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Bone segmentation is an important step to perform biomechanical failure load simulations on in‑vivo 
CT data of patients with bone metastasis, as it is a mandatory operation to obtain meshes needed 
for numerical simulations. Segmentation can be a tedious and time consuming task when done 
manually, and expert segmentations are subject to intra‑ and inter‑operator variability. Deep learning 
methods are increasingly employed to automatically carry out image segmentation tasks. These 
networks usually need to be trained on a large image dataset along with the manual segmentations 
to maximize generalization to new images, but it is not always possible to have access to a multitude 
of CT‑scans with the associated ground truth. It then becomes necessary to use training techniques 
to make the best use of the limited available data. In this paper, we propose a dedicated pipeline of 
preprocessing, deep learning based segmentation method and post‑processing for in‑vivo human 
femurs and vertebrae segmentation from CT‑scans volumes. We experimented with three U‑Net 
architectures and showed that out‑of‑the‑box models enable automatic and high‑quality volume 
segmentation if carefully trained. We compared the failure load simulation results obtained on femurs 
and vertebrae using either automatic or manual segmentations and studied the sensitivity of the 
simulations on small variations of the automatic segmentation. The failure loads obtained using 
automatic segmentations were comparable to those obtained using manual expert segmentations for 
all the femurs and vertebrae tested, demonstrating the effectiveness of the automated segmentation 
approach for failure load simulations.

Bone metastasis can frequently be found on cancer patients, particularly those with primary breast or prostate 
 cancer1, and are the cause of a variety of complications, among which pathological fractures can lead to a substan-
tial decrease in the quality of life of the patients. Computed tomography (CT) is the imaging modality of choice 
for clinicians to evaluate the risk of pathological fractures, and although clinical scores, like Mirels score and SINS 
exist to evaluate fracture risk or bone instability in the case of  femoral2 and  vertebral3 metastasis respectively. 
Those scores either lack  specificity4–6 or show limitations when the score is  intermediate7,8.

To help the clinicians better evaluate the medical response, simulations based on finite element models are 
adequate to study the mechanical behavior of bones using CT-scans9. Failure load computation allows estima-
tion of the fracture risk using information from the CT-scans along with mechanical properties. Several finite 
element models exist to perform failure load simulations on  femurs10–17 and  vertebrae18–20, but few on metastatic 
bones. The quality and precision of bone segmentations are essential to obtain a reliable failure load estimation 
of the bones under constraint. Having experts manually annotate data is usually a satisfactory way of obtain-
ing high-quality segmentations, but the process, in addition to being dependent on operator reliability, is very 
tedious and time-consuming. When trying to simulate mechanical loads on the bones, the operator variability 
on segmentations can impact the  results21 and hinder the reproducibility of the failure load computation. To 
obtain reproducible experiments and accurate simulations, automating the segmentation task is an important 
step. Automatic segmentation methods for  femurs17,22–26, and  vertebrae27–30 allow us to work towards automating 
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failure load simulations on those bones. Convolutional neural networks are robust and allow to efficiently carry 
out segmentation tasks in the medical  field31,32, showing great reliability and segmentation performance, but 
heavily depend on the size, annotation precision and image quality in the training dataset.

The objective of our study is to propose automatic segmentation methods for femurs and vertebrae, then 
evaluate the quality of the automatic segmentations not only in terms of images metrics using DICE score and 
Hausdorff distance, but also in terms of failure load results compared to expert manual segmentations, when 
used in our simulation pipeline. We investigated the effect of variations of the initial automatic segmentation on 
the numerical simulations, for femurs and vertebrae, to better study the sensibility of the finite elements models 
to the input segmentation.

Results
Automatic segmentations
As shown in Table 1, the segmentation scores obtained with our models indicate a good segmentation quality.

The results highlight the importance of dedicated pre-processing when using custom U-Net architectures. For 
this task, the 3D models (nnUNet, custom 3D U-Net) outperform the 2D models, even when using a multi-axial 
approach. 3D U-Net and nnUNet perform very similarly, with only a slight improvement of HD for 3D U-Net.

Table 2 contains results of the nnUNet model on the secondary dataset with 16 femurs, with global and local 
metrics. The metrics obtained are close to the ones obtained previously, with a slightly higher DICE but a higher 
Hausdorff distance. The shaft is as expected the region segmented more accurately, but the model still achieves 
quality segmentation of the proximal part of the femur.

For vertebrae segmentation, nnUNet proved very efficient, but the HD is much higher, due to small mislabe-
ling of some vertebrae. The proximal part of the femur is more prone to segmentation errors than the distal part, 
but inaccuracies remain minimal. On vertebrae, the vertebral body and pedicle are less likely to be mislabeled 
or mis-segmented than the spinous or transverse process, where the delimitation between two vertebrae is more 
difficult to assess. The metrics obtained per vertebra are indicated in Supplementary Table S1. Those results show 
a disparity in the quality of the automatic segmentation depending on the vertebra, with transitional vertebra 
L6 and thoracic vertebrae T7 to T10 being more frequently mislabeled, causing a decrease of the DICE score 
for those vertebrae.

Figure 1 shows automatic segmentations obtained with our approach for both femurs and vertebrae, as well 
as the differences obtained in terms of distance when comparing to expert manual segmentation.

Failure load simulations
As shown in Table 3 and Fig. 2, the failure loads obtained for femurs, healthy or metastatic, using automatic 
segmentations are very close to those obtained with expert annotation.

The results obtained when adding morphological operations are very similar to the previous ones. When 
adding a single erosion or dilation operation, the results are comparable in terms of failure load. When apply-
ing erosion operations, the resulting failure loads are lower than when using only the automated segmentation, 
whereas the failure load value tends to increase when adding dilations. Only the comparison between failure 
loads obtained with manual and automatic with 2 erosions showed statistical significance. Simulation results 
obtained for each femur and vertebra are detailed in Supplementary Tables S2 and S3.

The simulation results on vertebrae also show great similarity between the failure loads obtained with auto-
matic and manual segmentations. The failure loads obtained with a single dilation operation are also comparable 

Table 1.  Segmentation results on the primary femur dataset. *Without pre-processing.

Task/dataset Algorithm DSC HD (mm)

Femur segmentation MEKANOS database

U-Net 2D multi axial* 0.74 ± 0.09 49.86 ± 12.57

U-Net 2D multi axial 0.93 ± 0.01 2.30 ± 0.82

U-Net 3D 0.96 ± 0.01 2.20 ± 0.71

nnUNet 3D fullres 0.96 ± 0.01 2.40 ± 0.84

Vertebrae segmentation VerSe 2019 & 2020
nnUNet 3D fullres—binary 0.95 ± 0.02 19.74 ± 36.54

nnUNet 3D fullres—multiclass 0.89 ± 0.14 33.89 ± 58.09

Table 2.  Segmentation results on our secondary femur dataset depending on the area.

Femur region DC HD (mm)
Shaft (green) 0.979 0.004 1.69 0.37
Middle region (blue) 0.975 0.003 2.77 0.71
Head (red) 0.976 0.003 2.66 0.88
Global 0.977 0.002 2.96 0.82
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to those obtained with the manual segmentations. However, with added erosions or when adding a second dila-
tion, the failure load drops and the difference with the ground-truth results is statistically significant in those 
three cases.

Discussion
The objective of our approach was to quantify the effect of segmentation variation on failure load simulation. Our 
segmentation results are visually satisfactory for both femur and vertebrae segmentation, and the image metrics 
used show that our femur segmentation pipeline has results comparable to state-of-the-arts  methods23–25, while 
being trained with a very small dataset. All areas of the femur including the hip joint are segmented with minimal 
error. Similarly, our vertebrae segmentation method produces results that closely match the performance of the 

Figure 1.  Automatic segmentations obtained with nnUNet (left) and pixels distance to the ground-truth 
(right).

Table 3.  Comparison of image metrics and simulation results with manual segmentation.

Automatic 
segmentation + erosion 
(2 pixels)

Automatic 
segmentation + erosion 
(1 pixel) Automatic segmentation

Automatic 
segmentation + dilation 
(1 pixel)

Automatic 
segmentation + dilation 
(2 pixel)

Femurs

DICE 0.882 ± 0.026 0.933 ± 0.012 0.974 ± 0.008 0.959 ± 0.013 0.920 ± 0.026

Absolute mean of differ-
ence with manual FL (N) 473 ± 336 168 ± 105 119 ± 66 132 ± 121 203 ± 201

Absolute mean of differ-
ence with manual FL (%) 7.42 ± 5.00 3.19 ± 2.55 2.25 ± 1.91 2.79 ± 3.37 4.45 ± 5.42

Vertebrae

DICE 0.763 ± 0.055 0.855 ± 0.050 0.929 ± 0.045 0.920 ± 0.043 0.862 ± 0.046

Absolute mean of differ-
ence with manual FL (N) 2320 ± 449 832 ± 420 503 ± 505 500 ± 537 1126 ± 676

Absolute mean of differ-
ence with manual FL (%) 38.69 ± 6.81 16.11 ± 9.11 7.53 ± 8.17 8.63 ± 11.18 19.00 ± 12.89

Figure 2.  Simulated failure load depending on segmentation.
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top-performing techniques on the VerSe  datasets29. Manual segmentations take at least 30 min to be done while 
the automatic approach only takes a few minutes, without the need of human intervention.

Our simulation results are in line with the anatomical reality, with the failure load being affected by the posi-
tion of the metastasis, as well as the structure of the bone, with osteoporosis greatly influencing the simulations. 
The detailed results in Tables S2 and S3 in supplementary material show that the presence of metastasis tends to 
decrease substantially the failure load, but in some cases, due to the small size and favorable positioning of the 
metastasis, it does not impact the simulated failure load. This observation confirms the impact of the location 
and size of the metastasis on bone strength.

Our simulated failure loads show sensitivity to segmentation variations: When working on femurs, failure 
loads tend to increase slightly when applying dilation operations and decrease when applying erosions. It is usu-
ally obvious that adding material to the object increases strength and removing material decreases it. Indeed, the 
dilation operation will increase the volume of the area considered as our bone, and potentially add a few voxels 
corresponding to cortical bone that were not considered in the initial automatic segmentation. The erosion 
operations reduce the overall volume used in the simulation, and with less cortical bone considered, the failure 
load obtained decreases. The lower failure loads obtained after erosion were expected, but they were relevant 
to quantitatively assess the effect of a segmentation error on the simulation results. In the same way, the failure 
loads obtained after dilation are also very logical but provide additional information on the segmentation errors 
that can be deemed acceptable for a use in simulation. As seen in Table 3, while the DICE is slightly better with 
plain automatic segmentation, both the automatic segmentation and the segmentation with added dilation show 
simulation results really close to the ground-truth simulation. Results also show that an under-segmentation 
(missing some cortical pixels) impacts the results a lot more than an over-segmentation (more soft tissues are 
added which do not influence the failure load value). We could therefore consider post-processing methods 
accordingly, knowing that over-segmenting could help improve the simulation accuracy in some cases.

For vertebrae simulations, the resulting failure loads are a lot more sensitive to segmentation variations, but 
the results obtained with the plain automatic segmentation are very similar to those obtained using the manual 
segmentation. The obtained failure loads decrease as expected when adding erosion, but they decrease as well 
when adding dilation operations. This can be explained by the simulation method used for the simulations on 
vertebrae, with endplate detection being heavily reliant on the outside segmentation pixels. As seen in Table 3, the 
simulation results are closest to those obtained with the ground-truth when using plain automatic segmentation 
or automatic segmentation with a single dilation operation.

Failure load estimations could still be improved through optimization of the simulation protocol, and the 
next step would be to take into consideration specific mechanical properties of the metastasis. However, with 
only slight variations on the simulations for both vertebrae and femurs, we can assume that the precision attained 
with our segmentation models is sufficient to convert into accurate failure load simulations. The segmentations 
obtained with a single added dilation operation can also be of interest for failure load simulations and can provide 
additional information to the initial results on the considered bone.

Materials and methods
In the following section, we detail the different datasets used for the two segmentation tasks and the simula-
tions, as well as the simulation parameters and software used for failure load assessment. We also explain the 
pre-processing pipeline developed to be applied prior to the training phase of the neural networks. We describe 
our approach for simulation comparisons with manual and automatic segmentations.

The study protocol was approved by the French Ethics Committee (CPP SUD-EST 1 France) under regis-
tration number ID-RCB: 2019-A01202-55. All procedures have been conducted in compliance with national 
and European regulations. All included patients received clear information and provided written consent, and 
informed consent was obtained from all subjects and/or their legal guardian(s).

Datasets
We use two datasets for bone segmentation: one publicly available for the vertebrae and one from the project for 
the femurs. Existing datasets with CT-scans of femur along with manual segmentation are either not available 
or lack the accuracy required for the training of robust models, especially on the femoral head. For the femur 
segmentation task, MEKANOS cohort was used (Hospices civils Lyon, agreement number N. 21 5467, May 
28th, 2021, Supplementary Table S5). This cohort consists of eleven in-vivo CT-scans of hips, where both femurs 
are present. Those scans were acquired in clinical routine following a specific procedure (constant table height, 
quality phantom QA Mindways, 120 kV, 270 mAs, 1 Pitch, Field of view 360 mm and 200 mm, reconstruction: 
standard filter B, 512 × 512 matrix, slice thickness 0.7 mm) and with three manufacturers acquisition systems 
(General Electric, Philips and Siemens). A few femurs have metastatic osteolytic lesions which complicates the 
segmentation task but allows trained models to segment metastatic bones more efficiently, which is important 
for our study. From this database, eighteen femurs were manually segmented (4 femurs were not available).

As a secondary test dataset to better assess the robustness of the chosen trained model, additional femurs 
(n = 16, 9 patients) from four different centers were added from MEKANOS cohort a posteriori, along with man-
ual segmentations. Inter-operator variability was also measured using 6 ex-vivo femurs (Supplementary Table S4). 
On those femurs, the impact of inter-operator variability on failure load is illustrated in Supplementary Fig. S2).

For the vertebrae segmentation task, we used two publicly available datasets: VerSe2019 and  VerSe202029. 
Those datasets contain 374 CT-scans of various sizes all with manual segmentation. The number of vertebrae 
on each scan ranges from 3 to 25, with all types of vertebrae present in the dataset. In this study, we retained 363 
patients, excluding those with additional transitional T13 scanned. Figure 3 shows examples of axial, coronal and 
sagittal slices taken from those datasets. The data used for simulation tests consists of 12 femurs from 6 patients (6 
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scans), among which 6 are healthy and 6 with metastasis, as well as 15 vertebrae from 2 patients (2 scans) among 
which 13 are healthy and 2 with metastasis (1 thoracic and 1 lumbar), all taken from the MEKANOS database.

Simulation pipeline
For both vertebrae and femurs failure load simulations, a custom finite elements simulation pipeline, described 
in Fig. 4 was used with dedicated parameters in order to compute the failure load of the considered bones. 
When working on femurs, we used a published model from Sas et al. based on voxel-based hexahedral  meshes10. 
These meshes were either obtained using a manual CT-segmentation using the software 3D Slicer, or using an 
automatic segmentation from a neural network described in part D. The intensity values in the CT-scan were 
converted to bone density using the calibration phantom included in the  acquisition10. Each element of the mesh 
was attributed a bone density corresponding to the voxels bone densities. The bone density of each element was 
then used to compute the mechanical parameters of the non linear constitutive  law10 (cf. Supplementary Fig. S1).

The grey density values were converted to Young’s modulus using the calibration phantom included in the 
 acquisitions10:

Using Ansys software (version 2021 R1), an axial compression was applied on the femurs, mimicking a 
standing position. An incremental displacement was applied on the top nodes of the femoral head (quasi-static) 
until it reached a maximal displacement. The nodes at the distal end of the diaphysis were constrained by a null 
displacement. The failure is defined as the maximum load occurring during the  simulation10.

(1)E(MPa) = 14900ρQCT1.86

Figure 3.  Example of CT data used for vertebrae and femurs segmentation.

Figure 4.  Simulation pipeline for fracture risk assessment.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16576  | https://doi.org/10.1038/s41598-024-66934-w

www.nature.com/scientificreports/

For vertebrae simulations, a quadratic tetrahedral mesh (10 nodes) with a volume of element of 1  mm3 was 
used based on experimental data  from33, and for the numerical model, we used the elasticity-density relationship 
 from34 using the calibration phantom:

We used a linear elastic—perfectly plastic constitutive law, with a yield strain of 1.5%  strain35. The failure 
criteria consisted in considering a strain of 1.9% of the total vertebral height  reduction36. All the simulations 
were also run using Ansys software.

Pre‑processing pipeline
For femur segmentation, we propose a fully automated segmentation method with a pre-processing pipeline as 
illustrated in Fig. 5 to facilitate the deep learning training. Our dataset contains only few annotated data, and 
dedicated pre-processing is important to ensure the robustness of the proposed models.

The pre-processing pipeline is made of several steps: after selection and manual expert annotation of the 
femurs, the volumes are all resampled to the median voxel size (0.78 × 0.78 × 0.67 mm), then cropped when both 
femurs are present in order to separate them into two distinct volumes. The split left femurs are then flipped to 
obtain a comparable orientation for all volumes. To further increase the homogeneity of the dataset, especially 
the spatial orientation of the femurs, the flipped left femurs and right femurs are registered together, using affine 
transforms. Adding the co-registration step between femurs makes the global spatial orientation more similar 
between femurs. Co-registration ensures the robustness of the network despite few training data, while preserving 
the automatic aspect of our pipeline. The resulting volumes are then all normalized before being used as input 
of the convolutional neural network.

In addition to ensuring the proper training of the neural network, the pre-processing pipeline allows to 
increase the size of the dataset, thanks to the splitting of the initial volumes.

Neural networks
We used several convolutional neural networks all based on the U-Net  architecture31. We implemented a 2D 
multi-planar U-Net, as well as a 3D U-Net for femur segmentation. We compared the results with nnUNet, the 
state-of-the-art convolutional neural network for medical image  segmentation32.

Three 2D-UNet were trained on axial, coronal and sagittal slices for 500 epochs. The 3 resulting segmentations 
were then fused using majority voting. The 3D U-Net model was trained using random patches of size 64 × 64 × 64 
for 300 epochs. Data augmentation, such as random rotations, translations, shearing and scaling was used on-
the-fly to prevent overfitting. All custom UNets were trained using Adam optimizer (β1 = 0.9, β2 = 0.999) and a 
DICE loss, with a learning rate α = 2 ×  10−4 and a batch size of 16 for 2D U-Net, α = 3 ×  10−5 and a batch size of 4 
for 3D U-Net. We also added morphological post-processing operations based on binary dilation and erosion 
to remove small unwanted islands and improve segmentation results.

The nnUNet architecture used is the ‘3d fullres’, with patch sizes automatically selected (238 × 196 × 208 for 
femur segmentation and 205 × 205 × 205 for vertebrae segmentation) and default parameters, and was trained 
for 1000 epochs. The optimizer used is stochastic gradient descent with an initial learning rate of 0.01. The batch 
size was set to 2 for both trainings. We only used this architecture for vertebrae segmentation as the results for 
femur segmentation were comparable to our custom 3D U-Net and the amount of training data was sufficient 
to avoid the need for dedicated pre-processing, and the only pre-treatments operations were automatically made 
with nnUNet.

The models were trained on a Nvidia P100 GPU with 16 GB VRAM. The total training time was 12 h for 2D 
U-Net per axis, 16 h for 3D U-Net and 48 h for nnUNet on the femur dataset. This substantial difference is also 
present during inference, where nnUNet takes up to 30 min for a prediction when standard models only take 
up to 3 min.

(2)E(MPa) = 3230ρQCT − 34.7

Figure 5.  Segmentation pipeline used for femur segmentation.
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Segmentations and simulations comparison
To quantify the segmentation results, we used the Sørensen-Dice score (noted DSC) to evaluate the similarity 
between the ground-truth and the automatic segmentations ([0;1] where 1 is the best), as well as the Hausdorff 
distance (noted HD) to evaluate the maximum errors of the automatic segmentations (in mm, smaller the better). 
All metrics are computed on 3D volumes. We used a fivefold cross-validation to quantify more accurately the 
results. Among the 18 available femurs, 12 were used for training, 4 for validation and 2 for testing. For vertebrae 
segmentation, 242 scans were used for training, 61 for validation and 60 for testing.

To compare the influence of the segmentation on the failure load simulations, we computed the failure load 
on 12 femurs, using automatic segmentations and using expert manual annotation for comparison. We also 
compared results using automatic and manual segmentation on 15 thoracic and lumbar vertebrae. In both 
cases, we also applied simple morphological operations (dilation/erosion), with either one or two iterations to 
the automatic segmentation as a way to introduce variability to the automatic segmentations. The objective is to 
investigate the effect of slight segmentation variations on the resulting failure load.

Statistical analysis
Statistical tests were performed using SPSS software (SAS Institute, Cary, NC). Differences among groups were 
evaluated using non-parametric test (Friedman test). When a significant overall F value (P < 0.05) was present, 
differences between individual group means were tested using Dunn’s multiple comparison post-hoc tests. Only 
comparisons with the manual segmentation are presented. For all tests, P < 0.05 was considered statistically 
significant. Data are presented as mean ± standard error.

Conclusion
In this paper we proposed a dedicated pre-processing pipeline for femur segmentation as well as deep learning 
based segmentation methods for femurs and vertebrae segmentation. From our experiments, we showed that it 
is primordial to use pre-processing in order to improve the segmentation results. U-Net architectures are efficient 
and can serve as primary tools to perform automated bone segmentations. We showed that failure load simula-
tions depend on the initial segmentations, and that automatic segmentations yield similar simulation results as 
simulations made with expert segmentations. The variations on segmentations when adding dilation or erosion 
operations impact the simulations, with the closest results to the simulations using expert simulations being 
those using the plain automatic segmentation and the automatic segmentation with one dilation operation. The 
results obtained allow us to envision the use of this approach in a broader pipeline in biomechanical simulations 
on patients with metastatic lesions.

Data availability
Data is not made publicly available due to ethical or privacy reasons. Data used for this study is available on 
request to the corresponding author.
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