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This paper proposes a tentative and original survey of meeting points between Knowledge 
Representation and Reasoning (KRR) and Machine Learning (ML), two areas which have been 
developed quite separately in the last four decades. First, some common concerns are identified 
and discussed such as the types of representation used, the roles of knowledge and data, the lack 
or the excess of information, or the need for explanations and causal understanding. Then, the 
survey is organised in seven sections covering most of the territory where KRR and ML meet. 
We start with a section dealing with prototypical approaches from the literature on learning 
and reasoning: Inductive Logic Programming, Statistical Relational Learning, and Neurosymbolic 
AI, where ideas from rule-based reasoning are combined with ML. Then we focus on the use 
of various forms of background knowledge in learning, ranging from additional regularisation 
terms in loss functions, to the problem of aligning symbolic and vector space representations, 
or the use of knowledge graphs for learning. Then, the next section describes how KRR notions 
may benefit to learning tasks. For instance, constraints can be used as in declarative data mining 
for influencing the learned patterns; or semantic features are exploited in low-shot learning to 
compensate for the lack of data; or yet we can take advantage of analogies for learning purposes. 
Conversely, another section investigates how ML methods may serve KRR goals. For instance, one 
may learn special kinds of rules such as default rules, fuzzy rules or threshold rules, or special 
types of information such as constraints, or preferences. The section also covers formal concept 
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analysis and rough sets-based methods. Yet another section reviews various interactions between 
Automated Reasoning and ML, such as the use of ML methods in SAT solving to make reasoning 
faster. Then a section deals with works related to model accountability, including explainability 
and interpretability, fairness and robustness. Finally, a section covers works on handling imperfect 
or incomplete data, including the problem of learning from uncertain or coarse data, the use of 
belief functions for regression, a revision-based view of the EM algorithm, the use of possibility 
theory in statistics, or the learning of imprecise models. This paper thus aims at a better mutual 
understanding of research in KRR and ML, and how they can cooperate. The paper is completed 
by an abundant bibliography.

1. Introduction

Learning and reasoning are two basic aspects of intelligence. In the context of Artificial Intelligence (AI), these two aspects have 
often been studied independently, giving rise to distinct fields of research: Machine Learning (ML) and Knowledge Representation 
and Reasoning (KRR), respectively. Despite the traditional separation between these two fields, there is now a welcome and growing 
emphasis in the literature on the complementary strengths and weaknesses of their respective methodologies. For instance, ML 
methods can deal with raw data (e.g., in textual or visual form) and often requires less modelling efforts to be deployed, as long as 
sufficient training data can readily be obtained, but they often lack interpretability, and, typically, cannot provide strong guarantees 
as to the robustness of their outputs. This black box nature of ML methods is a fundamental concern, which reduces their appeal in 
cases where high-stakes decisions have to be made [532]. The presence of gender and racial biases in data, for instance, is problematic 
whenever ML methods are deployed [580]. On the other hand, KRR methods tend to produce results in a more transparent and 
systematic way, but they typically rely on the availability of structured knowledge that has been carefully encoded in some formal 
language, and may face scalability issues. The so-called knowledge acquisition bottleneck is again a fundamental concern, which has 
played a central role in the more limited acceptance of KRR methodologies in the industry.

The need to integrate methods from ML and KRR, given their complementary nature, has already been extensively discussed in 
survey papers [63], edited volumes [309], special issues,1 a recurring special session at the KR conference,2 as well as dedicated 
workshops and conferences [156]. In this overview paper, we aim to contribute to this discussion by taking a broader view on the 
possible synergies. We note, in particular, that existing work tends to rely on generalised and overly simplistic dichotomies, which 
suggest that there exists a large gap between KRR and ML: KRR deals with knowledge, ML handles data; KRR privileges symbolic 
approaches, while numerical methods dominate in ML. Even if such claims cannot be fully denied, they are nonetheless misleading. 
We believe that they stem from an overly narrow view of what constitutes reasoning, which is often implicitly equated with the 
use of rule-based methods, and learning, which is increasingly being equated with neural-network-based methods. To illustrate this 
point, let us take the example of Case-Based Reasoning [1], where we need to make a prediction about some query case by relying 
on similar cases with known labels. Here, the reasoning aspect essentially involves a form of analogical transfer, i.e. inferring how 
the labels of similar cases need to be adapted given their differences with the query case. Here we are thus reasoning about data, 
rather than about structured knowledge, which may moreover be numerical. Such examples illustrate the claim that the boundary 
between learning and reasoning is blurrier than is often assumed.

While we will not attempt to precisely define what reasoning means, we note that it involves dealing with incomplete knowledge. 
In the traditional setting, a symbolic knowledge base encodes incomplete knowledge about a state of affairs in the form of a set of 
possible worlds. Similarly, in case-based reasoning we have highly incomplete knowledge of how labels have been assigned to cases, 
merely relying on the knowledge that the label assignments satisfy some kind of regularity which allows for analogical transfer. Of 
course, ML settings also involve incomplete knowledge and data, and learnt models represent imperfect knowledge about the “true” 
underlying function or distribution.

Perhaps, the dichotomy between KRR and ML somewhat echoes the distinction advocated in psychology by Kahneman between 
“System 1” and “System 2” for describing the two kinds of activities of the human mind: “System 1 operates automatically and quickly, 
with little or no effort and no sense of voluntary control. System 2 allocates attention to the effortful mental activities that demand it, including 
complex computations. The operations of System 2 are often associated with the subjective experience of agency, choice, and concentration.” 
[356]. Still, the relevance of this parallel is a matter of debate.

The aim of the present survey is to illustrate that synergies between KRR and ML are much broader and more diverse than 
commonly thought and go beyond the issues discussed in the previous paragraphs. We start in Section 2 with a presentation of a 
number of issues that arise both in KRR and ML. These common concerns include the importance of representations, the need for 
trade-offs to manage complexity, the need to deal with imperfect information, and the importance of explanations. Then, our survey 
is organised in seven sections as follows:

• In Section 3, we first focus on methods where ML is combined with rule-based reasoning, which covers the most prototypical 
approaches from the literature on Learning and Reasoning: Inductive Logic Programming (ILP), which is a family of machine 

1 https://www .springer .com /journal /10994 /updates /17562232.
2

2 https://kr2022 .cs .tu -dortmund .de /cfp _special _session _kr _and _machine _learning .php.
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learning methods where learned models take the form of a logic program, Statistical Relational Learning, which builds on ILP by 
combining logical representations and probability distributions for representing learned models, and Neurosymbolic AI, where 
ideas from rule-based reasoning are combined with neural networks.

• In Section 4, we then focus on cases where symbolic background knowledge, in some form, is used to improve traditional 
machine learning systems. This covers, for instance, cases where the available background knowledge gives rise to an additional 
regularisation term in the loss function, or where such knowledge is used to constrain the latent representations which are 
learned by the model, by making them more semantically meaningful (or even interpretable) in some sense.

• Section 5 subsequently discusses machine learning methods which rely on reasoning processes, beyond rule-based reasoning. 
This section covers work on declarative data mining, where some form of constraint satisfaction is used to influence or restrict 
the patterns which are learned (e.g. clusters) and low-shot learning, where reasoning is used to alleviate the lack of explicit 
training data. Under the same umbrella, we also consider case-based reasoning, analogical reasoning and transfer learning.

• Whereas the preceding sections are essentially concerned with using methods and insights from KRR to improve ML systems, 
the next two sections are mostly concerned with the use of ML methods for improving KRR systems. In Section 6, we discuss in 
particular how machine learning methods can be used to alleviate the knowledge acquisition bottleneck. The idea of learning 
rules from data plays a central role here. Rather than giving a comprehensive overview on rule learning, however, we emphasise 
in particular the need to go beyond traditional rules (e.g., Horn rules interpreted using material implication). We discuss in 
particular the advantages of learning default rules, fuzzy rules and threshold rules. Beyond rules, we also cover methods for 
learning constraints and preferences.

• Section 7 then surveys work in which ML methods are used for improving reasoning processes themselves. This covers traditional 
KRR settings, such as SAT solving, where ML methods may be used to make reasoning faster.

• In Section 8, we cover work related to model accountability, including explainability and interpretability, fairness and robustness, 
since the solution to such issues often relies on ideas from KRR. For instance, the need for interpretability may require us to 
relate learned models to symbolic knowledge, while robustness is linked to notions such as causality.

• Finally, Section 9 covers works on handling imperfect data including, for instance, the problem of learning from coarse labels. 
While this topic is not usually considered in the context of Learning & Reasoning, it is nonetheless highly relevant if we view 
reasoning from the perspective of dealing with incompleteness.

This survey paper is part of a special issue of the International Journal of Aproximate Reasoning dedicated to the synergies between 
KRR and ML. The papers in the special issue are also briefly described (in italics) in the relevant sections of this introductory paper.

2. Common concerns

In order to suggest and illustrate differences and also similarities between KRR and ML, let us start with the simple example of a 
classification or recommendation-like task, such as, e.g., associating the profile of a candidate (in terms of skills, tastes, and so on) 
with possible activities suitable for him/her in a vocational guidance system. Such a problem may be envisioned in different manners. 
On the one hand, one may think of it in terms of a rule-based system relying on some expertise (where rules may be pervaded with 
uncertainty), or on the other hand in terms of machine learning by exploiting a collection of data (here pertaining to past cases in 
career guidance).

Let us first observe that traditionally KRR is seen as mostly concerned by deductive and abductive reasoning while ML is mostly 
concerned by inductive reasoning. Beyond the differences of types of representation and reasoning that are used in both kinds of 
approach (e.g., conditional tables for uncertainty assessment vs. weights in a neural net), there are some noticeable similarities 
between (graphical) structures that can be associated with a rule-based reasoning device, handling uncertainty (or an information 
fusion process) and with a neural net. This remark suggests that, beyond differences in perspective, there is some structural resem-
blance between the two types of process. This resemblance has been investigated recently in detail in the setting of belief function 
theory [181], but an example may also be found in possibility theory, starting with an older work on a possibilistic (max-min) matrix 
calculus devoted to explainability (where each matrix represents a rule) [241,215,36].

Beyond this kind of parallel, KRR and ML have common concerns. This section gives an overview of the main ones regarding 
the representation issues, the complexity, the role of knowledge, the handling of lack of information, or information in excess, 
uncertainty, and last but not least regarding causality and explanation. Each subsection below tries to follow the same basic structure, 
by each time providing i) the KRR view, ii) the ML view, and iii) some synthesis and discussion.

2.1. Types of representation

AI deals with studying and designing computer programs that behave intelligently, which in part entails mimicking mental fac-
ulties observed in living organisms like thinking and learning. Within AI, KRR is concerned with how knowledge can be represented 
symbolically and manipulated in an automated way by programs while, in ML, the focus is on discovering means, whatever they 
may be, for realizing induction.

In KRR, the central concerns are what an agent need to know to behave intelligently and what sort of computational mechanisms 
might allow the useful pieces of knowledge to be made available when required and be manipulated in order to produce new 
3

knowledge. In one word, reasoning is the aim.
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Fig. 1. Machine learning transforms knowledge provided as input (1) under the form of data and the choice of a learning algorithm and produces knowledge (2) in 
the form, e.g., of prediction rules and possibly of information about the learning process followed.

In ML, symmetrically, the question is how to acquire knowledge from data in order to automatically produce what may be 
called programs that output useful and reasonable answers when fed with inputs or queries (e.g. propose a diagnosis when seeing a 
mammography from a patient). Here, learning is the keyword.

In both cases, knowledge plays a role, and an important one. But this is not the same one. It might thus appear that on one 
side are gardeners who meticulously tend to and extend “jardins à la française” while on the other side are barbarians for whom 
anything goes as long as seeds grow and who have no respect for the rules of plant growing and marrying. However, this is only a 
misconception: hard rules are followed and obeyed on each side.

On the side of KRR, the crux is the interplay between representation and reasoning, that is how knowledge can be represented 
as comprehensively as possible and, at the same time, be reasoned with as effectively as possible. There exists a whole range of 
representation systems and formalisms aimed at various uses and applications. Without exhaustiveness, one can mention logic-based 
ones like propositional logic, first-order logic, Horn clauses, default logic, fuzzy logic and its variants, or production rules, object-
oriented and graph-based ones, and situation calculus. It can therefore appear that each of these representation systems is dedicated 
to a particular view on the world and a particular use. But then, why not look for a more general language, one that would allow to 
represent anything in the world and be, in a way, co-extensive with the natural language that we use to communicate between us? 
Brachman and Levesque [401,400,399] have shown that there is a trade-off between the expressiveness of a representation system 
and the computational tractability of reasoning using it.

There is thus a need for limiting reasoning to preserve tractability. For instance, not looking for all natural consequences of what 
is expressed using weaker notions of entailment.

On the side of ML, the tradeoff stems from a fundamental law: machine learning just reformulates what has been given as inputs. 
A kind of conservation theorem is at play: no information is “added” above the data provided and the existing prior knowledge. If, 
therefore, the data is limited, lots of prior knowledge is required, whereas big data allows for less prior knowledge. Machine learning 
“consumes” knowledge as input in the form of data, algorithms, which is a kind of knowledge, and prior knowledge and it produces 
knowledge in the form of prediction rules or patterns and possibly in the form of justification or explanation of the process used in 
this production (see Fig. 1).

Here then, in order to control the quality of the induction that is realized by the machine, the ML practitioner must pay attention 
to the way the (never) raw data is fed which includes all the bias introduced by the choice of experimental apparatus, the choice of 
descriptors, their normalization, the possible enrichments using ontologies, the way missing values are dealt with, and so on, as well 
as the knowledge embedded in the learning algorithm and its own bias. This includes constraints on the hypothesis space, like the 
preference for sparse linear rules, as well as the choice of the architecture of the neural network if such a machinery is used.

ML has, therefore, its own tradeoff to delicately optimize between the information to provide in the form of data and the 
knowledge given by the choice of the learning algorithm. And because it is focussed on induction, an inference mechanism notoriously 
prone to errors, ML must be very careful about the quality of the results of learning, hence the emphasis on interpretability and 
explanations.

Looking back at representational issues, in KRR, as suggested by the name, the main representation issues concern the repre-
sentation of pieces of knowledge (rather than data). The large variety of real world information has led to a number of logical 
formalisms ranging from classical logic (especially propositional and first order) to modal logics (for dealing with, e.g., time, deontic, 
or epistemic notions) and to non-classical logics for handling commonsense reasoning.

The representation may use different formats, directed or undirected: sets of if-then rules, or sets of logical formulas. A rule 
“if 𝐴 then 𝐵” is a 3-valued entity (as first noticed in [164]), since it induces a partition between its set of examples, its set of 
counterexamples and the set of items for which the rule is irrelevant (i.e., when 𝐴 is false). So a rule strongly departs from its apparent 
logical counterpart in terms of material implication 𝐴 → 𝐵 (which is indeed non-directed, since it is equivalent to ¬𝐵→ ¬𝐴). This 
discrepancy can be also observed in the probabilistic setting, since 𝑃𝑟𝑜𝑏(𝐵|𝐴) ≠ 𝑃𝑟𝑜𝑏(𝐴 → 𝐵) in general. Rules may hold up to 
(implicit) exceptions (see subsection 2.3).

Knowledge may be pervaded with uncertainty, which can be handled in different settings, in terms of probability, possibility, 
belief functions, or imprecise probabilities (see subsection 2.3). In all of these cases, a joint distribution can be decomposed in sub-
distributions laying bare some form of conditional independence relations, with a graphical counterpart; the prototypical graphical 
models in each representation are respectively Bayesian networks (probabilistic), possibilistic networks, credal networks (imprecise 
probabilities [138]) or valuation-based systems (belief functions [566]). Conceptual graphs [579,110] offer a graph representation 
4
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The main goal of KRR is to develop sound and (as far as possible) complete inference mechanisms to draw conclusions from 
generic knowledge and factual data, in a given representation setting [298,297]. The mathematical tools underlying KRR are those 
of logic and uncertainty theories, and more generally discrete mathematics. An important issue in KRR is to find good compromises 
between the expressiveness of the representation and the computational tractability for inferring the conclusions of interest from it 
[401]. This concern is especially at work with description logics that are bound to use tractable fragments of first order logic. (See 
subsection 2.2.)

The situation in ML is quite different concerning representation issues. ML aims at learning a model of the world from data. There 
are thus two key representation problems: the representation of data and the representation of models. See, e.g., [127,128]. In many 
approaches the data space is assimilated to a subset of ℝ𝑝, in which the observations are described by 𝑝 numerical attributes. This is 
the simplest case, allowing the use of mathematical results in linear algebra and in continuous optimization. Nevertheless, data may 
also be described by qualitative attributes, as for instance binary attributes, thus either requiring to transform discrete attributes into 
continuous numerical scales, or requiring different mathematical approaches, based on discrete optimisation and on enumeration 
coupled with efficient pruning strategies. Quite often, data is described by both types of attributes and only few ML tools, for instance 
decision trees, are able to handle them without any transformation into one single type. Therefore, changes of representation are 
needed, as for instance discretization, or the encoding of qualitative attributes into numerical ones, all inducing a bias on the learning 
process. More complex data, such as relational data, trees, and graphs need more powerful representation languages, such as first 
order logic or some proper representation trick as for instance propositionalization or the definition of appropriate kernels. It is 
important to notice that the more sophisticated the representation language, the more complex the inference process and a trade-off 
must be found between the granularity of the representation and the efficiency of the ML tool.

Regarding models, they depend on the ML task: supervised or unsupervised classification, reinforcement learning, learning to 
rank, mining frequent patterns, etc. They depend also on the type of approach that one favours: more statistically or more artificial-
intelligence oriented. There is usually a distinction between generative and discriminative models (or decision functions). In the 
generative approach, one tries to learn a probability distribution pX over the input space X , or at least a model able to generate 
samples assumed to follow a distribution close enough to pX . If learning a precise and accurate enough probability distribution is 
successful, it becomes possible in principle to generate further examples 𝑥 ∈X , the distribution of which is indistinguishable from 
the true underlying distribution. It is sometimes claimed that this capability makes the generative approach “explicative”, yet this is 
clearly a matter of debate. The discriminative approach does not try to learn a model that allows the generation of more examples. It 
only provides either a means of deciding, when in the supervised mode, or a means to express some regularities in the data set in the 
unsupervised mode. These regularities, as well as these decision functions can be expressed in terms of logical rules, graphs, neural 
networks, etc. While they do not allow to generate new examples, they nonetheless can be much more interpretable than probability 
distributions.

Very sketchily, one can distinguish between the following types of representations.

• Linear models and their generalisations, such as linear regression or the linear perceptron first proposed by Rosenblatt [527]. 
Because these models are based on linear weightings of the descriptors of the entries, it looks easy to estimate the importance of 
each descriptor and thus to offer some understanding of the phenomenon at hand. This, however, assumes that the descriptors 
are uncorrelated and are well chosen.

• Nonlinear models are often necessary in order to account for the intricacies of the world. Neural networks, nowadays involving 
very numerous layers of non linearity, are presently the favourite tools for representing and learning non linear models.

• Linear models as well as nonlinear ones provide a description of the world or of decision rules through (finite) combinations 
of descriptors. They are parametric models. Another approach is to approximate the world by learning a non previously fixed 
number of prototypes and use a nearest-neighbour technique to define decision functions. These systems are capable of handling 
any number of prototypes as long as they can fit the data appropriately. Support Vector Machines (SVM) fall in this category 
since they adjust the number of support vectors (learning examples) in order to fit the data. Here, explaining a rule may mean 
providing a list of the most relevant prototypes that the rule uses.

• The above models are generally numerical in essence, and the associated learning mechanisms most often rely on some optimi-
sation process over the space of parameters. Another class of models relies on logical descriptions, e.g., sets of clauses. Decision 
trees can also be considered as logic-based, since each tree can be transformed into a set of clauses. The learning algorithms 
use more powerful structures over the space of models than numerical models. In many cases the discrete nature of the search 
space and the definition of a generality relation between formulas allow the organization of models in a lattice and the design of 
heuristics to efficiently prune the search space. More generally, these approaches are usually modelled as enumeration problems 
(e.g., pattern mining) or discrete optimization problems (supervised learning, clustering). Moreover such models offer more 
opportunities to influence the learning process using prior knowledge. Finally, they can be easily interpreted. The downside is 
their increased brittleness when coping with noisy data.

2.2. Coping with complexity

In both ML and KRR there is a trade-off between the generality of the approach and what is feasible in practice. In KRR, this 
generality amounts to the expressive power of the representation language which is used, while what is feasible is related to the 
computational complexity. In ML, this is related to the richness of the hypothesis space, and what is feasible is related to the amount 
5
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Complexity issues are a major concern in any branch of computer science. In KRR, very expressive representation languages have 
been studied, but interesting reasoning problems for these languages are often at least at the second level of the polynomial hierarchy 
for time complexity. There is a trade-off between the expressive power of a language and the complexity of the inference it allows. 
Reasoning tasks in languages with suitably restricted expressiveness are tractable, like for instance languages using Horn clauses or 
Lightweight description logics such as DL-lite [98] or EL [31].

The study of complexity has motivated a large number of works in many fields of KRR including non-monotonic reasoning, 
argumentation, belief merging and uncertainty management. In particular when the desirable solution (i.e., gold standard) of the 
problem (for instance, merging operator, inconsistency-tolerant consequence relation, etc.) has a high computational complexity, 
then it is common to look for an approximation that has reasonable complexity. For instance, the observation that answering 
meaningful queries from an inconsistent DL-Lite knowledge base using universal consequence relation is NP-Complete, has led to the 
introduction of several tractable approximations [40].

The attempt to cope with hardness of inference has also been a driving force in research around some important and expressive 
languages, including propositional clauses and CSPs, where inference is NP-complete; for instance, powerful methods nowadays 
enable the solving of SAT problems with up to hundreds of thousands of variables, and millions of clauses in a few minutes (see 
section 7.1). Some of the most competitive current SAT solvers are described in [3,444,425]. Two other ways to cope with time 
complexity are anytime methods, which can be interrupted at any time during the solving process and then return an incomplete, 
possibly false or sub-optimal solution; and approximate methods. A recent trend in KRR is to study so-called compilation schemes [148,
440]: the idea here is to pre-process some pieces of the available information in order to improve the computational efficiency 
(especially, the time complexity) of some tasks; this pre-processing leads to a representation in a language where reasoning tasks can 
be performed in polynomial time (at the cost of a theoretical blow up in worst-case space complexity, which fortunately does not 
often happen in practice).

Contrastingly, ML algorithms often have a time complexity which is polynomial in the number of variables, the size of the dataset 
and the size of the model being learnt, especially when the domains are continuous. However, because of the possible huge size 
of the dataset or of the models, capping the degree of the polynomial remains an important issue. In the case of discrete domains, 
finding the optimal model, i.e., the one that best fits a given set of examples, can be hard (see [337]), but one is often happy with 
finding a “good enough” model in polynomial time: there is no absolute guarantee that the model that best fits the training examples 
is the theoretical best model anyway, since this may depend on the set of examples. In fact, an important aspect of complexity in ML 
concerns the prediction of the quality of the model that one can learn from a given dataset: in the PAC setting for instance [606], 
one tries to estimate how many examples are needed to guarantee that the model learnt will be, with a high probability, a close 
approximation to the unknown target model. Intuitively, the more expressive the hypothesis space is, the more difficult it will be 
to correctly identify the target model, and the more examples will be needed for that [608], but the more likely it is that the right 
hypothesis is within the chosen space.

2.3. Imperfect information

The imperfection of information can take two opposite forms: information may be incomplete or insufficient; or it may be in 
excess, hence, wrong or conflicting. In the case of data, there may be missing values, or scarcity of observations, or on the contrary 
the data may be noisy or containing outliers. For knowledge bases, incompleteness rather manifests itself by the impossibility to infer 
a conclusion or its negation. Conflicting knowledge may be due to disagreeing sources of information, requiring suitable inconsistency 
management tools. Both situations (information missing or in excess) possibly generate uncertainty.

Uncertainty has always been an important topic in KRR [490,297]. While in ML uncertainty is almost always considered to 
be of statistical or probabilistic origin (often termed “aleatory uncertainty”), other causes for uncertainty exist, such as the sheer 
lack of knowledge, and the excess of information leading to conflicts (often termed “epistemic uncertainty”). However, the role of 
uncertainty handling in KRR and in ML seems to have been very different so far. While it has been an important issue in KRR and 
has generated a lot of novel contributions beyond classical logic and probability, it has been considered almost only from a purely 
statistical point of view in ML [607], even if some recent trends departs from this point of view [333].

Uncertainty management in KRR has a long history. It refers to the handling of incomplete information in non-monotonic rea-
soning as well as the handling of probabilities in Bayesian nets [492], and in probabilistic logic languages [536,140]. However, the 
formalism of Bayesian nets is more appropriate for representing statistical data than incomplete data. The focus on uncertainty due 
to incomplete information is better captured by possibility theory (with weighted logic bases in possibilistic logic [209,220]) and 
graphical representations (possibilistic nets [53,58]). Belief functions also lend themselves to graphical representations (valuation 
networks [566], evidential networks [648]), and imprecise probability as well (credal nets [139]).

Uncertainty theories distinct from standard probability theory, such as possibility theory or evidence theory are now well-
recognised in knowledge representation [187,186]. They offer complementary views to uncertainty with respect to probability, 
or as generalisations of it, dedicated to epistemic uncertainty when information is imprecise or partly missing.

In KRR, at a more symbolic level, the inevitability of partial information has motivated the need for exception-tolerant reasoning. 
For instance, one may provisionally conclude that “Tweety flies” while only knowing that “Tweety is a bird”, although the default 
rule “birds fly” has exceptions, and we may later conclude that “Tweety does not fly”, when getting more (factual) information about 
Tweety. Thus non-monotonic reasoning [89] has been developed for handling situations with incomplete data, where only plausible 
tentative conclusions can be derived. Generic knowledge may be missing as well. For example, one may not have the appropriate 
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pieces of knowledge for concluding about some set of facts. Then it may call for interpolation between rules [547].
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When information is in excess in KRR, it may mean that it is just redundant, but it becomes more likely that some inconsistency 
appears. Redundancy is not always a burden, and may sometimes be an advantage by making more things explicit in different formats 
(e.g., when looking for solutions to a set of constraints).

Inconsistency is a natural phenomenon in particular when trying to use information coming from different sources. Reasoning 
from inconsistent information is not possible in classical logic (without trivialisation). It has been extensively studied in AI [62,55,
103], in order to try and salvage non-trivial conclusions not involved in contradictions. Inconsistency usually appears at the factual 
level, for instance a logical base with no model. However, a set of rules may be said to be incoherent when there exists an input fact 
that, together with the rules, would create inconsistency [30].

ML can face several types of situations regarding the amount of information available. It must be said at once that induction, that 
goes from observations to regularities, is subject to the same kind of conservation law as in Physics. The information extracted is not 
created, it is just a reformulation, often with loss, of the incoming information.

If the input data is scarce, then prior knowledge, in one form or another, must complete it. The less data is available, the more 
prior knowledge is needed to focus the search of regularities by the learning system. This is in essence what the statistical theory of 
learning says [607]. In recent years, lots of methods have been developed to confront the case where data is scarce and the search 
space for regularities is gigantic, specially when the number of descriptors is large, often in the thousands or more. The idea is to 
express special constraints in the so-called regularization term in the inductive criterion that the system use to search the hypothesis 
space. For instance, a constraint is often that the hypothesis should use a very limited set of descriptors [591].

When there is plenty of data, the problem is more one of dealing with potential inconsistencies. However, except in the symbolic 
machine learning methods, mostly studied in the 1980s, there is no systematic or principled ways of dealing with inconsistent data. 
Either the data is pre-processed in order to remove these inconsistencies, and this means having the appropriate prior knowledge to 
do so, or one relies on the hope that the learning method is robust enough to these inconsistencies and can somehow smooth them 
up. Too much data may also call for trying to identify a subset of representative data (a relevant sample), as sometimes done in 
case-based reasoning, when removing redundant cases. Regarding the lack of data there is a variety of approaches for the imputation 
of missing values ranging from the EM algorithm [177] to analogical proportion-based inference [84]. However these methods get 
rid of incompleteness and do not reason about uncertainty.

Finally, a situation that is increasingly encountered is that of multi-source data. Then, the characteristics of the multiple data sets 
can vary, both in the format, the certainty, the precision, and so on. Techniques like data fusion, data aggregation or data integration 
are called for, often resorting again to prior knowledge, using for instance ontologies to enrich the data.

2.4. Explainability and causality

The need for explanations to enrich the prediction made by any AI model is not new and has been emphasized since the beginning 
of the Artificial Intelligence domain. With the massive success of machine learning, especially deep learning, in tackling complex 
data such as images, audio, video and texts, AI has achieved a high level of result quality in a wide variety of domains, including 
sensitive ones, e.g. related to health or justice. In such cases, even very accurate models may be insufficient, because the cost of an 
error can be huge, making it intolerable (see e.g. [97]). The need for explanation has thus become a major issue in the last decade 
or so. At the scientific level, this has led to the development of a research domain called eXplainable Artificial Intelligence, XAI for 
short, following the terminology first proposed in 2016 by DARPA [290].

Enriching the prediction with an explanation, viewed as a rationale for the prediction, can be seen as a tool that helps make an 
informed decision and determine whether the system should be trusted or is possibly making an error. Besides, applications to image 
data, for instance, have shown that deep learning sometimes have implicit and undesirable biases. In some situations these biases 
are patent, but, in other cases, errors are less obvious and require an understanding of how the model works. Explanations can then 
be seen as a tool aiming at correcting the model, explaining the decision to the user, and in some situations it can reveal that the 
model has undesirable biases and / or uses features protected by the law (such as, gender, political orientations, ...). However, it has 
been shown that it is possible to train a model in order to hide such biases from XAI methods, in particular when using local feature 
importance indices [196,575]. Using certified, logically grounded explanations may solve this issue to some extent [327], as they 
should be harder to manipulate, yet this would remain to study.

The need for the explanation of results and the interpretability of models is amplified by the fact that the performances of the AI 
systems often come along with an increased complexity of the models, which makes them look like black boxes, opaque to the user. 
Moreover, in contrast with KRR models that may be also complex, the knowledge embedded in ML models is extracted from data, 
and as such offers no guarantee on the quality of its coverage. This has triggered the interest for explanation both in the KRR and 
ML communities.

2.4.1. Defining explainability

The interest in AI for explanations is not new. It already appears with the development of rule-based expert systems in the mid-
1980’s. At the time, there was a natural need for explanations that are synthetic, informative, and understandable for the user of 
an expert system [109]. This concern raises issues such as designing strategic explanations for a diagnosis, for example in order to 
try to lay bare the plans and methods used in reaching a goal [300], or using “deep” knowledge for improving explanations [366]. 
Another issue was the ability to provide negative explanations (not only positive ones) for answering questions of the form “Why did 
you not conclude X?” [530], even in the presence of uncertainty [241]. Let us also mention the problem of explaining the results of 
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a multi-attribute preference model that is like a “black box”. It has been also studied in [385].
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XAI has very fast given rise to a huge multiplicity of approaches and methods, but also a very high number of taxonomies to 
structure the domain. For some introductory surveys and discussions, see [72,311,313,375,312,268,287,269,452,46,465,75].

“What is an explanation?”, “What has to be explained?”, and “how”. These issues can be traced back to the absence of consensus on 
the definition of explanation that constitutes a multidisciplinary notion, related to psychology [590], philosophy [91,538], cognitive 
sciences, education sciences or law, to name a few [617,452]. It includes a human, subjective, component that is difficult to capture. 
Despite works on formal and axiomatic approaches [340,11], there is no consensus on the definition of explanation that encompasses 
the variety of possible situations and the explainee perception (see below). The notion of a good explanation and of explanation 
quality is still a debated topic that gives rises to a multitude of rich discussions (see e.g. [201,415,314,628] for some of them).

The breadth of the XAI domain can be illustrated by its diversity at several levels (see for instance the previously mentioned 
references [72,287,46,465,75] for more details): a diversity of terms can first be observed, with names such as explainability, in-
terpretability, accountability or transparency. They cover related notions with somehow subtle nuances, but are sometimes used 
interchangeably. At a second level, a diversity of tasks can also be observed: the explanation may be requested for several types of 
machine learning tasks, such as classification, regression, clustering, outlier detection or recommendation but also, more broadly, for 
other artificial intelligence tasks such as planification, human-agent interactions or model conception.

At a third level, a diversity of explainees plays an important role: whether the explanation is generated for final users, domain 
experts or computer scientists, it needs to satisfy different requirements. On a related note, the aim of the explainees can differ, 
which can be summarised by the question they ask: it is often considered users want to know why a prediction is made, but they may 
also ask how they can get another prediction. The how question refers to the issue of so-called actionable explanations, i.e. that can 
lead to an action, and to the domain of algorithmic recourse [364,363]. In all cases, it must be underlined that the aim is to explain 
an AI model, not the underlying ground truth: the explanation does not aim at providing information about reality, but on the AI 
model processes. As an example taken from [517], in the classification of images depicting dogs vs. wolves, finding that a decision 
was made because of the presence of snow in the background explains what are the conclusive evidence for the model, pointing to 
some issues in the training set it has been trained on.

At a fourth, more technical, level, explanation generation methods also differ in the hypotheses they rely on, for instance depending 
on what they consider as accessible: the model itself, or its type, training data or other, possibly unlabelled, data, to name a few. 
Such hypotheses include specifying whether expert or prior knowledge is available, for instance information about the descriptive 
features, their correlation or structural relations. Other possibilities include information about the users who receive the explanations, 
for instance their preferences, opening the way for personalised explanations.

Another issue concerns the statistical point of view according to which an interpretable model is a model that comes with math-
ematical guarantees [318,22]. They are usually bounds for approximation errors (linked to the expression power of the hypothesis 
space) or the generalization error (linked to the robustness of the algorithm with respect to variations of the sample set). These can 
be also guarantees about the uncertainty around the parameters of the model (represented by confidence intervals for instance). 
Linear approaches are, in this scope, the most statistically interpretable ML algorithm. Robustness properties of statistical models are 
also desirable for interpretability.

2.4.2. Explainability and causality: a KRR point of view

The most developed topic of XAI in KRR, corresponds to the diversity of explanation forms; we shall see that the same diversity also 
applies to the ML domain. The former favours formal approaches, in particular within a logical framework: knowledge-compilation 
based approaches represent AI models as Boolean circuits and consider explanations as prime implicants, i.e., minimal sufficient 
conjunctions to make a given statement true, e.g. attribute values that justify a given prediction [147,149,436]. A second type of 
approach exploits the formulation of explanations as an abductive reasoning issue [340]. Indeed, explanations are related to the 
question of identifying causes [299,452,453], i.e., to the notion of causality. Most of the explanations we produce or we expect 
involve some causal relationships (e.g., John imposed on himself to go to the party because he thought that Mary would be there). 
In many domains where machines can provide aid for decision making, as in medicine, court decisions, credit approval and so on, 
decision makers and regulators more and more want to know what is the basis for the decision suggested by the machine, why it 
should be made, and what alternative decision could have been made, had the situation been slightly different. A question is: is 
it possible to extract causal relationships from data alone, without some prior knowledge that suggest those relationships? Judea 
Pearl [493–495] argues that this is not possible, but gives to the ML techniques the role of identifying possible correlations between 
variables in huge data sets that are impossible to sift through for human experts. A recent work [422] suggests that it would be 
possible to identify the direction of a causal relationship from observational data.

Causality is also closely related to the idea of counterfactual. Indeed an early definition of causality has been stated in terms 
of counterfactuals in a modal logic setting [616], and counterfactual is still a pervasive notion when discussing causality (even 
if causality cannot be reduced to the notion of a counterfactual) [216]. Counterfactual explanations for a decision process are 
translated into the notion of counterfactual examples [617,286], that belong to the class of example-based explanations, together 
with prototypes, criticisms, influential instances (see e.g. [465]). They are built as follows. Given an example 𝑒, the counterfactual 
of 𝑒 is the closest example to 𝑒 (with respect to a metric) for which the decision changes (the counterfactual is not necessarily in the 
dataset). Consider for instance a model that determines if a credit is allowed or not with respect to the profiles of customers, and a 
given customer to whom the credit is not granted. The counterfactual in this case answers the question of what is the minimal change 
on his profile that would ensure that the credit is granted. If the model is based on propositional logic rules, the counterfactual will 
correspond to a minimal change of the considered example representation in Boolean logic [436]. In this case, the counterfactual is an 
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understandable explanation for the prediction. In addition to the proximity of the counterfactual example to the instance of interest 
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and the class prediction change, many other desiderata can be added into the cost function evaluating the quality of candidates, 
such as the sparsity of the change, its realism or its actionability, to name three examples: more than 60 counterfactual example 
generation methods have been proposed between 2015 and 2022 [286].

2.4.3. Machine learning explainability

The exploration of causality behind decisions in machine learning algorithms presents significant challenges. Machine learning 
primarily focuses on identifying correlations rather than causal relationships between input data and decisions. The case of identi-
fying wolves versus dogs, as illustrated in [517], exemplifies this issue vividly. When employing a deep learning classifier, the most 
indicative feature for distinguishing between a dog and a wolf is the presence of snow. Although there is a noticeable correlation 
between snow and wolves, it is not indicative of a causal relationship in the ground truth. However, it is also indicative of a causal 
relationship in the prediction performed by the classifier. Initial research on explanations in machine learning concentrated on high-
lighting correlations between features and decisions. For example, Partial Dependence Plots [271] offer a graphical representation 
of feature correlations, while numerical approaches such as LIME [517] and SHAP [424] quantify the relative importance of each 
feature. These methods are considered as agnostic (and sometimes referred as “black-box,” especially in the adversarial robustness 
area) meaning they analyze decisions inferred by the model without requiring direct access to the model internal machinery.

In this issue, [327] prove that the existing definitions of Shapley scores, often used in XAI methods, may yield misleading information 
about the relative importance of features for predictions and the authors offer empirical evidence that such theoretical limitations of these 
scores are routinely observed in ML classifiers.

In the context of complex data and models, such as image classification in deep learning, defining explanations for specific 
decisions becomes increasingly relevant. Attribution methods aim to explain the prediction of a machine learning model by pointing 
out input variables that support the prediction – typically pixels or image regions for images – which lead to importance maps. 
Saliency [568] was the first proposed white-box (the architecture and the weights of the network are known) attribution method 
and consists of back-propagating the gradient from the output to the input. The resulting absolute gradient heatmap indicates which 
pixels affect the most the decision score. These methods were then followed by a plethora of other methods using gradients such 
as Integrated Gradient [585], SmoothGrad [576], Grad-cam [553] or Input Gradient [16]. All rely on the gradient calculation of 
the classification score. However, it is becoming increasingly clear that current methods raise many issues [6,305,573] such as 
confirmation bias: it is not because the explanations make sense to humans that they reflect the evidence on which the prediction is 
based.

Saliency maps can be considered as an attempt to provide counterfactual explanations. Essentially, the most effective method to 
identify the minimal change in an image that alters the decision of a classifier involves making slight adjustments in the direction 
of the model’s gradient, which is precisely the way saliency maps are computed. However, within the realm of deep learning, 
counterfactual examples are related to the notion of adversarial examples [273], with the main difference that the latter typically 
involve an imperceptible alteration of the input. This suggests that gradient-based methods might reflect the structural vulnerabilities 
of networks rather than true causality. This perspective underscores the challenges in obtaining robust counterfactual explanations 
due to the inherent vulnerabilities of deep networks. Recent studies have concentrated on counterfactual explanation methods 
[617,611], highlighting several desirable properties for these explanations [611]: Validity (ensuring the altered sample belongs to 
a different class), Actionability (a good counterfactual must not modify unchangeable features), Sparsity (minimize the number of 
features modified in the counterfactual), Data Manifold Closeness (counterfactual should be close to training data and respect the 
observed correlations between the features), and Causality (a counterfactual must maintain all known causal relationships between 
features). The latter three properties are typically not addressed by conventional adversarial attacks, prompting the development 
of more sophisticated methods [275,525,623]. Although validity may seem obvious, it is not trivial at all to ensure that with deep 
learning models. In [556], the authors demonstrate that with regularity constraints and a suitable loss function, saliency maps can 
encode counterfactual explanations through the lens of optimal transport.3

XAI methods, from which the above paragraph mentions some examples, sometimes appear to be developed at a somehow 
theoretical level, without really taking into account the explainee, i.e. not considering the human dimension of the explanation 
receiver. As an illustration, it has been observed that many approaches lack experiments involving real users [370], with the need 
to measure separately their subjective satisfaction and their objective understanding [314]. In the case of attribution methods 
[414], authors propose to evaluate the alignment between these methods and human feature importance across 200,000 unique 
ImageNet images (called ClickMe dataset). The alignment between DNN Saliency and human explanations is quantified using the 
mean Spearman correlation, normalized by the average inter-rater alignment of humans. Good alignment scores with respect to 
human annotations does not guarantee that the explanation is satisfactory, but it has been shown that robust models tend to obtain 
better scores [556,243]. In the same way, recent developments focus on Human-Centered eXplainable AI (see e.g. [408]) and on the 
question of how to display the outputs of the XAI methods, through appropriate interfaces, leading to the domain of eXplanation 
User Interfaces, XUI (see e.g. [118]).

3 This is a problem of optimal transportation and allocation of resources, originally formulated by Gaspard Monge, in a context of cut and fill. In its modern 
reformulation, it amounts to finding a transport map between two spaces equipped with probability measures. Then the cost of the optimal transport map is measured 
by the Wasserstein 𝑝-distance (for 𝑝 = 1) between the two probability measures (the cost of a move between two points is simply the distance between them, in case 
the two spaces are identical). In the context of XAI, it involves constructing a counterfactual explanation for an instance of one class by identifying its counterpart 
9

according to the optimal transport map between classes [556].
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The emergence of large generative models, such as large language models [92], complicates the task of explaining machine 
learning methods. Unlike models focusing on decision-making, generative models are centred on generation, necessitating innovative 
approaches to frame the question of explanation [76].

As announced at the end of Section 1, we have organized in seven sections the main areas where synergies between KRR and ML 
take place. We start with the learning of rule-based models which are at the core of induction tasks.

3. Rule-based models and neural-symbolic AI

Finding logical rules that cover a set of examples and exclude a set of counter-examples is a matter of induction.
Version space learning [459,460] has offered a first framework for describing how a hypothesis space is organized. A hypothesis 

is understood as a concept, and takes the form of a tuple of values in attribute domains, including question marks when there is no 
restriction on some attribute values. Version space learning takes into account examples and counterexamples of the learned concept, 
maintaining upper and lower approximations of its representations (including examples and excluding counterexamples).

Inductive Logic Programming [563] attempts to learn rules from examples and background knowledge in the representation 
setting of logic programming. This is the topic of the next section with its extensions to probabilistic rules. Then this section ends 
with more recent neural-symbolic approaches, which aims at interfacing logic and probabilities with neural networks.

Note that the learning of non conventional rules such as default rules, rules with threshold, etc. is addressed in Section 6.

3.1. Inductive logic programming and statistical relational learning

Inductive Logic Programming (ILP) (see [471,165,226] for general presentations) is a subfield of ML that aims at learning models 
expressed in (subsets of) First Order Logic. It is an illustration of Symbolic Learning, where the hypothesis space is discrete and 
structured by a generality relation. The aim is then to find a hypothesis that covers the positive examples (it is then said to be 
complete) and rejects the negative ones (it is said to be consistent). The structure of the hypothesis space allows to generalize an 
incomplete hypothesis, so as to cover more positive examples, or to specialize an inconsistent hypothesis in order to exclude negative 
covered examples. The main reasoning mechanism is induction in the sense of generalization (subsumption).

In ILP, examples and models are represented by clauses. Relying on First Order Logic allows to model complex problems, in-
volving structured objects (for instance to determine whether a molecule is active or not, a system must take into account the 
fact that it is composed of atoms with their own properties and shared relations), or involving objects in relation with each 
other (a social network or temporal data). Reasoning is a key part of ILP. First, the search for a model is usually performed 
by exploring a search space structured by a generality relation. A key point is then the definition of a generality relation be-
tween clauses. The more natural definition of subsumption should be expressed in terms of logical consequences, which allows 
comparing the models of both formula, but since the problem is in general not decidable, the notion of 𝜃-subsumption, as in-
troduced in [500] is usually preferred: a clause 𝐶1 is more general that a clause 𝐶2 if there exists a substitution 𝜃 such that 
𝐶1.𝜃 ⊆ 𝐶2. In this definition a clause, i.e., a disjunction of literals, is represented by its set of literals. For instance, the rule 
𝑝𝑎𝑟(𝑋, 𝑌 ), 𝑝𝑎𝑟(𝑌 , 𝑍) → 𝑔𝑟𝑎𝑛𝑑_𝑝𝑎𝑟(𝑋, 𝑍) 𝜃-subsumes 𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑎𝑛𝑛), 𝑝𝑎𝑟(𝑎𝑛𝑛, 𝑝𝑒𝑡𝑒𝑟), 𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑙𝑢𝑐) → 𝑔𝑟𝑎𝑛𝑑_𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑝𝑒𝑡𝑒𝑟). Indeed, 
the first one leads to the clause ¬𝑝𝑎𝑟(𝑋, 𝑌 ) ∨ ¬𝑝𝑎𝑟(𝑌 , 𝑍) ∨ 𝑔𝑟𝑎𝑛𝑑_𝑝𝑎𝑟(𝑋, 𝑍) and the second one to the clause ¬𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑎𝑛𝑛) ∨
¬𝑝𝑎𝑟(𝑎𝑛𝑛, 𝑝𝑒𝑡𝑒𝑟) ∨ ¬𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑙𝑢𝑐) ∨ 𝑔𝑟𝑎𝑛𝑑_𝑝𝑎𝑟(𝑗𝑜ℎ𝑛, 𝑝𝑒𝑡𝑒𝑟). Second, expert knowledge can be expressed using facts (ground atoms) 
or by rules, or yet reasoning mechanisms to be applied. This can be illustrated by the well-known systems FOIL [511] and Progol 
[470].

ILP, and more generally Symbolic Learning, has thus some interesting properties. First, the model is expressed in logic and 
therefore is claimed to be easily understandable by a user (See for instance [472] for an interesting study of the comprehensibility 
or not of programs learned with ILP). Second, expert knowledge can be easily expressed by means of clauses and integrated into the 
learning algorithm. Although initially developed for the induction of logic programs, it has now shown its interest for learning with 
structured data.

However, ILP suffers from two drawbacks: the complexity of its algorithms and its inability to deal with uncertain data. Several 
mechanisms have been introduced to reduce the complexity, as for instance the introduction of syntactic biases, restricting the class 
of clauses that can be learned. Another interesting idea is propositionalization, introduced in [391] and then developed for instance in 
the system RSD [663]. It is a process that transforms a relational problem into a classical attribute-value problem by the introduction 
of new features capturing relations between objects. Once the transformation performed, any supervised learner can be applied to 
the problem. The main difficulty is then to define these new features.

This last problem has led to the emergence of Statistical Relational Learning [265,168,171] that aims at coupling ILP with 
probabilistic models. Many systems have been developed, extending naive Bayesian classifier [386], Bayesian Networks [247] or 
Markov Logic Networks [519] or developing new probabilistic framework as in Problog [172], or in “Probabilistic Soft Logic (PSL)” 
[39]. This latter work belongs to an approach that combines probabilities with fuzzy logic connectives [236,239]. In all these works, 
inference and learning are tightly connected since learning parameters requires to maximize the likelihood for generative learning 
(estimation of the probabilities to generate the data, given a set of parameters), or the conditional likelihood in case of discriminative 
learning (estimation of the probabilities of the labels given the data). Optimizing the parameters thus requires at each step to estimate 
the corresponding probabilities. This has led to intensive research on the complexity of inference. A comparative study of weight 
10

learning methods for first-order logical rules can be found in [581].
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3.2. Neural-symbolic reasoning

Neural-Symbolic AI is the banner of an important research trend nowadays that aims at putting together logic, probability 
and neural nets [433]. Several works have proposed to combine learning and reasoning by studying schemes to translate logical 
representations of knowledge into neural networks. A long-term goal of a series of works on neural-symbolic integration, surveyed for 
instance by [63], is “to provide a coherent, unifying view for logic and connectionism . . . [in order to] . . . produce better computational 
tools for integrated ML and reasoning.” Existing works can be distinguished based on whether they only involve reasoning (e.g. using 
neural networks as a faster alternative to symbolic reasoners) or also learning, and based on whether uncertainty is explicitly taken 
into account.

Neural-symbolic AI for reasoning The problem of interfacing logical representations with machine learning devices was already 
addressed in the 1990s. Early works proposed translation algorithms from a symbolic to a connectionist representation, enabling 
the use of computation methods associated with neural networks to perform symbolic reasoning. Works in this vein include [497,
498,78,316]. Bornscheuer et al. [78] show for example how an instance of the Boolean satisfiability problem can be translated into 
a feed-forward network that parallelizes GSAT, a local-search algorithm for Boolean satisfiability. They also show that a normal 
logic program 𝑃 can be turned into a neural network that can approximate the semantics of the program arbitrarily well. This 
kind of translation has been also proposed for non-classical logics. In [160,157], methods are proposed to translate formulas with 
modalities into neural networks, enabling the representation of time and knowledge, and the authors in [158,159] show that there 
exists a neural network ensemble that captures fixed-point semantics of intuitionistic theories. The idea of using neural networks 
for reasoning has remained an active area of research. See, for instance, [308] for a recent survey. Rather than relying on manual 
translations, however, the emphasis is now on training neural networks to approximate the results of a symbolic reasoner. The main 
motivation is to enable fast (albeit approximate) inference results and, potentially, increased robustness in the presence of noisy 
inputs.

Neural-symbolic AI for learning and reasoning Short after the beginning of the first wave of works mainly focusing on the translation of 
logic programs into neural networks, many works in neuro-symbolic AI became more ambitious, by incorporating a genuine learning 
step. Towell and Shavlik [598] offer one of the first systems, named KBANN (for Knowledge-Based Artificial Neural Networks), where 
both reasoning and learning are jointly at work. They wrote, “Briefly, the idea is to insert a set of hand-constructed, symbolic rules 
(i.e., a hand-built classifier) into a neural network. The network is then refined using standard neural learning algorithms and a set 
of classified training examples. The refined network can then function as a highly-accurate classifier.” [597] presents a “final step for 
KBANN, [that is] the extraction of refined, comprehensible rules from the trained neural network”. In a similar spirit, the paper [162]
represents propositional logic programs with recurrent neural networks (RNNs) which can be used to compute the semantics of the 
program. They show that this program can also be used as background knowledge to learn from examples, using back-propagation. 
Essentially, the RNN defined to represent a logic program 𝑃 has all atoms of 𝑃 in the input layer; one neuron, a kind of “and” gate, for 
each rule in a single hidden layer; and one neuron for every atom in the output layer, working like “or” gates. Re-entrant connections 
from an atom in the output layer to its counterpart in the input layer enable the chaining of rules. An extraction step is also described 
in [153]. Franca et al. [252] extend these results to first-order programs, using a propositionalization method called Bottom Clause 
Propositionalization. Pinkas and Cohen [499] performed experiments with so-called higher-order sigma-pi units (which compute a 
sum of products of their inputs) instead of hidden layers, for planning problems on simple block-world problems. The number of units 
is fixed at design time, and is a function of the maximum number of blocks and the maximum number of time steps. For example, for 
every pair (𝑏1, 𝑏2) of possible blocks and every time step 𝑡, there is a unit representing the proposition above(𝑏1, 𝑏2, 𝑡). Their results 
indicate that a learning phase enables the network to approximately learn the constraints with a reasonable number of iterations.

The aforementioned works use special-purpose neural network architectures, whose structure remains closely aligned with sym-
bolic rule bases. Another direction of research has emerged, in which more general neural network architectures are used, and where 
the aim is merely to train the network to learn to reason about a particular domain, which is particularly popular in the context 
of knowledge graph completion. For instance, in [649,315], they use recursive tensor networks to predict classes and / or binary 
relations from a given knowledge base. A popular strategy is to encode prior symbolic knowledge, when training the neural net-
work, by interpreting the logical connectives in terms of fuzzy logic connectives [195,577,554]. The main motivation for using fuzzy 
logic connectives, in this context, is that this makes it possible to translate symbolic knowledge into a continuous regularisation 
term in the loss function. Donadello et al. [199] describe how this approach can be used to learn semantic image interpretation 
using background knowledge in the form of simple first-order formulas. Rather than directly regularizing the loss function in this 
way, [322] proposes an iterative method to ensure that the proportion of ground instances of the given rules that are predicted to 
be true by the neural network is in accordance with the confidence we have in these rules. To this end, after each iteration, they 
solve an optimisation problem to find the set of predictions that is closest to the predictions of the current neural network while 
being in accordance with the rules. The neural network is subsequently trained to mimic these regularized predictions. Yet another 
approach is proposed in [643], which proposes a loss function that encourages the output of a neural network to satisfy a predefined 
set of symbolic constraints, taking advantage of efficient weighted model counting techniques. In this issue, [270] proposes a novel 
neuro-symbolic framework integrating propositional logic requirements into the output layer of neural networks, ensuring compliance with 
the requirements and enhancing performance. Extensive experimental evaluation shows that CCN+ outperforms both its neural counterparts 
and the state-of-the-art models in multi-label classification tasks. All of these methods are essentially aimed at incorporating background 
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Another line of work is aimed at improving the reasoning capabilities of neural networks. For instance, the Neural Theorem 
Prover (NTP) [454] is essentially a logic programming framework, where the usual unification between terms is replaced by a soft 
unification mechanism, which depends on the similarity between embedding representations. This framework makes it possible to 
start from rule templates, which only specify the structure of the rules to be learned. The model then learns representations of the 
predicates appearing in this templates, thus instantiating the templates with specific (soft) rules. Lifted Relational Neural Networks 
[578] follow the same principle, but rather than relying on embeddings, they rely on latent predicates with learned membership 
degrees.

Neural probabilistic reasoning Statistical relational learning is concerned with combining logic with probabilities, whereas neuro-
symbolic AI is concerned with combining logic with neural networks. A recent research trend is focused on the joint combination of 
neural networks, logic and probabilities. A seminal work in this area is DeepProbLog [432], which relies on probabilistic logic pro-
grams where the probabilities of facts are predicted by a neural network. The key innovation relates to how the neural network can 
be learned, using backpropagation, given a loss function that is defined in terms of the consequences of the probabilistic logic pro-
gram. In this issue, [192] provides an overview and synthesis of neuro-symbolic methods, thereby contributing a unified algebraic perspective 
on the different flavors of probabilistic logic programming (PLP), showing that many if not most of the extensions of PLP can be cast within 
a common algebraic logic programming framework, in which facts are labelled with elements of a semiring and disjunction and conjunction 
are replaced by addition and multiplication. In this unified perspective, the authors focus on the ProbLog language and its extensions. Other 
relevant work in this area includes NeuPSL (for Neural Probabilistic Soft Logic) [508], NeurASP [674], TensorLog [122] and neural 
Markov logic [442]. In this issue [354] proposes a new class of Neural Markov Logic Networks (NMLN), called Quantified NMLN, that 
extends the expressivity of NMLNs and demonstrate how to leverage the neural nature of NMLNs to employ learnable aggregation functions 
as quantifiers, and demonstrate the efficiency of Quantified NMLNs in molecule generation experiments. Broadly speaking, the main aim 
of such approaches is to have a close cooperation between perception and recognition (as provided by a neural net), and reasoning 
capabilities. This can be exemplified by the exploitation of constraints linking symbols that are recognised, as for instance in the 
disambiguation of additions of handwritten figures [432], or in the validation of handwritten sudoku puzzles [622].

Comparing StarAI and neural-symbolic approaches The detailed surveys [167,441] compare several works in STAtistical Relational 
Artificial Intelligence and Neural-Symbolic Learning and Reasoning along several dimensions. In particular, they emphasize the 
following dimensions: i) one can distinguish between symbolic representations and sub-symbolic representations, such as pixels 
in an image or vector embeddings of predicates viewed as words; ii) while statistical relational learning relies on both logic and 
probabilities, neural-symbolic approaches use fuzzy logic connectives in order to have a differentiable representation liable to be 
handled in machine learning. Thus neural net outputs are interpreted as probability distributions in statistical relational learning, 
and often as a fuzzy set in neuro-symbolic approaches.

4. Using background knowledge in learning

It is worth taking a historical perspective on machine learning for a moment. Apart from the problem of learning from “pre-
classified learning examples” (as presented in [564] published in 1990), which included version space learning, the multi-layer 
perceptrons and decision trees, early learning systems were closely associated with problem solving, and problem solving itself with 
reasoning or planning systems. The aim was to improve problem-solving efficiency by drawing on past experience, or on advice or 
solutions provided by experts. One approach, called “explanation-based learning”, attracted a great deal of interest in the 1980s. The 
idea is to consider a given solution to a particular problem and derive from it a general rule capable of solving as broad a class of 
problems as possible that includes the particular problem used as input. To do this, the learner needs to find an explanation of why 
the particular solution works, and generalize this explanation as far as possible so that it applies to similar problems that may arise 
in the future. Generalization relies on the availability of a theory of the domain expressed using some form of logic. Most methods 
have generalized the constants of the explanation into constrained variables, sometimes also generalizing the structure of the graph 
representing the explanation. Thanks to this generalized rule, the system can quickly solve related problems. This method has been 
applied to learning general rules for recognizing concepts [462,174], macro-operators in the case of planning systems [455] and 
control rules or heuristics to guide the search for a solution in the vast tree of possible solutions [456].

In this perspective, the performance criterion was not the error rate, as would later be the case, but the gain in problem-solving 
speed. One of the limitations of the approach was the need for perfect or near-perfect (i.e. complete and consistent) domain theory, 
which seriously hampered its application to poorly known domains, whereas the emerging second connectionism [533] and, almost 
simultaneously, techniques such as support vector machines (SVMs) and boosting, were capable of handling learning data marred by 
noise and even missing values. However, as mentioned in Section 2.1, training data must be supplemented with prior knowledge. In 
the case of non-reasoning systems such as neural networks, SVMs or boosting, learning becomes an optimization process that seeks 
an optimum of a certain criterion combining the fit to the training data and satisfaction of constraints that express prior knowledge.

These constraints can be expressed as:

• regularization terms directly incorporated in the criterion to be optimized
12
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Although prior knowledge is thus limited to a somewhat impoverished form, it is easily integrated into the essentially digital 
optimization perspective that learning has become, hence its generality and power. However, the success of learning in the big data 
area has also led to a new demand. This is to be able to provide explanations of the results and/or the learning process itself. This 
new development is attracting a great deal of attention today, and could lead to renewed interest in hybridization with symbolic 
reasoning systems. Time will tell. In parallel with this new demand for explainable AI, it is very likely that error rate as the sole 
measure of performance will give way to richer, more encompassing criteria, a trend that could itself bring new learning methods 
to the fore. To illustrate this growing interest, the article [61] considers the question “What could serve as a training objective for 
mathematical discovery?” and advocates a look at the usefulness of existing theorems and the one conjectured as one criterion, 
among others, to guide an “AI mathematician” in its exploration in the space of all possible mathematical statements.

This section describes ways of incorporating prior knowledge in learning.

4.1. Regularization and search biases

Attempting to induce general laws from limited training data without limiting the space of hypotheses (the laws) is bound to 
produce, except very improbably by pure chance, hypotheses that have no values. In particular, the phenomenon of overfitting 
occurs when the hypothesis produced fits too well the training data and their specific but irrelevant characteristics, which is likely 
if the hypothesis space has too great a capacity. This is well explained by the statistical theory of learning [607]. Thus, in order to 
complement the training data, it is necessary to use some prior knowledge that restricts the space of hypotheses to be explored.

Generally, two forms of prior knowledge, aka. biases, are distinguished: representation biases that limit the expressiveness of the 
language used to express the possible hypotheses on the world, and search biases that control how the hypothesis space is explored 
by the learning algorithm.

Representation biases can take various forms. They can directly affect the language in which the possible hypotheses can be 
expressed. For instance, “hypotheses can involve a maximum of two disjuncts”. Or, even if the useful features are present in the 
training database (e.g. ‘distance’ and ‘time’), it may help the learning system if a feature that combine them (e.g. ‘speed’) is added. 
In this case, the expert can prove very useful. Recently, we have seen the emergence of learning systems with millions or billions of 
parameters, a number that easily exceeds the number of learning examples available, thus creating a very high risk of over-fitting. 
In this context, one way of biasing the system is to learn what is called an “embedding”, i.e. to learn an intermediate representation 
from the raw input, where it is easier to discern patterns of interest and/or to extract prediction rules. In this perspective, the role 
of the expert is no longer to directly shape the input space, but to find ways of directing the self-supervised learning process that 
produces these embeddings. For instance, in contrastive learning, the use of siamese networks will help encode prior knowledge 
about similar training examples and examples that should be distant.

A more sophisticated approach, used in deep neural networks, is to train the system while respecting known laws about the 
phenomenon at hand, or other kinds of expert knowledge. A generic way of imposing representation biases is thus to use a regularized 
optimisation criterion that balances a measure of fit of the model to the data, and a measure of fit of the model to the bias. For 
instance, the following quality measure over linear hypotheses ℎ(𝑥) = 𝛽0 +

∑𝑝
𝑗=1 𝛽𝑗𝑥𝑖,𝑗 for regression favours hypotheses that involve 
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Favours models with few non zero parameters

where the 𝐿0 norm ||.||0 counts the nonzero parameters 𝛽𝑗 .
Thus, for instance, Physics-Informed Neural Networks (PINNs) attempt both to optimize the fit to the training data (e.g. as 

measured by the Mean-Square Error) and to satisfy initial and boundary conditions imposed by equations (e.g. differential equations) 
that express knowledge of the physical laws governing the phenomenon [514,507]. PINNs seek to minimize a combined fit to the 
data and the satisfaction of physics based conditions, albeit with the help of specific architectures for the neural networks, e.g. with 
two branches that are constrained to share parameters, one dedicated to the fit of the training data and the other to the representation 
of the physics involved. We have seen in Section 3.2 how the use of fuzzy connectives enables the expression of some background 
knowledge in a regularization term.

The search bias dictates how the learning algorithm explores the space of hypotheses. For instance, in the case of neural networks, 
the search starts with a randomly initialized neural network and then proceeds by a gradient descent optimization scheme. In some 
other learning methods, such as learning with version space, the search uses generalization relations between hypotheses in order 
to converge towards good hypotheses. In this latter case, it is easier to incorporate prior knowledge from the experts. Indeed, the 
exploration of the hypothesis space is akin to a reasoning process, very much like theorem proving.

It should be noted that in transfer learning (see Section 5.3), the source task acts as a bias for the target task by providing a 
starting model that must be adapted to the target domain.

While a bias is necessary in inductive learning, it is important to realize that it can help as well as hinder the discovery of a 
good model. However prior knowledge is expressed, through a representation bias and/or a search bias, its appropriateness is the 
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4.2. Aligning symbolic and vector space representations

Symbolic and vector representations clearly have some complementary strengths for encoding knowledge. For instance, vector 
representations are typically easier to learn due to their continuous nature. Moreover, vector representations can model certain 
aspects of knowledge in a more fine-grained way, e.g. by capturing degrees of similarity or the intensity with which some property 
is satisfied. Symbolic representations, on the other hand, are typically easier to interpret, which makes models that rely on symbolic 
representations also easier to explain. Similarly, in many domains we have access to knowledge bases that are encoded in symbolic 
form (e.g. using logic or natural language). In this section, we discuss methods that align symbolic and vector representations in 
some way, in attempt to combine the best of both worlds.

Conceptual spaces The problem of aligning symbolic and vector space representations lies at the heart of the theory of conceptual 
spaces [263], which was proposed by Gärdenfors as an intermediate representation level between vector space representations 
and symbolic representations. Conceptual spaces are essentially vector space models, as each object from the domain of discourse 
is represented as a vector, but they differ in two crucial ways. First, the dimensions of a conceptual space usually correspond 
to interpretable salient features. Second, (natural) properties and concepts are explicitly modelled as (convex) regions. Given a 
conceptual space representation, we can thus, e.g., enumerate which properties are satisfied by a given object, determine whether 
two concepts are disjoint or not, or rank objects according to a given (salient) ordinal feature. Conceptual spaces were proposed as 
a framework for studying cognitive and linguistic phenomena, such as concept combination, metaphor and vagueness. As such, the 
problem of learning conceptual spaces from data has not yet received much attention. Within a broader setting, however, several 
authors have studied approaches for learning vector space representations that share important characteristics with conceptual 
spaces. The main focus in this context has been on learning vector space models with interpretable dimensions. For example, 
it has been proposed that non-negative matrix factorization leads to representations with dimensions that are easier to interpret 
than those obtained with other matrix factorization methods [396], especially when combined with sparseness constraints [319]. 
More recently, a large number of neural network models have been proposed with the aim of learning vectors with interpretable 
dimensions, under the umbrella term of disentangled representation learning [112,306]. Another possibility, advocated in [193], is 
to learn (non-orthogonal) directions that model interpretable salient features within a vector space whose dimensions themselves 
may not be interpretable. Beyond interpretable dimensions, some authors have also looked at modelling properties and concepts as 
regions in a vector space. For example, [228] proposed to learn region representations of word meaning. More recent approaches 
along these lines include [614], where words are modelled as Gaussian distributions, and [349], where word regions were learned 
using an ordinal regression model with a quadratic kernel. Some authors have also looked at inducing region based representations 
of concepts from the vector representations of known instances of these concepts [86,291]. Finally, within a broader setting, some 
approaches have been developed that link vectors to natural language descriptions, for instance linking word vectors to dictionary 
definitions [307] or images to captions [365].

An important question when dealing with embeddings is how much they can be used to perform logical reasoning. In this issue [546]

studies to which extent and under which conditions pooling operators, that are commonly used for aggregating vector embeddings in deep 
neural network architecture, are compatible with the idea that embeddings encode epistemic states and fit with the satisfaction of propositional 
formulas. The paper shows that max-pooling is particularly suitable for such tasks, in particular if one wants to encode non-monotonic 
reasoning.

Concept bottleneck models A popular strategy for building interpretable classifiers is based on aligning representations learned by 
deep neural network models with interpretable concepts. For instance, Concept Bottleneck Models [376] approach image classifica-
tion in two steps. First a traditional image classification model is used to predict which primitive concepts can be observed in an 
image. Second, a final prediction is made based on the primitive concepts that were identified in the first step. For instance, when 
classifying images of birds, the concepts involved may correspond to features such as the colour of the wings. The model would then 
use such features to predict the species of the bird that is depicted. Concept Bottleneck Models offer a degree of interpretability. For 
instance, we can easily inspect the primitive concepts that were identified to analyse why a given image was misclassified. Moreover, 
we may expect that making predictions in terms of primitive concepts can also serve as a form of semantic regularization. However, 
concept bottleneck models require appropriate supervision data, to allow them to learn the primitive concepts as well as the target 
classes, which is not always available in practice. Moreover, they are only useful in cases where an exhaustive set of primitive con-
cepts can be identified a priori. This is often difficult to achieve in practice, leading to models with sub-optimal performance [229]. 
Furthermore, it has been observed that the representations learned by concept bottleneck models may capture information beyond 
the considered primitive concepts, making the resulting interpretations potentially misleading [426]. As an alternative to concept 
bottleneck models, [656] suggest to learn concept-based explanations as a post-hoc step. Another alternative is to design classifiers 
that can be explained by comparing instances to learned prototypes [402]. Such approaches avoid the need for pre-defined concepts, 
but the learned prototypes may not always be easily interpretable. Some methods inspired by conceptual spaces have been proposed 
as well. For instance, [193] extract an interpretable (qualitative) representation from a given vector space, by essentially identifying 
directions within the space that correspond to interpretable properties. To train an interpretable classifier, they simply treat these 
14

properties as ordinal features.



International Journal of Approximate Reasoning 171 (2024) 109206I. Baaj, Z. Bouraoui, A. Cornuéjols et al.

4.3. Using knowledge graphs for learning

Knowledge graphs (KGs) are a popular formalism for expressing relational knowledge using triples of the form (entity, relation, 
entity). In application fields such as natural language processing, they are among the most widely used knowledge representation 
frameworks. For instance, several authors have explored strategies for incorporating KGs when training language models [670,
419,624]. KGs are also commonly used to provide background knowledge in NLP tasks such as question answering. For instance, 
commonsense KGs such as ConceptNet4 and ATOMIC [542] are commonly used to improve the commonsense reasoning abilities of 
language models [653,669]. In computer vision, commonsense knowledge graphs have similarly been used to interpret visual scenes 
[285,640]. While recent Large Language Models, such as ChatGPT and GPT-4, capture a wealth of world knowledge, they are still 
limited when it comes to lesser-known entities [430]. The extent to which they can be kept up-to-date is also inherently limited. KGs 
thus still have an important role to play in providing background knowledge to language models. KGs have also found important 
applications in the field of recommendation [665,620,625]. KGs can improve the quality of recommendations, by giving the system 
side information about the relatedness of different items, but they are also useful for making the recommendation process more 
explainable [626]. The usefulness of KGs for explainable machine learning more generally has also been highlighted [592].

Knowledge graph completion Knowledge graphs are almost inevitably incomplete, given the sheer amount of knowledge about the 
world that we would like to have access to and given the fact that much of this knowledge needs to be constantly updated. This 
has given rise to a wide range of methods for automatic knowledge graph completion, which is clearly a research area that has the 
integration of background knowledge and machine learning at its heart. On the one hand, several authors have proposed approaches 
for automatically extracting missing knowledge graph triples from text [520]. On the other hand, a large number of approaches 
have been studied that aim to predict plausible triples based on statistical regularities in the given knowledge graph. Most of these 
approaches rely on vector space embeddings of the knowledge graph [77,599]. The main underlying idea is to learn a vector 𝐞 of 
typically a few hundred dimensions for each entity 𝑒, and a scoring function 𝑠𝑅 for each relation 𝑅, such that the triple (𝑒, 𝑅, 𝑓 ) holds 
if and only if 𝑠𝑅(𝐞, 𝐟) ∈ℝ is sufficiently high. Provided that the number of dimensions is sufficiently high, any knowledge graph can in 
principle be modelled exactly in this way [369]. To a more limited extent, such vector representations can even capture ontological 
rules [292]. In practice, however, our aim is usually not to learn an exact representation of the knowledge graph, but to learn a 
vector representation which is predictive of triples that are plausible, despite not being among those in the given knowledge graph. 
Some authors have also proposed methods for incorporating textual information into knowledge graph embedding approaches. Such 
methods aim to learn vector space representations of the knowledge graph that depend on both the given knowledge graph triples 
and textual descriptions of the entities [671,348,638,637], or their relationships [521,596]. Finally, several authors have started to 
explore how KGs can be extracted directly form Large Language Models [630,121].

In this issue, [534] proposes techniques to generate explanations for predictions based on the embeddings of knowledge graphs: the idea is 
to build explanations out of paths in an input knowledge graph, searched through contextual and heuristic cues. On their side, [101] presents a 
model for fuzzy temporal reasoning to overcome some inconsistencies detected in pre-trained language models in a specific application domain 
of a conversational agent carefully designed for providing users with explanations. More precisely, starting from a knowledge graph that offers 
an intuitive representation of the entities and relations in the application domain, the authors describe how to map the temporal information 
onto a fuzzy temporal constraint network. An experiment with GPT-3 Large Language Model is reported.

5. Reasoning for learning by using constraints, semantic features, analogies

The idea of combining reasoning and learning covers many issues. In Section 3, we already mentioned version space learning, 
and we surveyed ILP, statistical relational learning, and neural symbolic AI. In that section, we saw some interplay between logic 
programming techniques, probabilistic reasoning, or fuzzy logic and neural networks. In Section 4, background knowledge was used 
either in the bias in order to improve the learned model, or to learn a new representation space.

This section covers machine learning settings in which various forms of reasoning play a central role. This involves reasoning 
about the predictions of machine learning models, the use of reasoning to satisfy declarative constraints, and the use of special forms 
of inference to make predictions.

More specifically, this section successively deals with:

• Declarative biases for pattern mining and clustering.
• Low-shot learning where knowledge is used in order to be able to learn from very few training examples.
• Transductive learning methods such as case-based reasoning and analogical reasoning, and their relation with transfer learning.

The combination of logical representations with learning is also considered in Section 6 (learning for knowledge acquisition), 
in Section 7 (learning for reasoning), where the focus is on learning representations that can be used for reasoning. Logical rep-
resentations, especially in the form of rules, can also be learned in the setting of explainable AI, as covered in Section 8 (model 
accountability).
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5.1. Declarative frameworks for data mining and clustering

Unsupervised ML tasks such as clustering can be guided by expert knowledge expressed by means of constraints that can the 
handled from declarative frameworks developed in the KRR side. Machine Learning and Data Mining can also be studied from the 
viewpoint of problem solving. From this point of view, two families of methods can be distinguished: enumeration and optimisation, 
the latter being either discrete or continuous.

Pattern mining is the best known example of enumeration problems, with the search for patterns satisfying some properties, as 
for instance being frequent, closed, emergent . . . Besides, supervised classification is seen as the search for a model minimizing a 
given loss function, coupled to a regularization term to avoid over-fitting, whereas unsupervised learning is modelled as the search 
of a set of clusters (a partition in many cases) optimizing a quality criterion (the sum of squared errors for instance for k-means). To 
cope with complexity, optimisation problems usually rely on heuristic search, with the risk of finding only a local optimum. All these 
approaches suffer from drawbacks. For instance in pattern mining the expert is often overwhelmed by all the patterns satisfying the 
given criteria. In optimisation problems, a local optimum can be far from the expert expectations.

To prevent these drawbacks, the notion of Declarative Data Mining has emerged, allowing the experts to express knowledge in 
terms of constraints on the desired models. It can be seen as a generalization of semi-supervised classification, where some data are 
already labelled with classes. Classical algorithms must then be adapted to take into account constraints, which has led to numerous 
extensions. Most of them are dedicated to only one type of constraints, since the loss function has to be adapted to integrate their 
violation and the optimization method (usually a gradient descent) has to be adapted to the new optimization criterion. It has been 
shown in [169] that declarative frameworks, namely Constraint Programming in that paper, allow to model and handle different 
kinds of constraints in a generic framework, with no needs to rewrite the solving algorithm. This has been applied to pattern mining 
and then extended to k-pattern set mining with different applications, such as conceptual clustering or tiling [170,373].

This pioneering work has opened the way to a new branch of research, mainly in Pattern Mining and in Constrained Clustering. 
In this last domain, the constraints were mainly pairwise, e.g., a Mustlink (resp. Cannotlink) constraint expresses that two points 
must (resp. must not) be in the same cluster. Other constraints have been considered such as cardinality constraints on the size of the 
clusters, minimum split constraints between clusters. Different declarative frameworks have been used, as for instance SAT [152,346], 
Constraint Programming [143], Integer Linear Programming [468,38,380,485]. An important point is that such frameworks allow 
to easily embed symbolic and numerical information, for instance by considering a continuous optimisation criterion linked with 
symbolic constraints, or by considering two optimisation criteria and building a Pareto front [143].

Thus, declarative frameworks not only allow to easily integrate constraints in Machine Learning problems, but they enable the 
integration of more complex domain knowledge that goes beyond classical Machine Learning constraints, thus integrating truly 
meaningful information [144]. Moreover, new use case for clustering can be considered as for instance given a clustering provided 
by an algorithm, find a new clustering satisfying new expert knowledge, minimally modifying the previous one [380]. The price 
to pay is computational complexity, and the inability to address large datasets. A new research direction aims at studying how 
constraints could be integrated to a deep learner [666,478]. Besides, the Constraint Programming community has also benefited 
from this new research direction by the development of global constraints tailored to optimize the modelling of Data Mining tasks, 
as for instance [371].

A detailed survey of declarative frameworks for clustering can found in this issue [145].

5.2. Low-shot learning

In this subsection, we point out that low-shot learning, a specific form of learning with few or no examples, encounters KRR in 
two respects: by requiring some form of knowledge describing classes, and by being close to the concerns of case-based reasoning. A 
recent survey can be found in [321].

One of the main cognitive tasks is to identify the category to which an object such as a pattern in an image, a sound, a text, etc. 
belongs. In Machine Learning, this problem involves learning a function that associates an input 𝐱 (e.g., a pattern) with a class or 
category 𝑦 (e.g., “a car”). In the standard supervised learning scenario, this is achieved by presenting a set of 𝑚 (𝑚 being large, or 
even very large) training examples {(𝐱𝑖, 𝑦𝑖)}1≤𝑖≤𝑚 to a learning algorithm and learn a recognition rule for each class.

But we humans often do not need such large training datasets to learn how to classify objects. For example, children learn to 
recognize cats from very few examples, and if given a definition of “zebra” (i.e. a wild African horse with black and white stripes and 
an erect mane), they are even able to recognize them from pictures without ever having seen one before. These two situations, quite 
common in natural cognition, have been called “learning from a few images” and “learning from zero images” respectively. But how 
are such feats even possible?

Standard supervised learning does not involve any reasoning. The classes 𝑦𝑖 are arbitrary tokens for the learning system. The class 
“cat” could as well be referred as “QP115”, that would not change in any way the learning process. The class tags are unrelated and 
the system attempts to capture correlations between the description of the inputs 𝐱 and the class 𝑦 to which they are paired in the 
training dataset without taking into account any semantics associated with the objects and classes nor any relationships between the 
classes.

If you have never been exposed to an instance of a class, the only way to be able to recognize its occurrence is to relate its 
description to other classes or to examples. For instance, if you know how to recognize a “horse” and a “striped” object, then you 
may be able to recognize a “zebra” from a new example because it triggers both the “horse” and “stripped” categories. The overall 
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idea then is to describe the classes as compositions of semantic features, and learn to recognize these features when presented with 
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an example. This is somewhat reminiscent of the use of background knowledge as described in subsection 4.2 where some inter-
mediate representation level between vector space representations and symbolic representations is used. In both cases, disentangled 
clusters corresponding to concepts are looked for in the intermediate representation space. But in the conceptual space approach, an 
interpretation in terms of symbolic knowledge is aimed at in order to study cognitive phenomena, whereas in zero-shot learning, the 
activation of several “concepts” is just a means to recognize a new type of pattern, in a first approach irrespective of any symbolic 
interpretation beside this recognition.

Learning to associate examples to classes then becomes a two step process, the first being to learn the semantic features 𝐹 ∈ F

allowing the description of the classes, and then to learn to associate examples 𝐱 to features in F . One of the earliest work on 
zero-shot learning along this line [107] employed wikipedia as a source of semantic concepts used to describe classes. In recent 
years, embedding spaces learned by deep neural networks are used as semantic spaces.

While some kind of semantics – a representation capable of capturing meaning – is produced in zero-shot learning, there is no 
such thing in the current approaches to one-shot or few-shot learning. Here, the idea is that at least one example has been seen for 
each class. This or these example(s) act as representatives of the class. Then, a new example is assigned to the class of the nearest 
representative. Of course, it all comes down to the definition of “nearest”. In this type of learning, the training set, which needs not 
to be as large as in supervised training, is used in order to learn what is similar or dissimilar. Contrastive learning methods in neural 
networks are one way of realizing this. In this respect, few-shot learning is not very different from case-based reasoning.

5.3. Case-based reasoning, analogical reasoning and transfer learning

Case-based reasoning (CBR for short), e.g., [1] is a form of reasoning that exploits data (rather than knowledge) under the form of 
cases, often viewed as pairs ⟨problem, solution⟩. When one seeks for potential solution(s) to a new problem, one looks for previous 
solutions to similar problems in the repertory of cases, and then adapts them (if necessary) to the new problem.

Case-based reasoning, especially when similarity is a matter of degree, thus appears to be close to k-NN methods and instance-
based learning [178,332]. The k-NN method is a prototypical example of transduction, i.e., the class of a new piece of data is 
predicted on the basis of previously observed data, without any attempt at inducing a generic model for the observed data. The term 
transduction was coined in [259], but the idea dates back to Bertrand Russell [535].

Another example of transduction is analogical proportion-based learning. Analogical proportions are statements of the form “𝑎
is to 𝑏 as 𝑐 is to 𝑑”, often denoted by 𝑎 ∶ 𝑏 ∶∶ 𝑐 ∶ 𝑑, which express the claim that “𝑎 differs from 𝑏 as 𝑐 differs from 𝑑 and 
𝑏 differs from 𝑎 as 𝑑 differs from 𝑐”. This statement can be encoded into a Boolean logical expression [450,501] which is true 
only for the 6 following assignments (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0), and (0, 0, 1, 1) for (𝑎, 𝑏, 𝑐, 𝑑). Note that 
they are also compatible with the arithmetic proportion definition 𝑎 − 𝑏 = 𝑐 − 𝑑, where 𝑎 − 𝑏 ∈ {−1, 0, 1}, which is not a Boolean 
expression. Boolean Analogical proportions straightforwardly extend to vectors of attributes values such as 𝑎 = (𝑎1, ..., 𝑎𝑛), by stating 
𝑎 ∶ �⃗� ∶∶ 𝑐 ∶ 𝑑 iff ∀𝑖 ∈ [1, 𝑛], 𝑎𝑖 ∶ 𝑏𝑖 ∶∶ 𝑐𝑖 ∶ 𝑑𝑖. The basic analogical inference pattern [584], is then

∀𝑖 ∈ {1, ..., 𝑝}, 𝑎𝑖 ∶ 𝑏𝑖 ∶∶ 𝑐𝑖 ∶ 𝑑𝑖 holds

∀𝑗 ∈ {𝑝+ 1, ..., 𝑛}, 𝑎𝑗 ∶ 𝑏𝑗 ∶∶ 𝑐𝑗 ∶ 𝑑𝑗 holds

Thus analogical reasoning amounts to finding completely informed triplets (𝑎, ⃗𝑏, ⃗𝑐) appropriate for inferring the missing value(s) in 
𝑑. When there exist several suitable triplets, possibly leading to distinct conclusions, one may use a majority vote for concluding. 
However it is advisable to use a subset of triplets based on “competent” pairs [82]. This inference method extends to analogical 
proportions between numerical values, and the analogical proportion becomes graded [218]. It has been successfully applied, for 
Boolean, nominal or numerical attributes, to classification [449,84] (then the class 𝑐𝑙(�⃗�) (viewed as a nominal attribute) is the unique 
solution, when it exists, such as 𝑐𝑙(𝑎) ∶ 𝑐𝑙(�⃗�) ∶∶ 𝑐𝑙(𝑐) ∶ 𝑐𝑙(�⃗�) holds). Besides, it has been theoretically established that analogical 
classifiers always yield exact prediction for Boolean affine functions (which includes x-or functions), and only for them [130]. Good 
results can still be obtained in other cases [131]. In this issue [83] provides a thorough analysis and experiments regarding the role in 
analogical inference (applied to classification) played by analogical proportions where the four items involved have the same value for some 
features.

It has been also applied to case-based reasoning [409] and to preference learning [234,80,81]. The general idea is that a preference 
between two items can be predicted if some analogical proportions hold that link their descriptions with the descriptions of other 
items for which preference relations are known. Lastly, analogical inequalities [502] of the form “𝑎 is to 𝑏 at least as much as 𝑐 is to 
𝑑” might be useful for describing relations between features in images, as in [392].

The idea of transfer learning, which may be viewed as a kind of analogical reasoning performed at the meta level, is to take 
advantage of what has been learnt on a source domain in order to improve the learning process in a target domain related to the 
source domain. When studying a new problem or a new domain, it is natural to try to identify a related, better mastered, problem 
or domain from which, hopefully, some useful information can be called upon for help. The emerging area of transfer learning is 
concerned with finding methods to transfer useful knowledge from a known source domain to a less known target domain.

The easiest and most studied problem is encountered in supervised learning. There, it is supposed that a decision function has 
been learned in the source domain and that a limited amount of training data is available in the target domain. For instance, suppose 
we have learnt a decision function that is able to recognize poppy fields in satellite images. Then the question is: could we use this 
in order to learn to recognize cancerous cells in biopsies rather than starting anew on this problem or when few labelled data are 
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This type of transfer problem has witnessed a spectacular rise of interest in recent years thanks both to the big data area that 
makes lots of data available in some domains, and to the onset of deep neural networks. In deep neural networks, the first layers 
of neuron elaborate on the raw input descriptions by selecting relevant descriptors, while the last layers learn a decision function 
using these descriptors. Nowadays, most transfer learning methods rely on the idea of transferring the first layers when learning a 
new neural network on the target training data, fine tuning only the last layers [655,609,515]. The underlying motivation is that the 
descriptors are useful in both the source and target domains and what is specific is the decision function built upon these descriptors. 
But it could be defended just as well that the decision function is what is essential in both domains while the ML part should 
concentrate on learning a representation appropriate for the target task. This has been achieved with success in various tasks [125]. 
When prior knowledge is available in the form of ontologies and some form of logic, it is tempting to use it in order to better select 
and express what to transfer. For example, in [394], authors propose a framework based on description logic to enhance transfer 
learning by incorporating semantics and reasoning capabilities to decide when and what to transfer.

Another interesting line of work is related to the study of causality. Judea Pearl uses the term “transportability” instead of transfer 
learning, but the fundamental issues are the same. Together with colleagues, they have proposed ways of knowing if and what could 
be transferred from one domain to another [495]. The principles rely on descriptions of the domains using causal diagrams. Thanks 
to the “do-calculus”, formal rules can be used in order to identify what can be used from a source domain to help solve questions in 
the target domain. One foremost assumption is that causality relationships capture deep knowledge about domains and are somewhat 
preserved between different situations. For instance, proverbs in natural language are a way of encapsulating such deep causality 
relationships and their attractiveness comes from their usefulness in many domains or situations, when properly translated.

One central question is how to control what should be transferred. A common assumption is that transfer learning should involve 
a minimal amount of change of the source domain knowledge in order for it to be used in the target domain. Several ways of 
measuring this “amount of change” have been put forward (see for instance [133,565]), but much work remains to be done before a 
satisfying theory is obtained.

With the recent emergence of Large Language Models, one could be tempted to advocate that the problem of transfer learning is 
solved. These systems are typically trained on vast amounts of text data from diverse sources, covering a wide range of subjects and 
domains. And, at least in the field of Natural Language Processing, they are able to answer queries about seemingly any topic. They 
might thus appear as universal agents.

However, even if these systems are based on the processing of immensely vast databases, they are still limited and have to be 
adapted for each application domain (e.g. finance, medicine, mathematics, ...). What’s more, they require extremely costly learning 
each time they are updated or adapted to a new domain, which partly defeats the purpose of transfer learning, which aims to make 
learning for a new task more economical.

Finally, transfer learning can be detrimental. Negative transfer can occur in human learning, when you’ve been led down the 
wrong path, and it can also happen in machine learning, and certainly with Large Language Models as well. What are the ingredients 
for predicting the performance to be expected from transfer learning? Performance of the source hypothesis on the source domain? 
Proximity (how to measure it?) of the source and target domains? Size of the target training set? Other dimensions? This is still a 
great unknown and a fruitful area of research given the growing importance of “long life learning”.

In this issue [126] discusses and revisit some commonly held beliefs about assumptions needed for transfer learning to work. In particular, 
it questions the need to have a good hypothesis on the source space and demonstrates that the relation between the source and target space, 
even when those are different, can matter more than the quality of the source hypothesis. It thus clarifies some of the conditions under which 
positive transfer learning can occur.

6. Learning for knowledge acquisition

This section focuses on works whose aims are to extract knowledge from data in the form of if-then rules, constraints, or preference 
relations. We have already encountered rules in logic programming settings in Section 3 when presenting ILP, Statistical Relation 
Learning and Neural Symbolic AI. In this section, we briefly survey formal concept analysis and rough sets that offer other frameworks 
for the extraction of rules. Then, we discuss various kinds of if-then rules and their learning, ranging from fuzzy rules, default rules to 
threshold rules, which respectively take into account the ill-definition of the range of applicability of rules, the presence of exceptions 
in the data, or express acceptance or rejection in terms of thresholds reached or not reached. Lastly, subsection 6.3 surveys works 
on constraint acquisition, and subsection 6.4 reports on preference learning and recommender systems. However, some important, 
well-known formats of knowledge representation, such as Bayesian networks, or other graphical models are not presented in this 
survey.

In this special issue, [113] presents recent advances on learning and inference using Bayesian networks: the compilation of Bayesian 
networks into arithmetic circuits in the form of tensor graphs and the exploitation of partially known functional dependencies leads to 
significant performance improvements; that paper also shows that one can significantly reduce the reliance on data and improve robustness if 
one complements data with knowledge, and shows that one can sometimes recover from modelling errors by using the more expressive Testing 
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6.1. Formal concept analysis and rough sets

Formal concept analysis and rough sets are two mathematical frameworks offering original tools for extracting rules from data, 
which have emerged over the last forty years and developed within dynamic autonomous communities on the fringes of mainstream 
AI.

6.1.1. Classical rules and formal concept analysis

Formal Concept Analysis (FCA) goes back to the 1980’s [261,246] and can be related to Artificial Intelligence since it offers a 
formalization of the notion of concept. It is a good example of a setting that stands in between KRR and ML concerns. Moreover 
recent years have witnessed a renewed interest in FCA with the emergence of Pattern Mining. FCA offers a mathematical framework 
based on the duality between a set of objects and a set of descriptors or attributes. A set of attributes is often called an itemset in 
the data mining literature. The basic setting starts from a formal context which is a relation linking objects and (Boolean) attributes. 
Thus a formal context constitutes a simple repository of Boolean data. A concept is then formalized as a pair composed of a set 
of attributes and a set of objects representing the intention and the extension of the concept respectively; it has the property that 
these objects and only them satisfy the set of attributes and this set of attributes refers to these objects and only them. Such a set 
of attributes is called a closed pattern, an intent, or a closed itemset. More precisely, two operators, forming a Galois connection, 
respectively associate, to a subset of objects, their common descriptors, and, to a subset of attributes, the subset of objects that satisfy 
them. In an equivalent way, a pair made of a set of objects and a set of attributes is a formal concept if and only if their Cartesian 
product forms a maximal rectangle for set inclusion in the formal context. The set of concepts forms a complete lattice. It a possible 
to define an equivalence relation between itemsets (two sets of attributes are equivalent if they share the same closure). From closed 
itemsets, it becomes possible to extract, from a formal context, all the attribute implications relating subsets of attributes, of the form 
“if objects satisfy a set of attributes then they satisfy another set of attributes”. See [288,261,47].

Two extensions are especially worth mentioning. One uses fuzzy contexts, where the links between objects and attributes are 
a matter of degree [51]. Many-valued contexts may be useful for handling numerical attributes [448]. Another extension allows 
for structured or logical descriptors using so-called pattern structures [260,245,27]. Besides, operators other than the ones defining 
formal concepts make sense in formal concept analysis, for instance, to characterize independent subcontexts [213].

Association rules [8,296] describe relations between attributes together with support degrees (reflecting the frequency of objects 
satisfying the condition parts) and confidence degrees (conditional probabilities). Such rules generalise attribute implications, for 
which the confidence degree is 1 (and that could be supported by no object, i.e., have zero support). Association rules can be 
extracted from more general data sets than formal contexts: The AMIE system [258] is a well-known example of association rule 
learner mining an RDF knowledge base in a description logic.

6.1.2. Rough sets and decision rules

Rough sets [491,117] are imprecise intensional descriptions of sets of objects by means of attribute values in a data base. The 
idea is that due to the limited number of attributes, objects may be indiscernible in the sense that they have the same description. 
Indiscernibility is an equivalence relation on the set of objects of the database, determined by a set 𝐴 of attributes. A subset 𝑆
of objects in extension can generally only be described by means of upper and lower approximations, each of them being subsets 
precisely expressed as union of equivalence classes. The lower approximation contains objects certainly belonging to 𝑆 , and the 
upper approximation contains objects possibly belonging to 𝑆 .

Such approximations can be useful in data mining [574,284], where we face the problem of inconsistent data. As emphasised in 
[282], “Using rough set theory, conflicting cases are not removed from the data set. Instead, concepts are approximated by new sets 
called lower and upper approximations.”

Based on the lower approximation, rules can be induced that need only cover non-conflicting examples of a class or concept, and 
must exclude all other examples. For the upper approximation, one looks for rules that cover every example of the class / concept, 
be it conflicting or not (and must exclude all examples that are not equivalent to any example of the class / concept).

More precisely, consider, in rough set terminology, a decision table D where there are two kinds of attributes: features 𝑎 ∈𝐴 and 
decisions 𝑑 ∈𝐷, which corresponds to a set of examples: every line in the table corresponds to an example, it describes an object 
(the values for the attributes in 𝐴), and an associated decision (or class) - the values for the attributes in 𝐷. Each object 𝑥 described 
in the decision table can be associated to a decision rule of the form ∧𝑎∈𝐴𝑎(𝑥) ⇒ ∧𝑑∈𝐷𝑑(𝑥). A decision table can be inconsistent, in 
the sense that there may be at least two objects 𝑥 and 𝑥′, which have the same description in terms of feature attributes 𝑎 ∈ 𝐴 but 
lead to different decisions.

In the case of inconsistent data, decision rules induced by the decision tables are certainty rules and possibility rules. Consider the 
set of objects 𝐷(𝑤) = {𝑥 ∶ 𝑑(𝑥) =𝑤𝑑, 𝑑 ∈𝐷}. 𝐷(𝑤) is the set of objects associated with decision / class 𝑤 (described by the values 
𝑤𝑑, 𝑑 ∈𝐷). Let 𝐷∗(𝑤) (resp. 𝐷∗(𝑤)) be the lower (resp. upper) approximation of 𝐷(𝑤) induced by attributes 𝑎 ∈ 𝐴. 𝐷∗(𝑤) is the 
set of objects which are necessarily in class 𝑤; 𝐷∗(𝑤) contains 𝐷∗(𝑤) and objects in 𝑤 for which there exists at least one identical 
object (in the sense of 𝐴) in another class.

This leads to the search for certainty rules, understood as the inclusion {𝑥 ∶ 𝑎(𝑥) = 𝑣𝑎, 𝑎 ∈ 𝑇 } ⊆ 𝐷∗(𝑤), and possibility rules, 
understood as the inclusion {𝑥 ∶ 𝑎(𝑥) = 𝑣𝑎, 𝑎 ∈ 𝑇 } ⊆𝐷∗(𝑤), for some sets of attributes 𝑇 . Ideally minimal sets of antecedent attributes 
are computed. Rough-set-based rule induction systems have been proposed quite early, as for instance the LERS system (see [281]
for a bibliography), and its probabilistic extension [283]. Besides, there exist bridges between rough set and formal concept analysis 
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approaches [652] as well as mathematical morphology [28] and Dempster-Shafer theory [100].
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6.2. Learning other kinds of if-then rules

Knowledge representation by if-then rules is a format whose importance was early acknowledged in the history of AI, with the 
advent of rule-based expert systems. Their modelling has raised the question of the adequacy of classical logic for representing them, 
especially in case of uncertainty where conditioning is often preferred to material implication. Moreover, the need for rules tolerating 
exceptions, or expressing gradualness on their range of applicability, such as default rules and fuzzy rules has led KRR to develop 
representation tools beyond classical logic. Those logical formalisms, classical and non-classical, can be used as target languages for 
learning, understood as knowledge acquisition from data.

In this issue [217] emphasizes that possibility theory stands halfway between logical and probabilistic representation frameworks, and 
that while qualitative possibility theory is totally compatible with classical logic, quantitative possibility theory can be related to statistics. This 
suggests that possibility theory may be an interesting setting for interfacing reasoning and learning; it is also a setting of interest for knowledge 
representation, as recalled in the rest of this subsection.

6.2.1. Default rules

Reasoning in a proper way with default rules (i.e., having potential exceptions) was a challenging task for AI during three decades 
[89]. Then a natural question is: can rules having exceptions, extracted from data, be processed by a nonmonotonic inference system 
yielding new default rules? How can we insure that these new rules are still agreeing with the data? The problem is then to extract 
genuine default rules that hold in a Boolean database. It does not just amount to mining association rules with a sufficiently high 
confidence level. We have to guarantee that any new default rule that is deducible from the set of extracted default rules is indeed 
valid with respect to the database. To this end, we need a probabilistic semantics for nonmonotonic inference. It has been shown 
[56] that default rules of the form “if 𝑝 then generally 𝑞”, denoted by 𝑝 ⇝ 𝑞, where ⇝ obey the postulates of preferential inference 
[377], have both

1. a possibilistic semantics expressed by the constraint Π(𝑝 ∧ 𝑞) > Π(𝑝 ∧ ¬𝑞), for any max-decomposable possibility measure Π (a 
set-function such that Π(𝑝 ∨ 𝑞) =max(Π(𝑝), Π(𝑞))),

2. a probabilistic semantics expressed by the constraint 𝑃𝑟𝑜𝑏(𝑝 ∧ 𝑞) > 𝑃𝑟𝑜𝑏(𝑝 ∧ ¬𝑞) for any big-stepped probability 𝑃𝑟𝑜𝑏. This is a 
very special kind of probability such that if 𝑝1 > 𝑝2 > ... > 𝑝𝑛−1 ≥ 𝑝𝑛 (where 𝑝𝑖 is the probability of one of the 𝑛 possible worlds), 
the following inequalities hold ∀𝑖 = 1, 𝑛 − 1, 𝑝𝑖 > Σ𝑗=𝑖,𝑛 𝑝𝑗 .

Then, one can safely infer a new default 𝑝 ⇝ 𝑞 from a set of defaults Δ = {𝑝𝑘⇝ 𝑞𝑘|𝑘 = 1, 𝐾} if and only if the constraints modelling
Δ entail the constraints modelling 𝑝 ⇝ 𝑞. Thus, extracting defaults amounts to looking for big-stepped probabilities, by clustering 
lines describing items in Boolean tables, so as to find default rules, see [54] for details. Then the rules discovered are genuine default 
rules that can be reused in a nonmonotonic inference system, and can be encoded in possibilistic logic (assuming rational monotony 
for the inference relation).

It may be also beneficial to rank-order a set of rules expressed in the setting of classical logic in order to handle exceptions 
in agreement with nonmonotonic reasoning. This is what has been proposed in [557] where a formalization of inductive logic 
programming (ILP) in first-order possibilistic logic allows us to handle exceptions by means of prioritized rules. The possibilistic 
formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example 
from being classified in more than one class.

Possibilistic logic [209] is also a basic logic for handling epistemic uncertainty. It has been established that any set of Markov logic 
formulas [519] can be exactly translated into possibilistic logic formulas [381,220], thus providing an interesting bridge between 
KRR and ML concerns. Taking lessons from this parallel with Markov logic, the learning of default rules encoded as possibilistic 
logic rules has been further developed in [382,383]. However, such a possibilistic encoding may lead to an inference mode that 
it is not enough cautious with respect to the handling of exceptions; see [57] for a detailed discussion of more or less cautious 
inference modes in default reasoning. In [586], the authors propose an approach called STRiKE (for STRatified K-Entailment) where 
k-entailment limits the extent to which erroneous inferences can propagate, by restricting to 𝑘 the number of constants involved.

Let us also mention two other approaches, also motivated by knowledge completion issues. In [257], the authors prefer adding 
exceptions into the bodies of rules in order to avoid that the prediction of facts by rules introduces errors. In the AnyBURL system 
(standing for Anytime Bottom Up Rule Learning) [447], rules ordered by their confidence levels are seen as default rules and the 
approach uses reinforcement learning to find more valuable rules earlier in the search process.

On a quite different basis, let us also mention an attempt at relating non-monotonic inference and neural nets [42,262].

6.2.2. Possibilistic handling of uncertain rules

A possibilistic handling of a rule-based system was introduced in the 80’s [240,242] and recently revisited in [215]. In this 
framework, the uncertainty of a rule “if 𝑝 then 𝑞” is handled by a matrix calculus for conditional possibilities, based on max-min 
composition:[

𝜋(𝑞)
𝜋(¬𝑞)

]
=
[
𝜋(𝑞 ∣ 𝑝) 𝜋(𝑞 ∣ ¬𝑝)
𝜋(¬𝑞 ∣ 𝑝) 𝜋(¬𝑞 ∣ ¬𝑝)

]
□max

min

[
𝜋(𝑝)
𝜋(¬𝑝)

]
where the matrix product □max

min uses min as the product and max as the addition. In this matrix calculus, the conditional possibility 
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distributions in the uncertainty propagation matrix obey a qualitative form of conditioning. The max− min composition governing 
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this matrix calculus and the normalization conditions max(𝜋(𝑝), 𝜋(¬𝑝)) = 1, max(𝜋(𝑞 ∣ 𝑝), 𝜋(¬𝑞 ∣ 𝑝)) = 1 and max(𝜋(𝑞 ∣ ¬𝑝), 𝜋(¬𝑞 ∣
¬𝑝)) = 1, ensure that the possibility degrees of the conclusion 𝑞 are normalized as well. An uncertainty propagation matrix of the 

form 
[
1 𝑠
𝑟 1

]
where 𝑠, 𝑟 ∈ [0, 1] are called the rule parameters, represents the rule “if 𝑝 then 𝑞” with certainty 1 − 𝑟 and the rule “if 

¬𝑝 then ¬𝑞” with certainty 1 − 𝑠.
The inference mechanism of a possibilistic rule-based system relies on this matrix calculus. Let a set of 𝑛 parallel uncertain rules 

be of the form (𝑖 = 1, … , 𝑛): “if 𝑎1𝑖 (𝑥) is 𝑃 1
𝑖 and ... and 𝑎𝑘𝑖 (𝑥) is 𝑃𝑘𝑖 then 𝑏𝑖(𝑥) is 𝑄𝑖” relating variables pertaining to the attribute 

values of some item 𝑥, and where the 𝑃 𝑗𝑖 ’s and 𝑄𝑖 are classical subsets of their corresponding attribute domains. In [215], the authors 
revisited the work of [242] and showed, on an example of a possibilistic rule-based system, that the output possibility distribution 
obtained by inference can be computed as a min− max product of a matrix containing the rule parameters and a vector whose 
coefficients are the possibility degrees of the rule premises. The general case for 𝑛 parallel rules is elaborated in [36]: a min− max
matrix relation 𝑂 =𝑀□min

max𝐼 is established, where the matrix containing the rule parameters is constructed by induction on 𝑛, the 
vector 𝐼 contains the possibility degrees of the rule premises, and the output vector 𝑂 describes the output possibility distribution 
on a partition of the output attribute set. In the case of a cascade, i.e. a possibilistic rule-based system composed of two chained sets 
of parallel possibilistic rules, it is shown in [36] that an input-output relation between the two matrix relations associated to each set 
of parallel possibilistic rules can be established. The resulting cascade of matrix relations has a structural resemblance to a min-max 
neural network [36].

These developments lead to two main questions: how to explain the inference results of possibilistic rule-based systems (studied 
in [242] and subsequently extended in [37,33]), and how to develop a learning paradigm for determining the rule parameters of 
possibilistic rule-based systems based on training data [34]. In [34], the author introduced an equation system in order to learn the 
values of the rule parameters according to a training dataset composed of the possibility degrees of rule premises inferred with the 
input possibility distributions and a target output possibility distribution. The equation system is composed of a matrix that contains 
the possibility degrees of rule premises, an output vector which describes a targeted output possibility distribution, and the unknown 
part is a vector that contains the rule parameters. By applying Sanchez’s results on systems of fuzzy relational equations [541] (since 
standard methods such as gradient descent cannot be easily applied to the min-max composition due to its non-differentiable nature), 
the author of [34] shows that solving this equation system yields values for the rule parameters that are compatible with the training 
dataset used. This work was recently extended in [35], where the author showed how to extend the equation system in order to take 
into account multiple training datasets. The results of [35] on the inconsistency of systems of fuzzy relational equations allows us to 
obtain approximate solutions of the equation system by modifying as little as possible the right-hand side of the equation system. It 
can also be used to estimate the quality of a training dataset.

6.2.3. Fuzzy rules

The idea of fuzzy if-then rules was first proposed by Zadeh [657]. They are rules whose conditions and /or conclusions express 
fuzzy restrictions on the possible values of variables. Reasoning with fuzzy rules is based on a combination / projection mechanism 
[658] where the fuzzy pieces of information (rules, facts) are conjunctively combined and projected on variables of interest. It 
generalizes classical logic inference.

Special kinds of fuzzy rules have been used to design fuzzy rule-based controllers in systems engineering: fuzzy rules may specify 
the fuzzy graph of a control law, as the union of fuzzy granules; once applied to an input it yields a fuzzy output that is usually 
defuzzified [431]. Other kinds of rules have precise conclusions that are combined on the basis of the degrees of matching between 
the current situation and the fuzzy condition parts of the rules [588]. In both cases, an interpolation mechanism is at work, implicitly 
or explicitly [659]. Such fuzzy rule-based controllers are universal approximators [104] and can be used to represent continuous 
non-linear systems.

There are other kinds of fuzzy rules whose primary goal is not to approximate functions, but rather to offer mathematical 
representations of various kinds of if-then statements in natural language [211]. This is, for instance, the case of gradual rules, which 
express statements of the form “the more 𝑥 is 𝐴, the more 𝑦 is 𝐵”, where 𝐴 and 𝐵 are gradual properties modelled by fuzzy sets 
[555,484]. It is possible to quantify the association between condition and consequent parts for such fuzzy rules with respect to a 
database. See [208] for the proper assessment of confidence and support degrees for fuzzy rules. Fuzzy rough sets have been used 
for extracting gradual decision rules [278]. The mining of gradual patterns has been studied quite extensively by Laurent et al., see, 
e.g., [484].

The functional equivalence between a radial basis function-based neural network and a fuzzy inference system has been estab-
lished under certain conditions [350]. Moreover, fuzzy rules may provide a rule-based interpretation [142,537] for (simple) neural 
nets, and neural networks can be used for extracting fuzzy rules from the training data [496,256].

In the perspective of classification, learning methods for fuzzy decision trees have been devised in [443], in the case of numerical 
attributes. The use of fuzzy sets to describe associations between data and decision trees may have some interest: extending the 
types of relations that may be represented, making easier the interpretation of rules in linguistic terms [221], and avoiding unnatural 
boundaries in the partitioning of the attribute domains.

6.2.4. Threshold rules

Another format of interest is the one of multiple threshold rules, i.e., selection rules of the form “if 𝑥1 ≥ 𝛼1 and ⋯ 𝑥𝑗 ≥ 𝛼𝑗 and ⋯
then 𝑦 ≥ 𝛾” (or deletion rules of the form ‘if 𝑥1 ≤ 𝛽1 and ⋯ 𝑥𝑗 ≤ 𝛽𝑗 and ⋯ then 𝑦 ≥ 𝛿”), which are useful in monotone classification 
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/ regression problems [278]. An algorithm [73], called VC-DomLEM, based on a rough set approach (where the equivalence relation 



International Journal of Approximate Reasoning 171 (2024) 109206I. Baaj, Z. Bouraoui, A. Cornuéjols et al.

is replaced by a dominance relation for handling ordered data) provides a mechanism for inducing such rules. Indeed when dealing 
with data that are made of a collection of pairs (𝑥𝑘, 𝑦𝑘), 𝑘 = 1, ..., 𝑁 , where 𝑥𝑘 is a tuple (𝑥𝑘1 , ..., 𝑥

𝑘
𝑛) of feature evaluations of item 

𝑘, and where 𝑦 is assumed to increase with the 𝑥𝑖 ’s in the broad sense, it is of interest of describing the data with such rules of 
various lengths. It has been noticed [279,219] that, once the numerical data are normalized between 0 and 1, rules where all (non 
trivial) thresholds are equal can be represented by Sugeno integrals (a generalization of weighted min and weighted max, which is 
a qualitative counterpart of Choquet integrals [276]). Moreover, it has been shown recently [88] that generalized forms of Sugeno 
integrals are able to describe a global (increasing) function, taking values on a finite linearly ordered scale, under the form of general 
thresholded rules. Another approach, in the spirit of the version space approach [459], provides a bracketing of an increasing function 
by means of a pair of Sugeno integrals [504,503].

6.3. Constraint learning

Constraint Programming (CP) [529] is a declarative framework for solving combinatorial problems. In such a framework, a 
problem is specified by a set of variables V , a set of domains D , a domain 𝐷𝑖 for each variable 𝑥𝑖 and a set C of constraints, where 
a constraint is put on a subset of variables and specify the values that are allowed. For instance, if 𝑥1 and 𝑥2 are two variables, a 
constraint 𝑥1 ≠ 𝑥2 means that in a solution of the problem, the values of 𝑥1 and 𝑥2 must be different. Such a formalization of the 
combinatorial problem is called a constraint network. Two kinds of problems are considered: satisfaction problems that aim at finding 
an assignment of the variables of V satisfying all the constraints and optimization problems that given an optimization criteria aims 
at finding the best solution satisfying the constraints. Solving a problem in CP is done through two operations: constraint propagation, 
or filtering, allowing to reduce the possible domains of variables by removing inconsistent values from the variable domains and 
branching that consists in choosing a variable, splitting its domain and creating branches in the search tree, one for each split. 
Solvers have been made more efficient by the development of global constraints embedding a set of constraints and for which more 
powerful filtering algorithms have been defined. For instance a alldifferent global constraint expressing that a set of variables must be 
assigned to different values has been defined and a filtering algorithm has been developed, which is more efficient than considering 
the conjunction of elementary pairwise different constraints between variables. The efficiency of CP depends on the way a problem 
is modelled (the choice of the variables and of the constraints) and on the search strategies for branching, making its use difficult 
for a non expert of CP. A new research domain, called constraint acquisition aims at learning a constraint network, given a library of 
constraints and a set of positive and possibly negative examples of assignments of variables for the target constraint network.

Constraint acquisition is often formulated as a concept learning problem, where the hypothesis space is defined through biases 
put on the form constraints can take and positive (resp. negative examples) are specified by solutions (resp. non solutions) to the 
combinatorial problem. The system Conacq introduced in [123] relies on a version space algorithm [461], formalized as a SAT-
problem in [67], whereas Lallouet et al. [389] propose a framework based on Inductive Logic Programming. De Raedt et al. [166]
propose an interesting study on the relations between constraint network learning and inductive logic programming (ILP), formalizing 
different works in a ILP setting. It emphasizes the specificities of constraint learning, in particular the fact that the number of positive 
examples is usually small and that the number of constraints can be large with many syntactic variants.

In this issue, [506] propose a novel, statistical approach based on sequential analysis that is fast, can handle large biases, and can 
accurately learn constraints from noisy data.

These approaches suffer for several drawbacks: all positive and negative examples must be given at the beginning of the learning 
process, which might be difficult for an expert and a bias on the constraint language must be specified (e.g., a set of constraints as in 
[67], a catalog of global constraints as in [49]).

Bessiere et al. [68] introduce active constraint learning, where membership queries that are complete instantiations of variables 
are generated and presented to the user, who has to classify each query as positive or negative examples. The idea of using queries to 
learn an unknown concept was first introduced in Machine Learning in [20]. Convergence is reached when (1) a constraint network 
satisfying all the positive and negative examples is found and (2) all other constraint networks satisfying (1) are equivalent, i.e. have 
the same set of solutions. As in all active learning systems, the problem is then to generate queries that are sufficiently informative 
to reduce the number of queries that have to be asked to the user before converging to the expected constraint network. Bessiere et 
al. [68] also introduce the notion of irredundant queries, i.e. queries that cannot be inferred by the current constraint network and 
the notion of optimistic queries. A synthesis of the work performed around the system Conacq and its extension to active constraint 
learning can be found in [70]. Nowadays most works on active learning consider only partial queries and many variants have been 
introduced to limit the number of queries [66,25,604,64,602]. Nevertheless the efficiency of the systems depend on the size of 
the constraint language. Meta algorithms [600,601] have been proposed to overcome this: the first one tends to call a constraint 
acquisition system on a growing set of variables, thus starting by a small bias (constraint language), the second one proposes to 
use a probabilistic classification model to generate more promising queries. Extensions have been proposed: Tsouros et al. [603]
introduce Limited Member Queries for which the user can answer ‘yes’, ‘no’ or ‘I don’t know’; Bessiere et al. [65] propose a weighted 
partial max-sat approach to learn a constraint network over unknown constraint language, given the assumption that the size of the 
language and the arity of the relations between variables being fixed.

In this section we have focused on hard constraint learning. De Raedt et al. [173] present a more general, logical-based view of 
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constraint learning, including soft constraint learning.



International Journal of Approximate Reasoning 171 (2024) 109206I. Baaj, Z. Bouraoui, A. Cornuéjols et al.

6.4. Preferences and recommendation

The importance of the notion of preference seems to have emerged first in economics and decision theory, and research in these 
fields focused essentially on utilitarian models of preferences, where utility function associates a real number with each one of the 
objects to be ordered. Also in this field, research developed on preference elicitation, where some interaction is devised to help a 
decision maker form / lay bare her preferences, usually over a relatively small set of alternatives, possibly considering multiple 
objectives.

In contrast, preferences in AI often bear on combinatorial objects, like models of some logical theory to indicate for instance 
preferences over several goals of an agent; or, more recently, like combinations of interdependent decisions or configurable items of 
some catalog. Thus, in KRR as well as in ML, the objects to be ordered are generally characterised by a finite number of features, 
with a domain / set of possible values for each feature. When talking about preferences, the domains tend to be finite; continuous 
domains can be discretised.

Preferences are now an important ingredient in AI. It has been an active research topic in several communities, in particular in 
AI and Operations Research, as shown by e.g. journal special issues [355,198]), continuing series of workshops (DA2PL,MPREF).

In both KRR and ML, models have evolved from binary ones (classical propositional or first-order logic, binary classification) to 
richer ones that take into account the need to propose less drastic outputs. One approach has been to add the possibility to order

possible outputs / decisions. In multi-class classification tasks for instance, one approach [205] is to estimate, given an instance, the 
posterior probability of belonging to each possible class, and predict the class with highest probability. The possibility of learning to 
“order things” has numerous applications, e.g., in information retrieval, recommender systems. In KRR, the need to be able to order 
interpretations (rather than just classify them as possible / impossible, given the knowledge at hand) has proved to be an essential 
modelling paradigm, see, e.g., the success of valued CSPs [545], Bayesian networks [492], possibilistic / fuzzy logics among others.

At the intersection of ML and KRR, the field of “preference learning” has emerged. Furnkranz et al. [254,255] describe various 
tasks that can be seen as preference learning, some where the output is a function that orders possible labels for each unseen instance, 
and some where the output is a function that orders any unseen set of new instances.

Because of the combinatorial nature of the space of objects, research in AI emphasized the need for compact models of preferences. 
Some probabilistic models, like Bayesian networks or Markov random fields, fall in this category, as well as e.g., additive utilities 
[250] and their generalisations. This focus on combinatorial objects also brought to light one difficulty with the utilitarian model: 
although it is often easy to compute the utilities or probabilities associated with two objects and compare them on such a basis, it 
appears to be often NP-hard to find optimal objects from a combinatorial set with numerical representations of preferences. Thus 
one other contribution of research in KRR is to provide preference representation languages where optimisation is computationally 
easy, like CP-nets [87]. See e.g. [238,237] for comparisons of the complexity of queries for some popular preference representation 
models.

These complex models of preferences have been studied from an ML perspective, both in an elicitation / active learning setting, 
and in a batch / passive learning setting. One particularity of these compact preference models is that they combine two elements: a 
structural element, indicating probabilistic or preferential interdependencies between the various features characterizing the objects 
of interest; and “local” preferences over small combinations of features. It is the structure learning phase which is often demanding, 
since finding the structure that best fits some data is often a hard combinatorial search problem. In contrast, finding the local 
preferences once the structure has been chosen is often easy.

The passive learning setting is particularly promising because of the vast dataset available in potential applications of preference 
learning in some decision aid systems like recommender systems or search engines. The possibility to learn Bayesian networks from 
data has been a key element for their early success in many applications. Note that in some applications, in particular in the study 
of biological systems, learning the structure, that is, the interdependencies between features, is interesting; in such applications, 
“black-box” models like deep neural networks seem less appropriate. This is also the case in decision-support systems where there is 
a need to explain the reasons justifying the computed ordering of possible decisions [48].

At the frontier between learning and reasoning lies what could be named lazy preference learning: given a set of preference state-
ments which do not specify a complete preference relation, one can infer new pairwise comparisons between objects, by assuming 
some properties the full, unknown preference relation. As a baseline, many settings in the models studied in KRR assume transitivity 
of preferences, but this alone does not usually induce many new comparisons. A common additional assumption, made by [48], 
is that the preference relation can be represented with an additive utility function, and that the ordering over the domain of each 
feature is known. In [632–634], richer classes of input preference statements are considered, and the assumption is made that the 
preference relation has some kind of (unknown) lexicographic structure.

At first sight, the task of recommending products, such as restaurants, movies, goods etc. could be considered as a natural 
application field of preference learning, albeit with a truly impressive scale. For instance, the Amazon platform sells 350 million 
products to 300 million customers5 and Youtube has 2.6 billion monthly active users who can potentially watch more than 5 billion 
videos.6 But, actually, the fields of preference learning on the one hand, and automatic recommendation on the other, have followed 
essentially distinct evolutions.

5 https://www .bigcommerce .com /blog /amazon -statistics/.
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6 https://www .globalmediainsight .com /blog /youtube -users -statistics/.

https://www.bigcommerce.com/blog/amazon-statistics/
https://www.globalmediainsight.com/blog/youtube-users-statistics/
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The rise of the web in the nineties started the interest in recommender systems. Earlier recommendations systems were mostly 
content-based [41]. In this approach, items are described with descriptive sets of attributes. Content-based recommender systems try 
to match users to items that are similar to what they have rated high in the past. Users are described by their profile. A profile 
may be an explicit set of preferences expressed by the user, say “I like spy stories with lot of actions”, or it can be based on the 
ratings of past seen products. One advantage is that it is easy to introduce new products as long as they are properly described. 
The recommendations for one user do not depend on the other users. On the other hand, a disadvantage is that content-based 
recommendations tend to be overspecialized on the user and do not offer a high level of serendipity, that is they often present little 
surprise to the user.

Because it is not easy to devise before hand the set of relevant attributes for describing products and users, but there exists 
an enormous amount of interaction history between the usually very large set of users and products, another approach has gained 
prominence in the first decade of the 21st century: collaborative-based recommendations. In this approach, the history of interactions 
between users and potential items is expressed as an enormous preference matrix where each cell condenses the judgement of one 
user on one item if this user has expressed explicitly or implicitly an opinion about this item in the past. Obviously, this matrix is 
extremely sparse, since each user has seen at most several hundreds of items out of possibly millions. The whole trick is therefore 
to find methods in order to “fill” the missing entries. One common way to fill the empty cells of the preference matrix is to resort 
to Singular Value Decomposition (SVD) which compresses the matrix through a linear approximation and then re-expands it. One 
measure of performance commonly used is the Mean-Absolute-Error (MAE). In essence, the ratings of like-minded users to the target 
one, because they have rated some common items in the past in a similar way, are used in order to make the recommendations. For 
a given item, a weighted average of the ratings expressed by this peer group is used to evaluate the likely rating that the target user 
would give to this item.

Another way to compress the information of the preference matrix has been proposed [301], which uses neural networks trained 
to predict the relevance scores of user-item pairs, therefore enabling to return personalized top-𝐾 items for each user.

Recently, Large Language Models (LLMs) have attracted attention in the field of recommending systems. These models trained on 
massive amounts of data have demonstrated remarkable success in learning what appears as universal representations. In the context 
of recommendation making, they can leverage the extensive knowledge encoded within them and respond to users’ prompts by high 
quality textual answers and explanations [635].

From these successive phases of the field, it can be seen that after the period of content-based methods, approaches have tended 
to ignore altogether conceptual descriptions of users and items to rely exclusively on the exploitation of the preference matrix. The 
recent turn towards using LLMs reintroduces the notions of knowledge representations, albeit in a not straightforward manner. Lot 
of research remains to be done to better understand these “foundation models”, their true potential and their limits.

7. Learning for reasoning

This topic focuses on situations where learning is exploited so as to help or guide reasoning tasks, as a reciprocal to section 5, 
where reasoning is exploited to help perform a learning task. We also do not consider here learning for knowledge acquisition, where 
the results provided by the learning step offer valuable knowledge that can be reused in a larger reasoning system: this has been 
covered in the previous section.

This section provides a brief overview of the applications of ML in practical Automated Reasoners.7 With a few exceptions, the 
subsection emphasizes recent work, published over the last decade. Tightly related work, e.g. inductive logic programming (see 
Section 3.1) or statistical relational learning [171], is beyond the scope of this subsection. The section is organized in two main parts. 
First, 7.1 overviews the applications of ML in developing and organizing automated reasoners. Subsection 7.2 covers a number of 
recent topics at the intersection of automated reasoning and ML.

Recent uses of automated reasoning in learning ML models, improving the robustness of ML models, but also in explaining ML 
models, are covered in Section 8.

7.1. Machine learning vs. automated reasoners

Until recently, the most common connection between ML and automated reasoning would be to apply the former when devising 
solutions for the latter. As a result, a wealth of attempts have been made towards applying ML in the design of automated reasoners, 
either for improving existing algorithms or for devising new algorithms, built on top of ML models. Uses of ML can be organized 
as follows. First, uses of ML for improving specific components of automated reasoners, or for automatic configuration or tuning of 
automated reasoners. Second, approaches that exploit ML for solving computationally hard decision, search and counting problems, 
and so offering alternatives to dedicated automated reasoners.

Improving reasoners. Earlier efforts on exploiting ML in automated reasoners was to improve specific components of reasoners by 
seeking guidance from some ML model. A wealth of examples exist, including the improvement of restarts in Boolean Satisfiability 
(SAT) solvers [295], improvement of branching heuristics [251,280,406,405,407], selection of abstractions for Quantified Boolean 

7 We adopt a common understanding of Automated Reasoning as “The study of automated reasoning helps produce computer programs that allow computers to reason 
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completely, or nearly completely, automatically” (from https://en .wikipedia .org /wiki /Automated _reasoning).

https://en.wikipedia.org/wiki/Automated_reasoning
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Formulas (QBF) solving [351,395], but also for improving different components of theorem provers for first-order and higher order 
logics [605,358,361,359,343,421,119]. It should be noted that the performance gains obtained in automated reasoners (e.g. SAT 
solvers) over the past three decades hinge in good part from changing the original logic formula by learning new clauses [439]. 
While the learning of new clauses cannot be viewed as the direct result of using machine learning, one can envision applying 
machine learning for improving the learning of new clauses.

ML has found other uses for improving automated reasoners. A well-known example is the organization of portfolio solvers [645,
334,336,374,445]. Another example is the automatic configuration of solvers, when the number of options available is large [335,
572]. One additional example is the automatic building of automated reasoners using ML [374].

Tackling computationally hard problems. Another line of work has been to develop solutions for solving computationally hard de-
cision and search problems. Recent work showed promise in the use of NNs for solving satisfiable instances of SAT represented in 
clausal form [551,552,550,622], for solving instances of SAT represented as circuits [13,14], but also NP-complete problems in gen-
eral [505]. The most often used approach has been to exploit variants of Graph Neural Networks (GCNs) [544], including Message 
Passing Neural Networks (MPNNs) [267]. There has also been recent work on solving CSPs [642] using convolutional NNs. Further-
more, there have been proposals for learning to solve SMT [43], combinatorial optimization problems [372,50,403,60], planning 
problems [197], but also well-known specific cases of NP-complete decision problems, e.g. Sudoku [487] and TSP [615].

Efforts for tackling computationally harder problems have also been reported, including QBF [651], ontological reasoning [315], 
probabilistic logic programming [432], inference in probabilistic graphical models [654] and theorem proving for first order [360,
324,45,486,323] and higher order logics [631,621,357,650].

7.2. More on learning vs. reasoning

The previous two subsections summarize recent efforts on using machine learning for automated reasoning, but also on using 
automated reasoning for learning, verifying and explaining ML models. This subsection identifies additional lines of research at the 
intersection of ML and automated reasoning.

Integrating logic reasoning in learning. A large body of work has been concerned with the integration of logic reasoning with ML. One 
well-known example is neural-symbolic reasoning [154,161,63,489,71,434,155]. See also Subsection 3.2. Examples of applications 
include program synthesis [668,667,489,93] and neural theorem proving [454]. Other approaches do exist, including deep reasoning 
networks [111], neural logic machines [200], and abductive learning [141,672]. An alternative is to embed symbolic knowledge in 
neural networks [639].

Learning for inference. One area of work is the use of ML models for learning logic representations, most often rules [522,523,649,
231,230], which can serve for inference or for explaining predictions. See also Subsection 3.2.

Understanding logic reasoning. A natural question is whether ML systems understand logical formulas in order to decide entailment 
or unsatisfiability. There has been recent work on understanding entailment [232,543], suggesting that this is not always the case, 
e.g., for convolutional NNs. In a similar fashion, recent work [114] suggests that GNNs mail fail at deciding unsatisfiability.

Synthesis of ML models. Recent work proposed the use of automated reasoners for the synthesis (i.e., learning) of ML models. 
Concrete examples include [249,673,413]. These approaches differ substantially from approaches for the synthesis of interpretable 
models, including decision trees and sets and decision lists.

As witnessed by the large bibliography surveyed in this subsection, the quantity, the breadth and the depth of existing work at 
the intersection between ML and automated reasoning in recent years, provides ample evidence that this body of work is expected 
to continue to expand at a fast pace in the near future.

8. Model accountability

For accountability and intelligibility purposes, it may be desirable to ensure that a model possess some abilities, or obey to some 
natural or imposed constraints. This typically corresponds to requiring the model to have additional reasoning features mainly coming 
in the form of symbolic structures: being readable by a human expert; modelling or discovering causal, non-symmetric relationships; 
being able to explain in some sense the made predictions. In this section, we are concerned with approaches that increase the model 
accountability and intelligibility. This concern has been recently emphasized at an institutional level, AI regulation texts, such as the 
AI Act from the European Parliament mentions that users need to dispose of a “right to explanation”, while remaining vague on the 
definition of the latter.

Data intelligibility may also be increased by means of rules extracted from the data, e.g. gradual rules, getting structured outputs 
and patterns from data, cluster labelling, ...); this point is outside the scope of this section and has been covered (at least in part) in 
Section 6.

This section first surveys recent works about explainability and interpretability, before addressing the issues of robustness and 
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fairness in machine learning.
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8.1. Explainability and interpretability

This subsection overviews the uses of automated reasoning approaches for verifying, explaining and learning ML models.

Explanations with abductive reasoning. In many settings, interpretable models are not often the option of choice, being replaced by 
so-called black-box models, which include any ML model from which rules explaining predictions are not readily available.8 Concrete 
examples include (deep) neural networks (including binarized versions), and boosted trees and random forests, among many other 
alternatives.

Most existing works on computing explanations resort to so-called local explanations. These models are agnostic and heuristic in 
nature [517,424,518]. Recent works [477,341] revealed that local explanations do not hold globally, i.e., it is often the case that 
there are points in feature space, for which the local explanation holds, but for which the model’s prediction differs. Since 2018, a 
number of attempts have been reported, which propose rigorous approaches for computing explanations. Concretely, these recent 
attempts compute so-called abductive explanations, where each explanation corresponds to a prime implicant of the discrete function 
representing the constraint that the ML model predicts the target prediction. A first attempt based on compiling such a function into 
a tractable representation is reported elsewhere [567]. For such a representation, (shortest) prime implicants can then be extracted 
in polynomial time. The downside of this approach is that compilation may yield exponential size function representations. Another 
attempt [340] is based on computing explanations of demand, by encoding the instance, the ML model and the prediction into some 
logic representation. In this case, reasoners such as SMT, ILP or SAT solvers are then used for extracting (shortest) prime implicants.

The progress observed in computing abductive explanations in recent years is summarized in several recent works [437,435,
146]. More importantly, by relating abductive explanations with adversarial examples, recent work demonstrated that abductive 
explanations can be computed for fairly complex block-box ML models [326,636].

In this issue the paper [15] is directly concerned with abductive and logical explanations. It proposes to extend necessary explanation 
of robust additive models by possible, yet non-necessary steps in order to explain a preference in order to extend the scope of explanation 
engines. Among other things, this allows the decision maker to scrutinize and confirm or criticize the provided explanations.

Interpretable ML models. Interpretable ML models are those from which rule-like explanations can be easily produced. For example, 
decision trees, decision sets (or rule sets) and rule lists are in general deemed interpretable, since one can explain predictions using 
rules. On area of research is the learning (or synthesis) of interpretable ML models using automated reasoning approaches. There have 
been continued efforts at learning decision trees [482,481,69,483,612,475,613,610,320,7,175], decision sets [388,342,428,266] and 
rule lists [17,18]. Examples of reasoners used include SAT, CP, and ILP solvers, but dedicated complete methods based on branch 
and bound search have also been considered. Despite a recent explosion of works on black-box ML models, there exist arguments for 
the use of interpretable models [532].

In this issue [303] intends to learn a set of easy-to-interpret models, namely scoring rules (notably used by physicians), so that the decision 
model can be adapted to the context as well as to the information at hand.

Despite ever-increasing efforts towards the learning of interpretable models, it has been shown that these so-called interpretable 
models must be explained, i.e. explanations for predictions are not trivially obtained by manual inspection of such models [344,345,
438], and so explanations (see the following section) must be computed.

Explanations vs. adversarial examples. In recent years, different works realized the existence of some connection between adversarial 
examples (AE’s) and explanations (XP’s) [418,589,528,593,644,488,106]. Nevertheless, a theoretical connection between AE’s and 
XP’s has been elusive. Recent work [340] showed that adversarial examples can be computed from the set of explanations for some 
prediction. Furthermore, this work introduced the concept of counterexample (CEx) to some prediction, and identified a minimal 
hitting set relationship between XP’s and CEx’s, i.e., XP’s are minimal hitting sets of CEx’s and vice-versa.

Later work established minimal hitting-set duality between the sets of abductive and contrastive explanations [339]. In practice, 
this duality relationship serves for the enumeration of both abductive and contrastive explanations.

In this issue [661] studies the difficulty of performing counter-factual queries that explicitly account for causal structures. In particular, 
it shows that sets of probabilities (a.k.a. credal sets) are well-adapted to deal with such queries, but that their exact resolution is NP-hard, 
offering an efficient heuristic to bypass this computational bottleneck. It therefore addresses two important aspects of accountability that 
are counter-factuals and causality, this last aspects being also important from a modelling perspective. Counter-factuals are also strongly 
connected to explanations as well as adversarial examples.

8.2. Robust machine learning

Concerns about the behaviour of neural networks can be traced at least to the mid 90s and early 00s [629,662,548]. Additional 
early work on ensuring safety of neural networks also involved SAT solvers [509]. More recently, efforts on the verification of neural 
networks have focused on the avoidance of so-called adversarial examples.

8 The definition of explanation is the subject of ongoing debate [452]. We use the intuitive notion of explanation as a IF-THEN rule [517,424,518], where some 
given prediction is made if a number of features values hold true. The importance of reasoning about explanations is illustrated by a growing number of recent 
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surveys [311,313,72,467,375,312,4,10,202,314,287,539,540,452,451,21,463,641,469].
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Adversarial examples [587], already briefly mentioned in Subsection 2.4, illustrate the brittleness of ML models. In recent years, 
a number of unsettling examples served to raise concerns on the fragility neural networks can be in practice [29,233,105,248,302]. 
Among other alternative approaches, automated reasoners have been applied to ensure the robustness of ML models, emphasizing 
neural networks. A well-known line of work focuses on the avoidance of adversarial examples for neural networks using ReLU 
units [473] and proposes Reluplex, an SMT-specific dedicated reasoning engine for implementing reasoning with ReLU units [367,
274,368]. Another recent line of work addresses binarized neural networks [328] and develops a propositional encoding for assessing 
the robustness of BNNs [476,474,398]. Additional lines of work have been reported in the last two years [325,531,102,384,264,
458,569,571,570,32,223,96,222,510,224,619,95,627,94,560,203,44]. In the case of complex neural networks, recent advances in 
robustness tools have been assessed in a dedicated competition [90].

8.3. Fairness

The problem of fairness in machine learning algorithms arises when such algorithms are applied to critical tasks that impact 
people. By design, machine learning algorithms aim at identifying biases in the data and generalizing them for decision-making 
tasks. However, the use of certain features, such as gender, political or religious opinions, ..., is prohibited by law or may not align 
with ethical considerations [244,204].

Fairness usually addresses situations where an algorithm exhibits different behaviour for two distinct subgroups of the population, 
although these subgroups should not influence its outcome. This situation is often modelled as follows: the algorithm should aim at 
forecasting a variable 𝑌 based on observations 𝑋. Fairness is then defined with respect to a protected variable, called a protected 
attribute, 𝑆 , which represents membership in each population subgroup. An algorithm is considered fair if its predictions do not 
depend too much on 𝑆 . The question of fairness in machine learning is first to evaluate if a model’s decision is influenced by a 
protected variable 𝑆 and, in such cases, correct the model to remove this dependency [225,664].

In this issue, [74] propose an exact learning algorithm to extract a Horn theory that corresponds in some sense to a given learnt model: this 
Horn theory can be used to explore existing biases in the model; they apply it in particular to probe occupational gender biases in BERT-based 
language models.

The bias in the data may come from many sources, such as existing societal biases or biased sampling of the data [253]. It 
is important to note that simply removing the protected variable from the dataset is generally not sufficient since other variables 
may be correlated with 𝑆 [151]. Moreover, in some situations, such as machine learning with images, removing a feature is not 
straightforward. There are two major approaches to correcting the fairness of a model. The first approach consists of repairing the 
dataset by removing the dependence with respect to the protected variable with minimal alteration of the dataset [244,253]. Another 
way to achieve fairness is to constrain the model to make fair decisions [660].

9. Handling imperfect data and information in learning methods

The idea of combining KRR notions with ML tools is not new. In KRR it is usual to deal with imperfect information, especially 
incomplete one: it is very rare that a knowledge base is complete. This situation contrasts with statistical and machine learning, that 
assumes by default that data, predictions are either precise or random. It of course does not mean that statistics and machine learning 
never deal with missing information, as we shall discuss in the next sections.

We will discuss the general problems on which we focus in Section 9.1, and will then make a focus on various methods mixing 
KR and ML components.

9.1. Uncertainty in ML: in the data and in the model

We will focus on two aspects in which cross-fertilisation of ML with KRR could be envisaged: uncertainty in the data and 
uncertainty in the models/predictions. Note that we will not deal with imperfections due to an adversarial modification of the data, 
a topic partially covered in Section 8.2.

9.1.1. Learning under uncertain and coarse data

In general, learning methods assume the data to be complete, typically in the form of examples modelled by (tuples of) precise 
values (in the unsupervised case) or precise input/output pairs (in the supervised case). There are however various situations where 
data can be expected to be uncertain, such as when they are provided by human annotators in classification, or measured by low-
quality sensors, or yet even missing, such as when sensors have failed or when only few examples could be labelled. An important 
remark is that the uncertainty attached to a particular piece of data can hardly be said to be of objective nature (representing 
frequency) as it has a unique value, and this even if this uncertainty is due to a random process.

While the case of missing (fully imprecise) data is rather well-explored in the statistical [416] and learning [108] literature, the 
general case of uncertain data, where this uncertainty can be modelled using different representation tools of the literature, largely 
remains to be explored. In general, we can distinguish between two strategies:

• The first one intends to extend existing methods for precise data to the handling of uncertain data, while retrieving a precise 
model from them. The most notable approaches consist in either extending the likelihood principle to uncertain data (e.g., 
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[180] for evidential data, or [135] for coarse data), or to provide a precise loss function defined over partial data and then 
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using it to estimate the empirical risk, see for instance [329,132,120,331]. Such approaches are sometimes based on specific 
assumptions, usually hard to check, about the process that makes data uncertain or partial. Some other approaches such as 
the evidential likelihood approach outlined in [180] do not start from such assumptions, and simply propose a generic way to 
deal with uncertain data. We can also mention transductive methods such as the evidential 𝐾 -nearest neighbour (𝐾 -NN) rule 
[178,191,188], which allows one to handle partial (or “soft”) class labels without having to learn a model. In this issue, [99]

studies the complexity of applying generalized risk minimisation (GRM) to uncertain supervised data when uncertainty is described by 
fuzzy sets. It shows in particular that obtaining good models with theoretical guarantees using GRM may be computationally challenging, 
and proposes an alternative learning using randomisation and ensembling that is efficient and provides good empirical performances;

• The second approach, much less explored, intends to make no assumptions at all about the underlying process making the data 
uncertain, and considers building the set of all possible models consistent with the data. Again, we can find proposals that extend 
probability-based approaches [163], as well as loss-based ones [137]. The main criticisms one could address to such approaches 
is that they are computationally very challenging and also sometimes too conservative, as adding imprecise/uncertain instances 
will systematically enlarge the models. Moreover they do not yield a single predictive model, making the prediction step poten-
tially difficult, even if more robust. In theory, such criticisms can be mitigated by trying to find a compromise between being 
fully skeptical and picking an inductive bias leading to a single, precise model, as sometimes done when learning imprecise 
models [23]. Although such middle ground approaches are still very rare for uncertain data, one can find some attempt, e.g., in 
preference or voting modelling [378,235].

The problem of handling partial and uncertain data is certainly widely recognised in the different fields of artificial intelligence, 
be it KRR or ML. One remark is that mainstream ML has, so far, almost exclusively focused on providing computationally efficient 
learning procedures adapted to imprecise data given in the form of sets, as well as the associated assumptions under which such a 
learning procedure may work [417]. While there are proposals around that envisage the handling of more complex form of uncertain 
data than just sets, such approaches remain marginal, at least for two major reasons:

• More complex uncertainty models require more efforts at the data collection step, and the benefits of such an approach (com-
pared to set-valued data or noisy precise data) do not always justify the additional efforts. However, there are applications in 
which the modelling of data uncertainty does improve the performance of classification tasks [116,512], or allow to robustify 
the results of the learning algorithm [411,412]. Another possibility could be that those data are themselves predicted by an 
uncertain model, then used in further learning procedures, as for example already done in stacking [227] or self-supervised 
procedures [410,524], in which case increased performances have also been observed;

• Using more complex representations may involve a higher computational cost, and the potential gain of using such represen-
tations is not always worth the try. However, some specific methods extended to the belief function setting such as the EM 
algorithm [180] or the 𝐾 -NN rule [188], make it possible to handle uncertain data without additional cost. Similarly, some 
adaptations of the cost functions together with a suitable choice of uncertainty representation lead to differentiable learning 
procedure presenting the same computational complexity as standard learning [411].

9.1.2. Uncertainty in the prediction model

Another step of the learning process where uncertainty can play an important role is in the characterisation of the model or 
its output values. In the following, we will limit ourselves to the supervised setting where we try to learn a (predictive) function 
𝑓 ∶ X → Y linking an input observation 𝑥 ∈ X to an output (prediction) 𝑦 ∈ Y . Assessing the confidence one has in a prediction 
can be important in sensitive applications. This can be done in different ways:

• By directly impacting the model 𝑓 itself, for instance associating to every instance 𝑥 not a deterministic prediction 𝑓 (𝑥), but an 
uncertain output on the domain Y . The most common type of output is of course probability distributions, but other solutions 
such as possibility distributions, belief functions or convex sets of probabilities are possible;

• Allowing the prediction to become imprecise, the main idea behind such a strategy is to have weaker yet more reliable pre-
dictions. In the classical setting, this is usually done by an adequate replacement of the loss function [294,277], yet recent 
approaches take a different road. For instance, imprecise probabilistic approaches consider sets of models combined with a 
skeptic inference (also a typical approach in KR), where a prediction is rejected if it is so for every possible model [124]. Ap-
proaches to quantify statistical predictions in the belief function framework are described in [362,647,189] and, more recently, 
in the epistemic random fuzzy set framework in [183,185]. Conformal prediction and approaches [562,19], rooted in the old 
idea of order and non-parametric statistics, is another approach that can be plugged in to any model output to obtain set-valued 
predictions, and that is gaining traction in machine learning, due to its simplicity, flexibility and theoretical justification.

If such approaches are relatively well characterised for the simpler cases of multi-class classification, their extension to more complex 
settings, such as multi-label or ranking learning problems that involve combinatorial spaces, remain largely unexplored, with only a 
few contributions (see [115,24,235,9,480,190] for a few ones). It is quite possible that classical AI tools such as SAT or CSP solvers 
could help deal with such combinatorial spaces.

In this issue [466] studies probabilistic circuits, that are emerging as an efficient tool to integrate knowledge in learning techniques, as well 
as to derive generative models with a clear probabilistic semantic. They are also computationally attractive, as many queries can be performed 
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in polynomial time. The authors of this paper study their robust counter-part, where probabilities are allowed to become imprecise. It shows 
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that in such a situation, performing queries becomes non-polynomial in many cases, but the paper proposes efficient and accurate heuristics 
to solve this issue.

9.2. Dempster-Shafer reasoning and generalized logistic regression classifiers

The theory of belief functions originates from Dempster’s seminal work [176] who proposed, at the end of the 1960’s, a method 
of statistical inference that extends both Fisher’s fiducial inference and Bayesian inference, generating imprecise probabilities. In a 
landmark book, Shafer [561] reconsidered Dempster’s lower and upper probabilities and extended their domain of application to the 
representation of subjective belief. Shafer showed that it could be proposed as a general language to express “probability judgements” 
(or degrees of belief) induced by items of evidence. This new theory rapidly became popular in Artificial Intelligence where it was 
named “Dempster-Shafer (DS) theory”, evidence theory, or the theory of belief functions [186]. DS theory can be considered from 
different perspectives:

• A belief function can be defined axiomatically as a Choquet monotone capacity of infinite order [561].
• Belief functions are intimately related to the theory of random sets: any random set induces a belief function and, conversely, 

any belief function can be seen as being induced by a random set [479]. However, it is a random disjunctive set, each set being 
a disjunction of mutually exclusive values.

• Disjunctive sets are in one-to-one correspondence with so-called “logical” belief functions, and probability measures are another 
special case of belief functions. A belief function can thus be seen both as a generalised probability measure and as a generalised 
set; it makes it possible to combine reasoning mechanisms from probability theory (conditioning, marginalisation), with set-
theoretic operations (intersection, union, cylindrical extension, interval computations, etc.)

DS theory thus provides a very general framework allowing us to reason with imprecise and uncertain information. In particular, 
it makes it possible to represent states of knowledge close to total ignorance and, consequently, to model situations in which the 
available knowledge is too limited to be properly represented in the probabilistic formalism. Dempster’s rule of combination [561]
is an important building block of DS theory, because it provides a general mechanism for combining independent pieces of evidence. 
Recently, on extension of DS theory based on random fuzzy sets and a product-combination rule has been introduced [182,184], 
allowing, in particular, to define practical models of belief functions in ℝ𝑝.

The first applications of DS theory to machine learning date back to the 1990’s and concerned classifier combination [646,526], 
each classifier being considered as a piece of evidence and combined by Dempster’s rule (see, e.g., [513] for a refinement of this idea 
taking into account the dependence between classifier outputs). In [178], Denœux combined Shafer’s idea of evidence combination 
with distance-based classification to introduce the evidential 𝐾 -NN classifier [178]. In this method, each neighbour of an instance 
to be classified is considered as a piece of evidence about the class of that instance and is represented by a belief function. The 𝐾
belief functions induced by the 𝐾 nearest neighbours are then combined by Dempster’s rule. Extensions of this simple scheme were 
later proposed in [675,404,188]. An neural network version based on prototypes was introduced in [179] and combined with deep 
architectures in [595,594]. A neural network model for regression based on similar ideas and quantifying prediction uncertainty 
using random fuzzy sets was recently described in [183].

The evidential 𝐾 -NN rule is, thus, the first example of an “evidential classifier”. Typically, an evidential classifier breaks down 
the evidence of each input feature vector into elementary mass functions and combines them by Dempster’s rule. The combined 
mass function can then be used for decision-making. Thanks to the generality and expressiveness of the belief function formalism, 
evidential classifiers provide more informative outputs than those of conventional classifiers. This expressiveness can be exploited, 
in particular, for uncertainty quantification, novelty detection and information fusion in decision-aid or fully automatic decision 
systems [188].

In [188], it is shown that not only distance-based classifiers such as the evidential 𝐾 -NN rule, but also a broad class of supervised 
machine learning algorithms, can be seen as evidential classifiers. This class contains logistic regression and its non linear generaliza-
tions, including multilayer feedforward neural networks, generalized additive models, support vector machines and, more generally, 
all classifiers based on linear combinations of inputs or higher-order features and their transformation through the logistic or soft-
max transfer function. Such generalized logistic regression classifiers can be seen as combining elementary pieces of evidence supporting 
each class or its complement using Dempster’s rule. The output class probabilities are then normalized plausibilities according to 
some underlying belief function. This “hidden” belief function provides a more informative description of the classifier output than 
the class probabilities, and can be used for decision-making. Also, the individual belief functions computed by each of the features 
provide insight into the internal operation of classifier and can help interpret its decisions. This finding opens a new perspective for 
the study and practical applications of a wide range of machine learning algorithms.

9.3. Maximum likelihood under coarse data

When data is missing or just imprecise (one then speaks of coarse data), statistical methods need to be adapted. In particular, the 
question is whether one wishes to model the observed phenomenon along with the limited precision of observations or despite such 
imprecision. The latter view comes down to completing the data in some way (using imputation methods). A well-known method 
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that does it is the EM algorithm [177]. This technique makes strong assumptions on the measurement process so as to relate the 
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distribution ruling the underlying phenomenon and the one ruling the imprecise outcomes. The EM algorithm and its extensions are 
extensively used for clustering (using Gaussian mixtures) and learning Bayesian nets.

However, the obtained result, where by virtue of the algorithm, data has become complete and precise, is not easy to interpret. If 
we want to be faithful to the data and its imperfections, one way is to build a model that accounts for the imprecision of observations, 
i.e., a set-valued model. This is the case if a belief function is obtained via maximum likelihood on imprecise observations: one 
optimises the so-called visible likelihood function [135]. The idea is to cover all precise models that could have been derived, had the 
data been precise. Imprecise models are useful to lay bare ignorance when it is present, so as to urge finding more data, but it may 
be problematic for decision or prediction problems, when we have to act or select a value despite ignorance.

Ideally we should optimize the likelihood function based on the actual values hidden behind the imprecise observations. But such 
a likelihood function is ill-known in the case of coarse data [135]. In that case, we can adopt several strategies:

• We can make assumptions on the measurement process so as to create a tight link between the hidden likelihood function 
pertaining to the outcomes of the real phenomenon, and the visible likelihood of the imprecise observations, for instance the 
CAR (coarsening at random) assumption [304], or the superset assumption [330]. In that case, the coarseness of the data can be 
in some sense ignored. See [347] for a general discussion.

• Another approach is to pick a suitable hidden likelihood function among the ones compatible with the imprecise data, for 
instance using an optimistic maximax approach that considers that the true sample is the best possible sample in terms of 
likelihood compatible with the imprecise observation [329]. This approach chooses a compatible probability distribution with 
minimal entropy, hence tends to disambiguate the data. On the contrary, the maximin approach considers that the true sample 
is the worst compatible sample in terms of likelihood. This approach chooses a compatible probability distribution with maximal 
entropy. Those two approaches adopt extreme points of view on the entropy of the probability distribution. More recently, an 
approach based on the likelihood ratio that maximizes the minimal possible likelihood ratio over the compatible probability 
distributions is proposed in [289]. This method achieves a trade-off between the previous two more extreme approaches and 
is able to quantify the quality of the chosen probability distribution in regards to all possible ones. In these approaches, the 
measurement process is ignored.

• Yet another approach is to extend the notion of likelihood to the case of imprecise and uncertain data. In the classical case of 
precise data, the likelihood can be seen as a measure of agreement between the data and a model. In [180], Denœux generalized 
this idea to the case of imprecise and uncertain data by defining the likelihood as one minus the degree of conflict (in the sense 
of Dempster-Shafer theory) between the probabilistic model and the data, represented by belief functions. An extension of the 
EM algorithm, called the Evidential EM (E2M) algorithm, allows us to maximize this generalized likelihood. This approach has 
been applied, e.g., to classification with soft labels [512], partially supervised independent factor analysis [116] and hidden 
Markov models with partial knowledge of hidden states [516].

See [136,331,194] for more discussions about such methods for statistical inference with poor quality data.
Besides, another line of work for taking into account the scarcity of data in ML is to use a new cumulative entropy-like function 

that together considers the entropy of the probability distribution and the uncertainty pertaining to the estimation of its parameters. 
It takes advantage of the ability of a possibility distribution to upper bound a family of probabilities previously estimated from 
a limited set of examples [558,559], and of the link between possibilistic specificity order (fuzzy set inclusion) and probabilistic 
entropy [207]. This approach enables the expansion of decision trees to be limited when the number of examples at the current 
final nodes is too small. Similar ideas can also be found in the imprecise probability literature, where upper entropies over sets of 
probabilities are used to limit the growth of the tree [2], and it would not be surprising to find strong formal links between the two 
approaches.

9.4. The EM algorithm and belief revision

Injecting concepts from KRR, when explaining the EM algorithm, may help better figure out what it does. In the most usual case, 
coarse data are elements of a partition of the domain of values of some hidden variable. Given a class of parametric statistical models, 
the idea is to iteratively construct a precise model that fits the data as much as possible, by first generating at each step a precise 
observation sample in agreement with the incomplete data, followed by the computation of a new model obtained by applying the 
maximum likelihood method to the last precise sample. These two steps are repeated until convergence to a model is achieved.

In [134], it has been shown that the observation sample implicitly built at each step can be represented by a probability distri-
bution on the domain of the hidden variable that is in agreement with the observed frequencies of the coarse data. It is obtained by 
applying, at each step of the procedure, the oldest (probabilistic) revision rule well-known in AI and epistemology, namely Jeffrey’s 
rule [353], to the current best parametric model. This form of revision considers a prior probability 𝑝(𝑥, 𝜃) on the domain X of a 
variable 𝑋, and new information made of a probability distribution over a partition {𝐴1, 𝐴2, … , 𝐴𝑛} of X (representing the coarse 
data). If 𝑝′𝑖 is the “new” probability of 𝐴𝑖, the old distribution 𝑝(𝑥, 𝜃) is revised so as to be in agreement with the new information. 
The revised probability function is of the form 𝑝′(𝑥, 𝜃) =

∑𝑛
𝑖=1 𝑝

′
𝑖 ⋅𝑝(𝑥, 𝜃|𝐴𝑖). The revision step minimally changes the prior probability 

function in the sense of Kullback-Leibler relative entropy.
In the case of the EM algorithm, 𝑝′𝑖 is the frequency of the coarse observation 𝐴𝑖, and 𝑝(𝑥, 𝜃) is the current best parametric 

model. The distribution 𝑝′(𝑥, 𝜃) corresponds to a new sample of 𝑋 in agreement with the coarse observation. In other words, the 
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EM algorithm revises the parametric model so as to make it consistent with the coarse data, minimizing the relative (entropic) 
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distance between the current parametric model and the new probability distribution in agreement with the coarse data, then applies 
maximum likelihood to the new obtained sample, so as to get a new parametric model, and so on, till convergence is attained.

Note that other recent works have also bridged belief change with classification [129,549].

9.5. Possibility theory in statistics

Possibility theory [210] is the simplest non-additive uncertainty model devoted to incomplete information. It has several formal 
frameworks, ranging from purely ordinal representations to numerical settings. Numerical possibility theory has connections to 
statistics [206], hence to machine learning.

Possibility measures ideally account for imprecise but coherent data (e.g. a bunch of nested intervals), while probability theory is 
tailored to precise randomly scattered data. In general, data are neither precise nor nested, and possibility theory can be used as an 
approximate representation of such imprecision-tainted data. Interestingly possibilistic representations also fit the situations when 
precise data is scarce, often obtaining non-parametric models using probabilistic inequalities. See [214] for various techniques for 
representing data using possibility distributions.

Possibility distributions are also a powerful tool to represent the dispersion of probability distributions [446]. This is done by 
transforming probability distributions into possibility distributions and pointwisely comparing the latter. This way of comparing the 
peakedness of probability distributions has been proved to have some connections with entropy [207].

Finally, possibility theory can be used in inferential statistics, noticing that a likelihood function is a kind of possibility dis-
tribution. In particular, the maximum likelihood principle can be seen as an application of possibility theory. Besides there is a 
counterpart of Bayes theorem in possibility theory. As a consequence, we can adapt the maximum likelihood approach to conditional 
distributions as well. While such formal links have been known since a long time [618], Denœux [182,184] has recently taken this 
idea a step further and has shown that statistical predictions can be made by combining knowledge about the parameters given by 
the relative likelihood function seen as a possibility distribution, with a probability distribution representing randomness. The result 
is a random fuzzy set that describes prediction uncertainty. This approach has been applied to logistic regression in [185].

For more details, the reader is referred to the survey paper by Dubois and Prade on possibility theory and learning in this special 
issue [217].

9.6. Beyond possibility theory: learning an imprecise linear model.

The simplest regression models associating input/output pairs are linear. A linear model can be formulated in probabilistic 
terms, where the output is an expectation of the inputs with respect to a probability measure. In such a case, estimating the weight 
associated with each input is enough to determine the model. To reflect the difficulty of estimating these weights from a finite 
training set, or to impact the potential imprecision of the observations, it may be interesting to replace the probabilistic model with a 
Choquet capacity defining a credal set, i.e. the set of probability measures that are dominated by the Choquet capacity. However, as 
mentioned in Section 9.1.1, such a model can be computationally very challenging. Modelling the credal set by a possibility measure 
is a good compromise [206] since it suffices, as in the probabilistic case, to estimate the weight associated with each input. One of 
the particularities of such a model is that its output is imprecise, as being the set of outputs obtained by an expectation with respect 
to any probability belonging to the credal set [423]. The result is a kind of imprecise linear model. However, this approach only 
concerns processes whose precise model is a probabilistic expectation.

In [583], it is proposed to extend this approach to any process that can be modelled by a linear combination. It uses a non-
monotonic extension of the possibility measures, the MacSum set function, where the weights associated to each input can be 
positive or negative. The MacSum set function is the sum of a maxitive function associated with positive weights and a minitive 
function associated with negative weights. This structure makes it possible to define a convex set of linear combinations whose sum 
of weights is identical, i.e. an imprecise linear model. Learning such a model can be carried out in regression form [310], as in 
the precise linear case, and admits both precise and imprecise data [582]. In the case where the inputs are imprecise, two extreme 
situations can arise: either the imprecision of the inputs and the model add up (disjunctive modelling) or they compensate for each 
other (conjunctive modelling).

10. Conclusion

KRR and ML, the two main areas of AI, have been developed rather independently for several decades. As a consequence, most 
of the researchers in one area are, to a large extent, ignorant of what has been going on in the other area. The intended purpose 
of this joint work is to provide an inventory of the meeting points between KRR and ML lines of research. The paper has reviewed 
some concerns that are shared by the two areas, maybe in different ways, surveyed various paradigms that are at the border between 
KRR and ML and provided an overview of different hybridizations of KRR and ML tools. The works covered may be old or recent, 
well-known as well as overlooked.

By the breadth of subjects covered, this article is a real challenge. However, even if the paper has been substantially revised, 
refreshed and expanded since its original version was made available [85], some subsections may still be found too sketchy. There 
is absolutely no claim of completeness of any kind, not even of being fully up to date. Here are just a few examples of topics 
not addressed or poorly handled in the article: namely, reinforcement learning, ontology representation and learning [26] (and 
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more generally the learning of graphical representations), argumentation and ML [12], or the logical analysis of data [79] (see also 
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[117,457]). Moreover, each topic covered in this paper is only outlined and would deserve to be discussed in further details. Even if 
the current list of references is lengthy, it is certainly incomplete and not ideally balanced. However, this work is complemented by 
the articles in the same volume, which are briefly introduced in this article and which develop some of the issues raised, or address 
topics not covered, while providing additional references.

The aim of this paper is to help facilitating the understanding between researchers in the two areas, with a perspective of cross-
fertilisation and mutual benefits. Yet, we should be aware that the mathematics of ML and the mathematics of KRR are quite different 
if we consider the main trends in each area. In ML the basic paradigm is a matter of approximating functions in continuous spaces 
(which then calls for optimization in continuous spaces). The mathematics of ML are close to those of signal processing and automatic 
control (as pointed out in [393]]), while KRR is dominated by logic and discrete mathematics, leading to an – at least apparent – 
opposition between geometry and logic [429].9 But functions also underlie KRR, once one notices that a set of (fuzzy or weighted) 
rules is like an aggregation function [212], whose computation may take the form of a generalized matrix calculus (‘generalized’ 
in the sense that the operations are not necessarily restricted to sum and product) [35]. Let us also note that the convolution of 
functions (a key tool in signal processing) is no longer restricted to a linear, sum/product-based setting [464]. Besides, let us note 
that deep learning methods are now able to predict Boolean functions, e.g., [150], which is another clue that the gap between Logic 
and ML is diminishing.

ML methods are to a large extent highly quantitative (artificial neurons remain quantitative), while KRR approaches are often 
qualitative. Even if being quantitative often contributes to good performance, it may be of interest of also developing more qualitative 
views to facilitate the interface with KRR methods, just as “System 1” and “System 2” (in the sense of [356]) interact in human beings.

Examples of states of fact that might call for some cooperation between ML and KRR are for instance, as low shot learning, 
unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and 
the data [420]; the local explanation methods for deep neural networks lack sensitivity to parameter values [5]; when trained on 
one task, then trained on a second task, many machine learning models “forget” how to perform the first task [272].

Generally speaking, dealing with KRR projects without any ML concern may narrow the horizon of the research problems, and 
it seems also difficult to envisage ML without KRR in some situations. In any case, it can be observed that there are more and more 
research works mixing KRR and ML tools. Trustworthy AI and accountability, frugal AI [52] are important and popular issues that 
may benefit in the long range of better synergies between KRR and ML.
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