
HAL Id: hal-04653727
https://hal.science/hal-04653727v1

Submitted on 19 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Refinement Method for Interference Analysis using
the PHYLOG Modeling Language

Guillaume Brau, Eric Jenn, Emmanuel Courty, Kevin Delmas, Frédéric Boniol

To cite this version:
Guillaume Brau, Eric Jenn, Emmanuel Courty, Kevin Delmas, Frédéric Boniol. A Refinement Method
for Interference Analysis using the PHYLOG Modeling Language. 12th European Congress on Em-
bedded Real Time Software and Systems (ERTS24), Jun 2024, Toulouse, France. �hal-04653727�

https://hal.science/hal-04653727v1
https://hal.archives-ouvertes.fr

A Refinement Method for Interference Analysis
using the PHYLOG Modeling Language

Guillaume Brau, Eric Jenn
IRT Saint-Exupéry
Toulouse, France

Emmanuel Courty
IRT Saint-Exupéry &
Liebherr Aerospace
Toulouse, France

Kevin Delmas, Frédéric Boniol
ONERA

Toulouse, France

Abstract—Temporal interference may occur in multicore proces-
sor systems due to tasks running in parallel competing for shared
resources such as buses or memories. This paper presents a model-
based interference analysis based on the PHYLOG framework that
intends to help in the certification process of multicore aeronautical
systems. As PHYLOG does not define a clear modeling method,
a refinement approach is proposed to model the system using the
PHYLOG Modeling Language (PML). Our objective is to define
a process that enables to build a model that is both precise and
reliable so that analysis results are sound. The approach is finally
validated on an industrial use case from the aerospace domain.

I. INTRODUCTION

In the last decade, multicore processors have become the
norm in the general market. However, their use in critical real-
time systems still represents a challenge since those systems
have to meet strong temporal requirements with a high level of
confidence and have to comply with regulatory requirements.

In order to demonstrate compliance with temporal require-
ments, upper bounds on execution times accounting for all
contributions at hardware and software levels must be esti-
mated. In the avionics domain, for instance, the AMC 20-
193 [1] standard requires that temporal interferences which
may occur when tasks running in parallel access shared re-
sources (e.g., caches, memories, buses) are addressed. For
example, the MCP_Ressource_Usage_3 (RU3) demands that:
“the applicant has identified the interference channels that could
permit interference to affect the software applications hosted on
the multicore processor cores, and has verified the applicant’s
chosen means of mitigation of the interference”.

Towards that goal, model-based approaches can be used to
help in the certification process of aeronautical systems that
use multicore processors. These solutions build on a language
that allows to describe the system and an analyzer to infer
properties about it: one can e.g. combine the AADL language
to describe the architecture of the system and Prolog to identify
interferences [2], or use the LNT formal specification language
to capture the system’s behavior and the CADP toolchain to
detect interferences [3]. However, methodological aspects to
use these tools remain mostly unaddressed and must be further
defined in order to be used in an industrial context: How to
build a relevant model of the system? What to learn from it?
How to use it in a certification process?

In this paper, we focus on interference analysis using the
PHYLOG approach [4]. In PHYLOG, the system architecture
is to be described using the PHYLOG Modeling Language
(PML), which model is then analyzed in order to identify
interferences. Hence, the construction of the PML model is a
critical point when applying the approach: How to build the
PML model? In this paper, we propose to apply a refinement
process in order to build an accurate and reliable model of the
system. This process implements different types of refinements:
structural (i.e., improving the description of the components of
the architecture such as memories and buses), temporal (e.g.,
integrating data from the scheduling plan), etc. Our method
is applied to an industrial use case from Liebherr, which is
deployed on the AURIX TC399XE platform.

This paper is organized as follows: Section II deals with
related work. We briefly introduce the use case in Section III.
The refinement method is presented in Section IV with PML
views implementing the method in Section V and application
to the use case in Section VI. Finally, we discuss our approach
(Section VII) and conclude with possible perspectives (Sec-
tion VIII).

II. RELATED WORK

The interference problem is identified e.g. in [5] as “alter-
ations of the processor’s behavior seen by software running on
one core due to activities ordered by software running on other
cores.”. Thus, certification authorities such as EASA and FAA
notably set interference-related objectives for the certification
of multicore systems [6], [1]. Focusing on the argumentation to
reach these objectives, [4] propose to organize an argumentation
strategy into a series of evidences (or sub-claim) towards the
claim (the objective to demonstrate). They show in particular
that the aforementioned RU3 objective involves identifying all
interferences (sub-objective 1) and to classify their effects (sub-
objective 2). We review some related work on these topics.

a) Evaluation of interference effects: A first class of works
aims to evaluate the impact of contentions occurring within
shared hardware resources on the applications execution times.
For instance, [7] considers a multicore processor architecture
composed of a single bus providing access to a shared memory,
and it proposes a method to determine an upper bound on
the number of bus requests that software tasks can generate

in a given time interval. Both [8] and [9] focus on mea-
surement techniques based on dedicated stressing benchmarks
and hardware monitors to characterize the architecture and the
shared resources that can cause interferences between software
applications.

b) Identification of interferences: Another class of works
relies on a formal model of the architecture and a formal
analysis method to explore the set of interference channels.
A previous work by Brindejonc et al. [10] proposes a way to
characterize the interference behavior and to identify interfer-
ence channels on a multicore processor. Their approach consists
in identifying a set of test classes that completely covers the
interferences that could occur in the architecture. However, they
consider multicore architectures as black boxes, thus ignoring
internal components of the architecture. In [2], the authors
propose a tool ("Strange") that identifies interferences using an
AADL structural model of the SoC that is first translated into a
set of (Prolog) facts that is queried using a Prolog program.
Several works have tried to circumvent the limitations of a
pure structural representation of the SoC. In [3], for instance,
the authors use LNT to capture the behavior of the Infineon
TC275’s crossbar arbiter and exploited the CADP toolchain to
detect interferences. Two approaches have been investigated:
PATCHECK, based on the detection of predefined patterns
showing the manifestation of interference (i.e., the interleaving
of a request concerning core Y in the sequence of transaction
concerning core X), and SYNCHECK, based on the comparison
of traces obtained in isolation and in contention. These two
methods have been applied on a small part of the SoC, and
their scalability has not been demonstrated.

Finally, note that the previous works either address sub-
objective 1 (identification of interferences) or sub-objective
2 (evaluation of interference effects). In other words, both
objectives are addressed separately, without stating whether they
are related and how. In our approach both activities act in a
complementary way: the PML model is used to identify the
set of interference scenarios that must be evaluated; evaluation,
in turn, enables to estimate the impact of the scenarios on the
software and if this impact is compliant with the constraints
defined by the applicant. Thus, the construction of the PML
model is driven by the evaluation: the PML model must be
refined until interference effects fulfill the constraints (see
Section IV).

III. USE CASE

Hereafter, we successively present the software and hardware
parts and the execution environment of the industrial use case
developed by Liebherr Aerospace (referred to as LTS use case
in the following).

a) Application: The software parts consist of two distinct
legacy applications as well as a common board support package
(BSP) software:

• the Integrated Air Management System (IAMS) that man-
ages air bleed, air conditioning and cabin pressure control,

• the Power Electronics (PE) system that controls electrical
motors,

• the common BSP software that deals with Inputs/Outputs
(I/Os), e.g., GPIO, PWM, etc.

The IAMS and PE sub-systems do not coexist on the same
hardware platform in the actual system. However, we deploy
them on the same hardware target in order to (i) address different
typologies of timing constraints (20 Hz for the IAMS, 20 kHz
for the PE), (ii) increase the pressure on the use of shared
resources provided by the platform, and (iii) investigate the
integration of multiple heterogeneous applications on the same
computation platform.

b) Hardware platform: The application software is in-
tegrated in a 6-cores Infineon AURIX TC399XE processor
[11], which simplified architecture is depicted in Figure 1.
The AURIX has been designed in order to minimize possible
hardware interferences: each core has dedicated program (PSPR,
PFLASH) and data (DSPR, DLMU) memories, 3 shared memo-
ries (LMUs) can be used by the cores through a crossbar (SRI),
and a shared bus (FPI) is provided to access I/Os.

LMU0

Core0

PFLASH0 DLMU0

FP
I

I/Os

…

SRI

PSPR DSPR

Fig. 1: AURIX TC399XE platform (simplified view).
c) ASTERIOS: The ASTERIOS toolchain and execution

environment, provided by ASTERIOS Technologies [12], is
used to integrate both applications and the common BSP on
the AURIX platform and enforce the timing constraints.

Applications are developed using PsyC [13], a software archi-
tecture description language based on the synchronous Logical
Execution Time (sLET) paradigm [14]. In this model, each new
activation of a task is constrained by an earliest start date and a
deadline specified by the user based on logical clock ticks. The
IAMS application is implemented with two PsyC tasks (ag_iams
and ag_cpcs), the PE application includes two tasks (ag_fast and
ag_slow) and the BSP three tasks (worker_gpio, worker_adc and
worker_pwm).

The PsyC design is then compiled, together with the user
application code, into an executable binary that is executed
by the ASTERIOS’s real-time micro-kernel. At run time, the
kernel relies on a static schedule generated by the ASTERIOS
toolchain, called Repetitive Sequences of Frames (RSF), to en-
force the tasks timing constraints and determinism (in multicore
architectures, one RSF is generated per core). An RSF is divided
into intervals, and each task may be given at most a frame within
each interval for its execution (Figure 2). A frame corresponds
to the CPU time allocated to a task, and is computed from the
time budget provided by the user.

Interval Frames Scheduling Tick

Loop

Time Budget

Fig. 2: Repetitive Sequences of Frames (RSF) in ASTERIOS.

IV. APPROACH

This section presents the refinement approach that is based
on the PML language.

A. PHYLOG Modeling Language

The PHYLOG Modeling Language (PML) provides a set of
constructs capturing the concepts identified in the AMC 20-193
and supporting interference analysis. Here, we briefly introduce
the main elements of the language, further details can be found
e.g. in [4].

a) PML model: A system can be described in PML in two
main views: structural and behavioral.

The structural view describes the system architecture with:
• platform, i.e., the set of hardware components (cores,

memories, communication resources, etc.) and physical
connections between them,

• software, i.e., the software applications and their data,
• the allocation of the software on the platform : applications

are allocated on cores and data on memories,
• routing aspects, e.g., paths from sources to targets.
The behavioral view details transactions (core accesses to

shared resources, e.g. memory read/write) occurring on the
platform and provides additional interference specifications.

b) Semantics of a PML model: Following [15], the plat-
form in a PML model describes initiators (e.g., a core), targets
(e.g., a memory component), and transporter (e.g., a bus).
Applications are allocated to initiators and data to targets.
Hardware components provide one or several services (e.g.,
store or load). When an application requests to access or write
a data, it will trigger a single transaction, i.e., a sequence of
components’ services used to fulfill the request. For instance,
to load a data from the LMU0, an application running on the
Core0 will trigger the single transaction: Coreld0 ·SRI ld·LMU ld

0

where Cld stands for load service of component C. Several
single transactions can be triggered by the applications executed
by the initiators. A set of concurrent single transactions is
called a multi-transaction. For instance, the multi-transaction
τ = (Coreld0 ·SRI ld ·LMU ld

0 ∥Coreld1 ·SRI ld ·LMU ld
0) is the

concurrent access by Core0 and Core1 to the LMU0 through the
SRI. The set of all possible multi-transactions, denoted T , of a
given PML model M is then all the possible concurrent single
transactions that can be triggered by the applications executed
by the initiators. An interference occurs when the simultaneous
usage of a set of services may impact timing behavior. A typical

case is the simultaneous use of a single service by several single
transactions in the multi-transaction. For instance, in the multi-
transaction τ , the load services of the SRI and LMU0 are used
concurrently by the two cores. The purpose of the PML analyzer
is then to identify efficiently the multi-transactions that may
produce an interference.

B. Refinement Approach

In our approach, following AMC 20-193 objectives, a PML
model is used as an appropriate abstraction of the system to (1)
identify a set of interferences, and then (2) evaluate the effects
of interferences.

a) Interference identification: Let M a PML model, in-
terference identification is the analysis applied over the PML
model Id(M) that classifies multi-transactions T described in
M into I, interfering multi-transactions, and F , non-interfering
multi-transactions.

As explained in Section IV-A, an interference in PML comes
from the concurrent use of a service (or exclusive services)
provided by a hardware component within a multi-transaction.
An interference involves n (≥ 2) transactions, so we talk
about n-ary interference (itf-n for short). The PML analyzer
identifies the multi-transactions which may compete for ser-
vices provided by the components of the platform (interference
scenarios) and the components where those conflicts occur
(interference channels). Complementary, non-interfering scenar-
ios (non-interfering multi-transactions) are also provided. The
PML analyzer relies on MONOSAT solver [16] to compute
interferences.

b) Evaluation: Once interference scenarios have been
identified, their effects on the software is evaluated in order to
check compliance with the constraints defined by the applicant.
For instance, the constraints may relate to real-time, requiring
to evaluate response times in order to check that the tasks meet
their deadlines (see Section VI-B for an example of evaluation).

c) Refinement process: The PML model being the main
source of information to perform interference analysis, it shall
satisfy the following properties:

• Coverage: the model enables to identify all interferences,
• Precision: the model enables to identify only interferences.

Coverage impacts safety, so it is explicitly required by
the AMC 20-193. Precision impacts cost, as it may lead to
unnecessary verification activities and over-design.

Assuming an initial model that would satisfy coverage and a
refinement process that would preserve coverage, the approach
consists in refining the model in order to increase precision
in order to meet the constraints. In practice, and due to the
difficulty to ensure coverage by design, additional verification
and validation activities are also required. One way to ensure
coverage is for example (i) to make reasonably conservative
modeling assumptions and (ii) to verify these assumptions
experimentally (see Section VI-C for an example of validation).

Let us define more precisely what is meant here by refinement
and what are the objectives of the refinement process.

False-positives and false-negatives: A PML model is an
abstraction – thus imperfect representation – of the system that
may lead to identify false-positives and false-negatives. Let I
(resp. F) the set of actual interfering (resp. non-interfering)
multi-transactions that would be observed on the target, false-
positives FP = I ∩ F are multi-transactions that are erro-
neously classified as interfering and, conversely, false-negatives
FN = F ∩ I are multi-transactions that are erroneously
classified as non-interfering. The presence of false-positives
means that the model is imprecise, whereas the presence of
false-negatives means that the coverage objective is not fulfilled.

Refinement (and validation): Refinement is a function
R(Mi) = Mi+1 that adds details on the model, thus restricting
the set of the possible behaviors and increasing the accuracy
of analysis. Applied to the PML model, the consequence of re-
finement is that reported false-positives are reduced: Ii+1 ⊂ Ii
and, consequently, FPi+1 ⊂ FPi.

The objective is therefore to apply refinement so that the
number of false-positives FP is minimized (precision objective)
in order to meet the constraints. In addition, validation of the
model must ensure that all interferences are identified (coverage
objective), i.e., FN = ∅.

The refinement process is illustrated in Figure 3. Refinement
of the PML model is represented on the horizontal axis: Mi is
the model at phase i of the process (represented with a white
circle in Figure 3). Interference identification is shown on the
vertical axis: Id inputs the PML model Mi and outputs the set
of interfering multi-transactions Ii and non-interfering multi-
transactions Fi. Evaluation is illustrated in the gray rectangle
in the bottom left-hand corner of Figure 3: the evaluation func-
tion Ev inputs identified interfering multi-transactions Ii and
enables to conclude whether the constraint is met (acceptable
state) or not (failure state). If effects are not acceptable, the
PML model can be refined in order to reduce I and make the
evaluation more precise: in Figure 3, if Ev(Ii) is not acceptable,
Mi is refined into Mi+n and evaluation is applied on the refined
Ii+n set (Ii+n ⊂ Ii). The refinement process finishes when
either (1) evaluated interference effects are acceptable or (2)
the PML model cannot be refined anymore (in which case the
system must be redesigned in order to mitigate interferences).

We explain in the following sections how the PML views can
be refined (Section V) and show an application of our approach
to the case study (Section VI).

V. REFINEMENT AND PML VIEWS

This section explains how refinement can be applied to the
different PML views. Taking the LTS use case for instance, we
describe the initial, coarse-grained, model and illustrate different
refinements applied to the structural and behavioral views.

A. Baseline Model

A PML model is a Scala application in which each file
describes an aspect of the architecture through a dedicated
class/interface. A PML model is thus modular, making it pos-
sible to easily analyze variants of the system, e.g., models at
different refinement stages.

Evaluation

Mi

Interferences
identified by the
tool at phase i

PML model
at phase i

R(Mi)

Model refinement

Id(Mi)

Interference
identification

Mi+n

Id(Mi+n)

Refinement process

acceptable

failure

Evaluation

Fig. 3: Refinement process.

Modeling starts with the baseline model (M0) that applies
the most conservative modeling assumptions with information
that can be easily found in the datasheet (e.g., block diagram
of the platform). The initial model is as simple as possible
with very little information on the parallelization capabilities of
the system: no (or few) assumptions are made on the internal
structure of the components, e.g., we make the assumption that
the applications all execute at the same time, that transactions
all take the same path, etc.

The initial model thus only describes basic structural views
(platform, software and allocation) and transactions.

class core_unit (name: Symbol) extends Composite(name) {

// core
val core : Smart = Smart()

// internal memories
val pspr : Target = Target ()
val dspr : Target = Target ()

// connections (the core accesses its private memories)
core link pspr
core link dspr

}

Listing 1: Composite structure of a core unit.
a) Platform: The TC399XE platform used in the LTS use

case embeds several core units (see Figure 1), which composite
structure is described in Listing 1: a core unit includes a core
(defined as an initiator with the "smart" keyword), internal
memories (defined as targets), and connections between them.
The full platform is described via the "AURIXPlatform" class
(Listing 2) that enumerates the hardware components (core
units, memories, buses, I/Os) and sets the physical links between
them. The excerpt provided in Listing 2 shows the declaration
of core_unit1 connected to DLMU1 (direct connection) and
LMU0 (via the SRI). In the following, coreX will denote the
core component in core_unitX (core_unitX .core), the same

class AURIXPlatform(name: Symbol) extends Platform(name) {

// core units
val core_unit1 = new core_unit ()
// memories
val dlmu1: Target = Target ()
val lmu0: Target = Target ()
// buses
val sri : SimpleTransporter = SimpleTransporter ()

// connections of the cores
core_unit1 . core link dlmu1 // direct connection to the dlmu
core_unit1 . core link sri // connection to the sri

// connection of the lmu to the sri
sri link lmu0
[...]

}

Listing 2: Platform model of the AURIX TC399XE (excerpt).

trait AURIXCoarseSoftwareAllocation extends Configuration {
self : AURIXCoarsePlatform =>

// Tasks
val ag_fast : Application = Application ()

// Data
val code_ag_fast : Data = Data() // code
val data_ag_fast : Data = Data() // data

// Tasks allocation
ag_fast use core_unit2 . core

// Data allocation
code_ag_fast in core_unit2 . pspr
data_ag_fast in lmu0

[...]

}

Listing 3: Software model of the LTS use case (excerpt).

notation will apply to designate core_unitX .pspr (PSPRX) and
core_unitX .dspr (DSPRX).

b) Software and allocation: The software comprises appli-
cations (running on cores) and their data (stored in memories).
The "AURIXSoftwareAllocation" class (Listing 3) first declares
the tasks and the various ASTERIOS components (real-time
kernel, etc.) together with their data (tasks code and data,
communication data, etc.). The allocation of both applications
(on cores) and their data (on memories and I/Os) is then
provided. For instance, Listing 3 shows the declaration of one
application ag_fast, executed on core2, and its data, stored in
PSPR2 (for its code) and LMU0 (for its data).

c) Transactions and configuration: With the platform
components and pieces of software defined, it is then possible
to provide more information on the usage of resources. The
transaction library lists transactions that can be performed by
the tasks. A transaction declaration involves a task, a data and a
type (e.g., read or write). For instance, Listing 4 shows different
examples of transactions initiated by ag_fast: code loading and
data read/write. One or more configurations to analyze can then
be defined, a configuration being a particular set of transactions

trait AURIXTransactionLibrary extends TransactionLibrary {
self : AURIXCoarsePlatform with AURIXCoarseSoftwareAllocation =>

// tasks load code
val ld_code_ag_fast : Transaction = Transaction (ag_fast read

code_ag_fast)

// tasks read / write data
val wr_data_ag_fast : Transaction = Transaction (ag_fast write

data_ag_fast)
val rd_data_ag_fast : Transaction = Transaction (ag_fast read

data_ag_fast)
[...]

}

Listing 4: Transaction library (excerpt).

within the transaction library.

B. Refinement

Model refinement will consist in adding precision on both
structural and behavioral views. Each refinement stage aims to
reduce the set of interferences by removing false-positives.

We identify several types of refinements:
• Structural refinement is to improve the description of the

components of the architecture (e.g., memories, buses),
• Routing refinement is to specify the paths from initiators

to targets when several paths are possible,
• Temporal refinement is to provide temporal exclusions,
• Quantitative refinement is to describe resource usage.

a) Structural refinement: Structural refinement seeks to
improve the description of the components of the architecture
(e.g., memories, buses).

As seen in the baseline model, the SRI is modeled as a "black
box", i.e., it is specified as a simple "transporter" (Listing 2).
Observing that the SRI is a main contributor to interferences,
we may "open" the black box and model the internal structure
of the component. For example, in Listing 5, the SRI crossbar
network is modeled as a composite: the SRI is made up of a
set of input and output ports (modeled as transporters) where
all inputs are connected to all outputs. Therefore, every input
port is intended to serve a particular core and every output port
is connected to a distinct memory.

b) Routing: Specifying routes may be useful, e.g., when
multiple paths to a target are possible. For example, in the
AURIX platform each core (coren) uses a local PFLASH
memory (PFLASH n) that can be accessed through a direct link.
Meanwhile, all PFLASHs can be accessed by all cores via the
SRI. Thus, there exists 2 paths between coren and PFLASH n:
(1) one that uses the direct link, and (2) one through the SRI.
As in fact transactions from coren to PFLASH n use the direct
link, it is necessary to specify a route in order not to count them
in the SRI. For this, the configuration is extended with routing
constraints, e.g., to specify that the route for transactions issued
by core0 targeting PFLASH0 uses the direct link between core0
and PFLASH0.

c) Temporal refinement: Timing aspects such as tasks
parameters (periods, time budgets, etc.) or scheduling affect
interferences. Therefore, it would be interesting to integrate

class xbar(name: Symbol) extends Composite(name) {

// input ports
val i1 : SimpleTransporter = SimpleTransporter ()
val i2 : SimpleTransporter = SimpleTransporter ()
[...]

// output ports
val o1: SimpleTransporter = SimpleTransporter ()
val o2: SimpleTransporter = SimpleTransporter ()
[...]

// connections (all inputs connected to all outputs)
for {

input <− Set(i1 , i2 , i3 , i4)
}{

for {
output <− Set(o1, o2, o3, o4, o5, o6, o7, o8, o9)

}{
input link output

}
}

[...]
}

Listing 5: Structural refinement: composite structure of the SRI
(excerpt).

temporal information, specified in the PsyC design or in the
generated RSF, in the PML representation. While PML does
not directly support such description of timing aspects, we
can capture temporal information with two means: slices or
exclusivity clauses.

In the first method, a temporal "slice" represents a re-
markable execution unit whose transactions are encoded as a
configuration. Each configuration is intended to be analyzed
separately before the results from the different configurations
are aggregated (duplicated interferences are counted once). The
second way, which is the chosen solution in the current model,
is to express (temporal) exclusions in the model. For example,
by analyzing the RSF of the LTS use case, we can specify in
PML that worker_adc, worker_gpio, worker_pwm (core1) and
ag_fast (core2) are never executed at the same time.

d) Quantification: In some cases, a transaction can have
a negligible impact on a service. In that case, one can assume
that the concurrent usage of this service by other transactions
will not result in a significant impact (e.g., in terms of execution
times) on the application. This assumption can be specified in
the PML model by identifying the transactions that do not affect
specific services.

VI. APPLICATION ON THE USE CASE

This section shows an application of our approach (Sec-
tion IV) and proposed refinements (Section V) to the LTS Use
Case (Section III).

We illustrate the main activities – identification of inter-
ferences, evaluation and validation – with, for example, the
schedulability constraint that tasks execution times (ET) must
comply with time budgets (B) defined in the ASTERIOS
application architecture (see Section III, Figure 2), i.e.,

∀t, ET (t) ≤ B(t) (1)

A. Identification of Interferences

We build the baseline model and then apply structural, routing
and temporal refinements as explained in Section V. The next
paragraphs discuss the mains results (interference scenarios and
interference channels) for each refinement stage and, finally,
summarize results for the overall process.

a) Baseline model: The PML analyzer enables to
identify n-ary interference scenarios (i.e., interference sce-
narios involving n transactions). Interference channels are
also identified. For instance, <rd_data_ag_fast ||
wr_data_worker_adc> denotes a 2-ary interference (or
itf-2) that involves rd_data_ag_fast and wr_data_worker_adc
transactions. Such interference occurs when tasks ag_fast and
worker_adc attempt to load (resp. store) data at the same time
in LMU0 accessed via the SRI, denoted by the interference
channel { lmu0_load, lmu0_store, sri_load, sri_store }. As the
platform includes 6 cores, it is possible to compute up to 6-ary
interferences: e.g., we count 8024 itf-2, 205142 itf-3, 3053207
itf-4 (see Baseline in Figure 4). LMU0 and PFLASH0, which
are two of the main shared memories, and the SRI bus to access
them are the main hardware components causing interferences,
e.g., SRI is implicated in 6904 itf-2, LMU0 in 2589 itf-2 and
PFLASH0 in 479 itf-2. I/Os and the FPI bus to access them
are other components causing interferences (e.g., 1120 itf-2 for
FPI, 480 itf-2 for I/Os).

b) Structural refinement: With the SRI description (Struc-
tural refinement in Figure 4), we observe that the number of
interferences significantly decreases: -46% for itf-2, -66% for
itf-3, -75% for itf-4, etc. Most of the interferences found in the
SRI are eliminated, as it turns out that most of the memories
serve a single core. Thus, only the SRI’s ports that are used
to access shared memories still experience interferences: o9
connected to LMU0 (2589 itf-2) and o2 connected to PFLASH0
(479 itf-2).

c) Routing: Routing has been specified for both the base-
line model and the structural refinement model, i.e., with-
out/with refinement of the SRI. In the first case (BaselineRouting
in Figure 4), where SRI is described as a bus, we see that
interference is reduced significantly: e.g., -19% for itf-2, -26%
for itf-3 and -32% for itf-4. Many interferences are avoided due
to transactions that are not counted in the SRI, e.g., we count
-33% of itf-4 in the SRI. In the second case (StructuralRouting
in Figure 4), we do not observe a reduction in the number of
interferences itself, as the number of interferences is already
reduced due to the description of the internal structure of the
SRI. However, we can see the effect of routing on interference
channels: conflicts now concentrate on PFLASH0 whereas in-
terferences are reduced in the SRI, e.g., -26% of itf-4 in o2
connected to PFLASH0.

d) Temporal refinement: As compared with structural re-
finement, we can see in Figure 4 (StructuralRoutingTiming)
that temporal refinement discards e.g. 379 itf-2 (-9%), 17142
itf-3 (-25%) and 321775 itf-4 (-42%). For these scenarios,

2 3 4 5 6
initiators (n)

104

105

106

107

108

in
te

rfe
re

nc
e

sc
en

ar
io

s

Interferences per number of initiators (itf-n)
Baseline
BaselineRouting
Structural
StructuralRouting
StructuralRoutingTiming

Fig. 4: Number of interference scenarios according to the
number of initiators (itf-n) for different types of refinement
(logarithmic scale).

2740

1120

2246

463

240 240

sri fpi lmu0 pflash0 stm ir

(a) Itf-2 scenarios per hardware resource.

640

104
240 240

2246

286
177

(b) Itf-2 scenarios per interference channel.

Fig. 5: Number of interference scenarios (itf-2) by (a) hardware
resource, (b) interference channel.

exclusion of ag_fast and "workers" (worker_gpio, worker_adc
and worker_pwm) transactions represents 52% of the total
decrease, and exclusion of transactions between ag_iams and
ag_cpcs 33%.

e) Summary: In total, 8976029 interference scenarios are
found from the refined model: 3933 itf-2, 52272 itf-3, 451728
itf-4, 2460544 itf-5 and 6007552 itf-6. As compared to the
baseline model, which displayed 109075037 interference sce-
narios, refinement enabled us to eliminate 92% (100099008)
of interference scenarios : 51% of itf-2, 75% of itf-3, 85% of
itf-4, 90% of itf-5, and 93% of itf-6. In terms of refinement
steps, structural refinement, through the description of the
internal structure of the SRI, has the greatest impact (83% of
100099008) before temporal refinement (17%), which specifies
temporal exclusions.

We find different sources of interference (see e.g. Figure 5a
for itf-2 scenarios) : memories with LMU0 and PFLASH0,
inputs/outputs with STM and IR, and the buses to access
them (SRI for memories and FPI for inputs/outputs). In terms
of interference channels (Figure 5b for itf-2 scenarios), the
SRI/LMU0 channel that is used by the cores to access the LMU0
shared memory is the main interference channel (e.g., 2246 itf-2
scenarios over 3933 itf-2 overall, that is to say 57% interference
scenarios).

B. Execution Time Evaluation

After identifying the interference scenarios, we estimate exe-
cution times in order to check compliance with time budgets
specified in the ASTERIOS application architecture (Equa-
tion (1)). Estimation of the execution time of a task is built
on an analytical formulation of execution time that we compute
with measures obtained on the target.

1) Analytical formulation of execution time: The evaluation
of the execution time of a task must take into account all the
interferences that the task may experience.

The execution time ET of a task t is given by:

ET (t) = ET iso(t) +Ditf (t) (2)

with ET iso is the execution time in isolation (i.e., the execution
time without contentions) and Ditf is the interference delay
(i.e., the extra-time due to interferences). More precisely, the
interference delay of task t is the time spent to access resources
belonging to interference channels, which depends on the num-
ber of interfering accesses to every resource R in interference
channels (NAitf (t, R)) and the interfering time for each access
(DAitf (t, R)):

Ditf (t) =
∑

R∈itf_channel(t)
NAitf (t,R)

DAitf (t, R) (3)

The worst-case execution time can therefore be expressed as
the combination of the worst-case execution time in isolation

WCET iso and the worst-case interference delay WCD itf :

WCET (t) = WCET iso(t) +
∑

R ∈ itf_channel(t)

WCD itf (t, R)

︸ ︷︷ ︸
WCDitf (t)

(4)

with the worst-case interference delay due to a shared resource
R encompasses the worst-case number of interfering accesses
to the resource WCNAitf and each access suffers a worst-case
interference delay WCDAitf :

WCD itf (t, R) = WCNAitf (t, R)×WCDAitf (t, R) (5)

2) Application: For example, we apply Equation (4) in
order to calculate worst-case execution times of ag_fast and
ag_slow (parameters and results are summarized in Table I).

To do so, we first measure the execution time in isolation
for each task using RVS1 tool. For instance, Figure 6 describes
the relative frequency of observed ag_fast execution times:
observed BCET is 124 µs, and observed WCET is 134.9 µs.
Therefore, we have WCET iso(ag_fast) = 134.9 µs

We then calculate the interference delay according to Equa-
tion (5). Access numbers (NA) are extracted from execu-
tion traces collected using TRACE322 tool. Figure 7 de-
scribes, for example, the frequency of accesses to LMU0
of ag_fast and ag_slow: the worst-case number of ac-
cesses (WCNA) is WCNA(ag_fast,LMU0) = 1559 and
WCNA(ag_slow,LMU0) = 4559. In addition, hardware
characterization allowed us to over-approximate access times,
e.g., the maximum measured access time in contention was
WCDAitf (ag_fast,LMU0) = 23.48 ns (versus 7.53 ns in
isolation).

The worst-case execution time is finally calculated according
to Equation (4). The evaluation can be refined gradually, and
the process stops when the calculated WCET meets the budgets
(Equation (1)).

For example, as a first approximation (level 1), we may
assume that each access to LMU0 results in an interference,
i.e., for a task t, WCNAitf (t,LMU0)=WCNA(t,LMU0) with
WCNAitf is the worst-case number of interfering accesses
and WCNA is the worst-case number of accesses. Otherwise
(level 2), we may calculate the worst-case number of inter-
fering accesses to LMU0, i.e., for two tasks ti, tj accessing
LMU0, WCNAitf (ti,LMU0) = WCNAitf (tj ,LMU0) =
minWCNA(ti,LMU0),WCNA(tj ,LMU0).

Evaluated WCETs are given in Table I together with the
remaining margin to the budget. The stopping criterion is
reached when the margin is positive (shown through green filled
cells in the table) and unsuccessful when negative (orange filled
cells). Therefore, we see that the stopping criteria is achieved
by the first level of analysis for ag_fast and by the second
level of analysis for ag_slow.

1from Rapita Systems: https://www.rapitasystems.com/products/rvs
2from Lauterbach: https://www.lauterbach.com/

ag_fast ag_slow

Period (us) 500 2000
Budget (us) 250.56 300
BCET iso (us) 124 221.5
WCET iso (us) 134.9 224.7

level 1:
WCNAitf 1559 4559
WCDitf (us) 36.6 107.0
WCET (us) 171.5 331.7
Margin with budget (us) 79.1 -31.7
Margin with budget (%) 31.6% -10.6%

level 2:
WCNAitf 1559 1559
WCDitf (us) 36.6 36.6
WCET (us) 171.5 261.3
Margin with budget (us) 79.1 38.7
Margin with budget (%) 31.6% 12.9%

TABLE I: Tasks parameters and estimation of execution times.

C. Validation

Validation of the model can be reached through tests per-
formed on the real system. As the model is aimed at identifying
interferences, validation can be achieved by checking that (i)
when an interference is identified from the PML model, an
interference can be observed on the real system, and (ii) when
an absence of interference is identified no interference can be
observed on the real system. Therefore, each interfering (resp.
non-interfering) scenario is associated with a test scenario.

Remind that an interfering scenario involves transactions, ini-
tiated by tasks executing on different cores, contending for one
or several (exclusive) service(s) provided by a same hardware
component. Conversely, a non-interfering scenario is a scenario
where transactions do not contend for services provided by
hardware components.

In the following, we discuss the validation of scenarios with
2 transactions, this approach can be generalized to deal with
scenarios with n transactions.

a) Interference validation: Let < trA||trB > an interfer-
ence scenario, trA is initiated by taskA hosted by coreX and
trB is initiated by taskB hosted by coreY (X ̸= Y), Res
is the resource used to serve both trA and trB . To show that
the interference scenario is valid, we can show that taskA is
sensitive to the service of trB by Res and that taskB is sensitive
to the service of trA by Res.

Consider for example interference scenarios in LMU0 involv-
ing ag_fast, executed on core 2, and ag_slow, executed
on core 3. These interference scenarios can be validated by
running ag_fast (resp. ag_slow) against co-runners on core
3 (resp. core 2) issuing transactions to LMU0. The objective
of the co-runner is to act as the contending task, thus stressing
the shared resource to maximize the bandwidth use and produce
interferences. The expected outcome, if the interference scenario
is valid, is an increase in the task execution time compared to
the task behavior in isolation, as we can see for ag_fast in
Figure 8 (ag_fast vs 1 contender lmu0).

b) Non-interference validation: Let < trA||trB > an
interference scenario, trA is initiated by taskA hosted by coreX

https://www.rapitasystems.com/products/rvs
https://www.lauterbach.com/

Fig. 6: Relative frequency of execution times of ag_fast (snapshot from RVS tool).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1332 1333 1334 1335 1359 1402 1403 1480 1485 1486 1492 1493 1555 1559

fr
eq

u
e

n
cy

number of accesses

(a) ag_fast

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

4
4

0
8

4
4

1
0

4
4

1
2

4
4

2
7

4
4

3
0

4
4

3
5

4
4

3
7

4
4

3
9

4
4

4
1

4
4

8
3

4
4

9
1

4
4

9
4

4
4

9
6

4
4

9
8

4
5

0
1

4
5

0
7

4
5

0
9

4
5

1
6

4
5

1
8

4
5

2
0

4
5

5
1

4
5

5
6

fr
eq

u
e

n
cy

number of accesses

(b) ag_slow
Fig. 7: Frequency of accesses to LMU0.

and trB is initiated by taskB hosted by coreY (X ̸= Y), ResA
is the resource that serves trA and ResB is the resource that
serves trB . To show that the interference scenario does not exist,
we can show that taskA is not sensitive to the service of trB
by resB and that taskB is not sensitive to the service of trA
by resA.

Let us take the example of a non-interfering sce-
nario < rd_data_ag_fast || wr_data_ag_cpcs >,
rd_data_ag_fast is initiated by ag_fast (hosted by core
2) and targets LM0 while wr_data_ag_cpcs is initiated
by ag_cpcs (hosted by core 4) and targets LMU1. The
absence of interference can be shown by running ag_fast
(resp. ag_cpcs) against co-runners on core 4 (resp. core 2)
targeting LMU1 (resp. LMU0). The expected outcome, if the
non-interfering scenario is valid, is no variation in the task
execution time compared to the task behavior in isolation,
as shown for ag_fast in Figure 8 (ag_fast vs 1 contender
lmu1, the slight variation is due to code instrumentation for
measurement).

D. Summary

In this section, we have shown an application of our method
(introduced in Section IV) to build a PML model. Refinement
has been applied on the PML model with the objective to meet
the budget constraint (execution times evaluated from the model
must fulfill the budgets).

The process took place in 2 phases. We firstly applied model
refinement (on the structural, routing and temporal views) in
order to reduce interference scenarios to be later evaluated. In

execution time (us)
0

5

10

15

20

nu
m

be
r o

f o
cc

ur
re

nc
es

ag_fast vs 1 contender lmu0
isolation
1 contender lmu0

125 130 135 140 145
execution time (us)

0

5

10

15

20

nu
m

be
r o

f o
cc

ur
re

nc
es

ag_fast vs 1 contender lmu1
isolation
1 contender lmu1

Fig. 8: Distribution of ag_fast execution times: in isolation
(in blue) and vs contenders (in red).

the second phase, we evaluated execution times in order to check
compliance with the budget constraint. The evaluation itself can
be refined in order to minimize evaluation cost, e.g., we have
shown two levels of evaluation based on measurement and the
more precise (and costly) evaluation has only been applied when
the first evaluation was not precise enough to conclude about
the constraint. Validation of the model through tests has also
been shown in order to confirm the modeling assumptions.

VII. DISCUSSION

This section provides some discussion on the refinement
method presented in this paper. We also identify some limi-
tations of the method and propose possible solutions.

a) Refinement path(s): In the previous section (Sec-
tion VI), we have seen an example of application of our
method. Note that if model refinement and evaluation were
here performed sequentially, other paths could be possible. For
example, the model could have been partially refined, then
evaluated to check compliance with the constraint, refined again
if necessary, re-evaluated, and so on until an abstraction that
meet the constraint was found. Multiple paths are possible in
practice, and choosing an "optimal" refinement path is based on
practice and experience.

b) Tooling: The PML model captures data from various
sources. Although the models described in this paper were
done "by hand", a PML model could be automatically (or at
least partially) built with the data extracted from design files,
source code, configurations files, etc. For example, a script has
been developed in order to extract temporal exclusions from
the ASTERIOS’s RSF. In a complementary way, the PML
analyzer has also been extended in order to calculate metrics
(e.g., interferences for each component) that can be used to
drive the refinement process.

c) Reachability: When building a PML model, it may
be the case that reaching the solution is not possible (e.g.,
modeling or evaluation effort is too high) or that this solution
does not even exist (because the proposed design does not
meet the constraint). In these cases, it is necessary to mitigate
interferences (re-design the system) and model the system again.
The results provided by the PML analyzer (list of interferences,
interference channels) can be used in this task and the new
design elements can be incorporated in the PML model.

d) Validation: Validation of the model is an important
issue. For example, in Section VI-C, we proposed to ad-
dress validation through tests: tests are used to corroborate
interfering/non-interfering scenarios on the real system. How-
ever, this validation strategy is biased as it only enables to
validate the elements that are captured in the model: it is thus
possible to converge towards an incomplete model. A way to
solve this problem would be to complete the validation strategy
with benchmarks specifically devised to exhibit the common
micro-architectural mechanisms that may be undocumented.

VIII. CONCLUSION

This paper dealt with the interference problem in multicore
processor embedded systems. We extended the PHYLOG ap-
proach with a method to use the PML language. This method
relies on different types of refinements (structural, routing,
temporal, etc.) in order to build a precise and reliable model of
the system and then perform interference analysis (i.e., identify
interferences and evaluate their effects) in a sound way. We
showed an application of this method on an industrial use case
coming from the aerospace domain.

Future work could develop validation and evaluation aspects,
investigate tools to help to build PML models such as Large
Language Models (LLM) to deal with large datasheets, or
integrate PML with ASTERIOS or Prelude [17] development
toolchains to build interference-aware real-time applications.

ACKNOWLEDGMENT

This work has been done as part of the ARCHEOCS project
funded by the French Research Agency (ANR) and the partners of
the IRT Saint-Exupéry Scientific Cooperation Foundation and from
the PHYLOG 2 project funded by the France Relance program and
the European Union through the NextGenerationEU program. The
authors would also like to thank ASTERIOS Technologies, especially
Guillaume Phavorin, and Rapita Systems for their support in the use
of ASTERIOS and measurement tools.

REFERENCES

[1] “General Acceptable Means of Compliance for Airworthiness of Prod-
ucts, Parts and Appliances (AMC-20),” European Union Aviation Safety
Agency, Tech. Rep. AMC-20, Amendment 23, 2022.

[2] W.-T. Sun, E. Jenn, H. Cassé, and T. Carle, “Automatic Identification
of Timing Interferences on Multi-Core Processor in a Model-Based
Approach,” in Conférence d’informatique en Parallélisme, Architecture et
Système, 2019.

[3] V. A. Nguyen, E. Jenn, W. Serwe, F. Lang, and R. Mateescu, “Using Model
Checking to Identify Timing Interferences on Multicore Processors,” in
Embedded Real Time Software and System Conference (ERTS’20), 2020.

[4] F. Boniol, Y. Bouchebaba, J. Brunel, K. Delmas, T. Loquen, A. M. Gon-
zalez, C. Pagetti, T. Polacsek, and N. Sensfelder, “PHYLOG Certification
Methodology: a Sane Way to Embed Multi-Core Processors,” in Embedded
Real Time Software and Systems (ERTS 2020), 2020.

[5] X. Jean, L. H. Mutuel, and R. Soulat, “Assurance of Multicore Processors:
Limits on Interference Analysis,” Federal Aviation Administration, Tech.
Rep. DOT/FAA/TC-19/24, Mar. 2020.

[6] “Multi-Core Processors Position Paper,” Certification Authorities Software
Team, Tech. Rep. CAST-32A, Nov. 2016.

[7] D. Dasari and V. Nelis, “An Analysis of the Impact of Bus Contention
on the WCET in Multicores,” in IEEE International Conference on
High Performance Computing and Communication & IEEE International
Conference on Embedded Software and Systems, 2012.

[8] J. Bin, S. Girbal, D. Gracia Perez, A. Grasset, and A. Merigot, “Study-
ing Co-Running Avionic Real-Time Applications on Multi-Core COTS
Architectures,” in Embedded Real Time Software and System Conference
(ERTS’14), 2014.

[9] S. Girbal, J. Bin, D. Gracia Perez, and A. Merigot, “Using Monitors to
Predict Co-Running Safety-Critical Hard Real-TTime Benchmark Behav-
ior,” in Conference on Information and Communication Technology for
Embedded Systems, 2014.

[10] V. Brindejonc and A. Roger, “Avoidance of Dysfunctional Behaviour of
Complex COTS used in an Aeronautical Context,” in Congrès de Maîtrise
des Risques et Sûreté de Fonctionnement, 2014.

[11] “Infineon AURIX TC3xx User Manual Part1,” infineon, Tech. Rep.
(V2.0.0), 2021.

[12] V. David, A. Barbot, and D. Chabrol, “Dependable Real-Time Systems
and Mixed-Criticality: Seeking Safety, Flexibility and Efficiency with
ASTERIOS,” Krono-Safe, Tech. Rep., 2017.

[13] V. David, J. Delcoigne, E. Leret, A. Ourghanlian, P. Hilsenkopf, and
P. Paris, “Safety Properties Ensured by the OASIS Model for Safety
Critical Real-Time Systems,” in Computer Safety, Reliability and Security,
1998.

[14] F. Siron, D. Potop-Butucaru, R. de Simone, D. Chabrol, and A. Methni,
“The Synchronous Logical Execution Time Paradigm,” in Embedded Real
Time Software and Systems (ERTS2022), 2022.

[15] Mutuel, Laurence H., X. Jean, V. Brindejonc, A. Roger, T. Megel, and
E. Alepins, “Assurance of Multicore Processors in Airborne Systems,”
Tech. Rep. DOT/FAA/TC-16/51, 2017.

[16] S. Bayless, N. Bayless, H. Hoos, and A. Hu, “SAT Modulo Monotonic
Theories,” in AAAI Conference on Artificial Intelligence, 2015.

[17] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-task
Implementation of Multi-periodic Synchronous Programs,” Discrete Event
Dynamic Systems, vol. 21, no. 3, pp. 307–338, Sep. 2011.

	Introduction
	Related Work
	Use Case
	Approach
	PHYLOG Modeling Language
	Refinement Approach

	Refinement and PML Views
	Baseline Model
	Refinement

	Application on the Use Case
	Identification of Interferences
	Execution Time Evaluation
	Analytical formulation of execution time
	Application

	Validation
	Summary

	Discussion
	Conclusion
	References

