicated hepatorenal toxicities as a major concern
at high doses of SPIONs (44 µmol Fe/kg and 66 µmol Fe/kg) [20]. So, in the present
study, we used the low dose (22 µmol Fe/kg) in combination with orlistat to avoid the
possible toxicities of the higher dose (44 µmol Fe/kg and 66 µmol Fe/kg), which showed
no significant ameliorative effects on AST and ALT activities and even worsened the
parameters of the kidney function, urea and creatinine levels, compared with the untreated
rats. On the other hand, the low dose alone or in combination with orlistat significantly
ameliorates serum activities of AST and ALT compared with the untreated obese rats with
no worsened effects on urea and creatinine levels.

Study Limitations

Nanoparticles biodistribution study is one of the limitations in our study. A systematic
study should be performed with the aim to identify their blood circulation half-life time,
biodistribution, and clearance. Another limitation is the determination of the principal
component in the nanoparticles responsible for this effect and finally determination of the
mechanism of action.

5. Conclusions

From the results of the present study and the above discussion, for the first time, a
promising effect of SPIONs as an anti-obesity agent that is superior to the conventionally
used drug orlistat in the HFD rat model has been reported. It was demonstrated that
SPIONs influence the expression of genes involved in lipid and glucose metabolism and
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therefore may be used as therapeutics for the treatment of diabetes and obesity. These effects
may be mediated through suppression of WAT expansion, induction of WAT browning, and
activation of BAT. The mechanism of action of SPIONs could be mediated through inducing
the expression of the thermogenic genes PGC-1α, SIRT-1, and UCP-1 and mitochondria
biogenesis in BAT and WAT. SPIONs coated with PEG-2000 are more efficient anti-obesity
agents than those coated with PEG-550. The combination of the low dose of SPION-PEG-
2000 (22 µmol Fe/kg/week) with daily orlistat has the best efficiency for the treatment
of obesity.
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