
HAL Id: hal-04653603
https://hal.science/hal-04653603

Submitted on 19 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Unravelling COVID-19 waves in Rio de Janeiro city:
Qualitative insights from nonlinear dynamic analysis

Adriane Reis, Laurita dos Santos, Américo Cunha Jr, Thaís C.R.O.
Konstantyner, Elbert E.N. Macau

To cite this version:
Adriane Reis, Laurita dos Santos, Américo Cunha Jr, Thaís C.R.O. Konstantyner, Elbert E.N. Macau.
Unravelling COVID-19 waves in Rio de Janeiro city: Qualitative insights from nonlinear dynamic
analysis. Infectious Disease Modelling, 2024, 9 (2), pp.314-328. �10.1016/j.idm.2024.01.007�. �hal-
04653603�

https://hal.science/hal-04653603
https://hal.archives-ouvertes.fr


Unravelling COVID-19 waves in Rio de Janeiro city: Qualitative insights from
nonlinear dynamic analysis

Adriane S. Reis1,2, Laurita dos Santos3, Americo Cunha Jr4, Tháıs C. R. O. Konstantyner5 and Elbert E. N. Macau1
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Abstract

Since the COVID-19 pandemic began in late 2019, it has spread in waves through Rio de Janeiro and many other cities
around the globe. The population, healthcare system, and general quality of life in the city have all been significantly
impacted by these contagious waves. This paper aims to characterize the dynamics of the six waves of COVID-19 in Rio
de Janeiro city using techniques such as the Poincaré plot, approximate entropy, second-order difference plot, and central
tendency measures. Our results reveals that by examining the structure and patterns of the time series, using the set
of techniques employed in this paper, we can gain a better understanding of the systems behavior, identify underlying
dynamics, and extract meaningful information about the dynamical behavior of epidemiological time series.
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1. Introduction

Rio de Janeiro, like many other cities around the world,
has experienced multiple waves of the COVID-19 pan-
demic since it first emerged in late 2019 [1]. These waves
of contagion have had a significant impact on the city’s
population, healthcare system, and overall way of life [2].

The first wave of COVID-19 in Rio de Janeiro city
occurred in early 2020 when the virus was initially de-
tected in the city [3]. As the number of cases started
to rise, strict measures were implemented to contain the
spread [4]. Lockdowns, social distancing guidelines, and
travel restrictions were put in place to curb the transmis-
sion of the virus. The healthcare system faced significant
challenges as hospitals became overwhelmed with COVID-
19 patients, leading to shortages of medical supplies and
resources.

After several months of restrictions and a decline in
cases, Rio de Janeiro city experienced a relative respite
from the virus. However, as restrictions eased and peo-
ple began to return to their normal activities, which gave
rise to others waves of contagious. The virus mutations
into new variants such as the highly transmissible Gamma,
Delta, Zeta and Omicron added an additional layer of com-
plexity to the situation, as they presented new challenges
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in terms of transmission and vaccine efficacy [5, 6]. Ef-
forts were made to increase testing capacity, contact trac-
ing, and vaccination efforts to mitigate the impact of this
waves [7]. By mid-2021, the city of Rio de Janeiro cau-
tiously started to reopen and return to a semblance of nor-
malcy. However, complacency and the emergence of new
variants led to the last big wave of contagion due Omi-
cron variant in late 2021 and early 2022 [8]. This wave
posed further challenges, as it affected both vaccinated
and unvaccinated individuals. Several measures were im-
plemented at that time such as localized lockdowns, ca-
pacity limits for businesses, and the promotion of remote
work whenever possible [9].

Recently, Gianfelice et al. [10] analyzed a scenario of
multiple waves of COVID-19 in the city of Rio de Janeiro.
They were able to distinguish six different waves of con-
tagion by the disease. In this paper, we aim to charac-
terize the dynamics of the six waves of COVID-19 using
nonlinear analyses such as Poincaré plot (PP) [11, 12],
approximate entropy (ApEn) [13], second-order difference
plot (SODP) and central tendency measures (CTM) [14].
Poincaré plots are commonly used in time series analysis
as a graphical tool to explore and characterize the under-
lying dynamics of a system, providing a visual representa-
tion of the relationship between consecutive data points in
a time series, allowing for the analysis of patterns, irregu-
larities, and dynamic properties of the system, being par-
ticularly useful in analyzing physiological signals, such as
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electrocardiograms (ECGs) [15] or electroencephalograms
(EEGs) [16], offering a valuable approach for time series
analysis, enabling the visualization and exploration of the
complex dynamics present in the data [17, 18].

Allied to the Poincaré plots, we use approximate en-
tropy, second-order difference plot and central tendency
measures to analyze the data series and gain insights into
patterns and trends of the six waves of cases and deaths.
The approximate entropy is a powerful tool for analyzing
time series data [13, 19]. By quantifying the complexity
and irregularity within a dataset, it helps us to uncover
patterns, make predictions, and gain insights into the un-
derlying processes [20, 21]. The second-order difference
plot, also known as the second derivative plot, is a graph-
ical tool used to analyze patterns in a time series, provid-
ing insights into the rate of change or acceleration of the
underlying data by examining the differences between con-
secutive data points. However, it is important to note that
the interpretation of a second-order difference plot should
be done in conjunction with other analysis methods.

We use central tendency measures to assist in inter-
preting the results obtained with a second-order difference
plot. Central tendency measures play an important role
in understanding the typical values of a time series and
how they change over time [14, 22, 23]. Represented by a
second-order difference plot, this method allows to obtain
a comprehensive understanding of a time series allowing
us to infer the behavior of the virus spreading and un-
cover valuable pieces of information from time-dependent
data. Our premise is that the dynamics due the different
variants, control measures, and vaccination are reflected
in the pattern of time series. Therefore, employing these
combined analysis will enables us to predict the qualita-
tive behavior of the virus spreading and uncover valuable
pieces of information from time-dependent data.

2. Material and methods

Based on the work of Gianfelice et al., which analyzed
the scenario of multiple waves of COVID-19 in the city of
Rio de Janeiro, we separated the series of cases and deaths
data according to the dates specified by the authors [10].

The analyzed time series corresponds to the period
from 3 March 2020 to 9 September 2022 in Rio de Janeiro
(RJ) city, Brazil. Given the significant fluctuations present
in the time series of cases and deaths, stemming directly
from the disease and deficiencies in the surveillance sys-
tem, the raw data was smoothed using a 7-day moving av-
erage. The data was obtained by aggregating information
collected by the responsible organizations in an extensive
spreadsheet that contains various details, such as zip code,
date of first symptoms, type and date of outcome (recov-
ery or death), among others. It is worth mentioning that
although the mentioned information was present in the
spreadsheet, the patients identities were not revealed. The
mentioned data was registered by the municipal health

authorities and is available for consultation on the Rio
COVID-19 Panel (EpiRio) [24].

During the period considered we set only six waves of
contagion: 1st wave (Mar 03, 2020 to July 17, 2020); 2nd
wave (July 17, 2020 to Nov 06, 2020); 3rd wave (Nov 06,
2020 to Mar 01, 2021); 4th wave (Mar 01, 2021 to July
08, 2021); 5th wave (July 08, 2021 to Dec 11, 2021); 6th
wave (Dec 11, 2021 to Sept 09, 2022). Figs. 3 and 4 show
the time series for cases and deaths caused by COVID-
19. These dates are close, but not identical to the dates
presented in [10], which were determined by data-assisted
curves. Here, similarities in subsets of the time series are
takens into account to determine the start and the end
dates of each wave, using the dates of [10] as a reference.

0

4000

8000

12000

16000

0 300 600 900

N
ew

 c
as

es

Days

1st wave
2nd wave
3rd wave
4th wave
5th wave
6th wave

Figure 1: Time series for new daily cases of COVID-19 considering
a seven day moving average. The colours represent the six different
waves that occurred in the city of Rio de Janeiro: 1st (turquoise),
2nd (green), 3rd (magenta), 4th (orange), 5th (blue) and 6th (red).

In both time series, the onset and end of the waves were
considered as described above from March 2020 to Septem-
ber 2022. Each color represents a wave: 1st (turquoise),
2nd (green), 3rd (magenta), 4th (orange), 5th (blue), and
6th (red). For simplicity and comparison purposes, the
colors and dates of the waves for cases and deaths were
considered the same.
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Figure 2: Time series for new daily deaths of COVID-19 considering
a seven day moving average. The colours represent, in the same
period, the six different waves that occurred in the city of Rio de
Janeiro: 1st (turquoise), 2nd (green), 3rd (magenta), 4th (orange),
5th (blue) and 6th (red).
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2.1. Poincaré Plot

Poincaré plots, also known as first return maps or Poin-
caré maps, are graphical tools used to analyze the dynam-
ics of a complex system. For time series, Poincaré plot is
a widely used method to analyse correlation between time
series. Generally, Poincaré plots have been employed to
analyze heart rate variability and identify abnormalities
in cardiac dynamics [15, 25–27]. The construction of a
Poincaré map is done on a geometric representation of a
data series, in which the consecutive points of the time se-
ries are plotted. Each interval in the considered time series
is a function of the previous interval, therefore, it returns
a recurrence measure that reflects the correlation between
successive intervals of a time series [26]. Graphically, the
duration of a current event is displaced in axis xi and the
following event in the xi+1.

One way to quantify the dispersion of emergent pattern
that appears in the PP is by measuring the descriptors
SD1 and SD2. These descriptors are defined by the stan-
dard deviation perpendicular to the line of identity (SD1)
and the standard deviation parallel the line of identity
(SD2) [28] and calculated by fitting an ellipse according to
the dispersion of points in the shape of the PP [11, 17, 18].
In general, they represent the variation of short and long
and term that allows a guided visual inspection of the dis-
tribution of points. Is important to mention that these
measures are linear statistics and, therefore, do not di-
rectly quantify the temporal nonlinear variation, so it is in-
teresting to use different delays in order to capture changes
resulting from this variation in the delayed time [27, 29].

2.2. Approximate Entropy

Generally, the measurement of entropy in well-defined
physical systems is done by the Kolmogorov-Sinai entropy
(K-S) [30]. However, the K-S entropy has some limita-
tions which makes this measure not the best choice for
analyzing certain types of systems. For complex systems
whose time series present a lot of noise and fluctuations,
the K-S entropy measurement does not give satisfactory
results, requiring the implementation of other methods
that are capable of circumventing these limitations [20].
Some methods were developed, based on K-S entropy, to
solve these problems. When dealing with the analysis of
a data series that presents many fluctuations, or a series
generated by an unknown system, a widely used method
to measure entropy is the calculation of the approximate
entropy [13, 31].

ApEn is a statistical measure used to quantify the com-
plexity or irregularity of a time series data. It was orig-
inally introduced by Pincus in 1991 [31] as a tool for as-
sessing the regularity or predictability of physiological sig-
nals, such as electroencephalography (EEG) and heart rate
variability (HRV) [13, 25]. The calculation of approximate
entropy involves comparing subsequences within the time
series data and quantifying the similarity between them.
The algorithm measures the logarithmic likelihood that

subsequences of a certain length (m) will remain similar
when the data is expanded to include an additional data
point [20]. This process is repeated for different subse-
quence lengths and compared to assess the complexity of
the data. The approximated entropy is as follows

ApEn(m,R) = Φ(m+ 1, R) − Φ(m,R), (1)

where m is the length of the compared subsequences, R
is the tolerance or similarity criterion used to determine
whether two subsequences are considered similar. Φ(m,R)
is the average logarithmic probability that two subsequen-
ces of length m match within a tolerance R.

Low approximated entropy values indicate that the sys-
tem is repetitive, persistent and predictive, presenting pat-
terns that are repeated throughout the analyzed time se-
ries. On the other side, high values indicates independence
between the data (low correlation), a low number of repet-
itive patterns, and some randomness [19, 20]. It is impor-
tant to note that, although ApEn is calculated by a change
in K-S entropy, it is not an approximation of this entropy
measure. ApEn returns a statistical measure of the degree
of regularity and unpredictability in a time series,that is,
it does not serve to determine the dynamics of a system
completely, but to classify them and study the evolution
of their complexity. Thus, the ApEn measure may be used
as an indicative method of small changes in the dynamics
of a time series.

2.3. Central Tendency Measure and second-order differ-
ence plot

The CTM method measures the variability of data in
a time series, in which successive differences are plotted
against each other [14, 23]. In addition to showing the
variability present in the time series, the graph resulting
from this plot also shows nonlinear aspects in the sequence
of the series in the time intervals considered. The correla-
tion of the time series data is computed in the SODP from
the difference of the two variables analyzed by the coor-
dinates (xi+1 − xi) and (xi+2 − xi+1), where each sample
value xi denotes an interval x in time i.

The CTM is a very useful tool for quantifying the level
of variability computed by the SODP. We compute the
CTM from the data time series selecting a circular region
of radius R around the origin, taking into account the
ration of the number of points that falls within the re-
gions delimited by the radius R and the total number of
points [32, 33]

CTM =

N−2∑
i=1

δ(di)

N − 2
, (2)

beign δ(di) defined as

δ(di) =

{
1, if [(xi+1 − xi)

2 + (xi+2 − xi+1)
2
] < R,

0, otherwise.
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Low values of CTM, for a specific R, indicate a few
points within the circle. If a larger radius is needed to
include all points on the SODP, this is an indication of
high variability in the series [23]. In summary, a low CTM
value indicates a large dispersion and a high value indicates
concentration close to the center, that is, the higher the
CTM, the smaller the variability.

3. Results and Discussion

In this section, we present the results obtained by ap-
plying the methods mentioned in the previous sections to
describe the qualitative behaviour of the propagation of
cases and occurrences of deaths caused by SARS-CoV-2.

3.1. Poincaré plot analysis

At first, we will analyze the qualitative behaviour of the
number of new cases of COVID-19 infection in the city of
Rio de Janeiro. The time series used comprise the same
waves of cases shown in Fig. 1. As mentioned in Sec. 2.1
it is interesting to analyse the dynamics of contagion by
the disease at different times, in this way, we will achieve
a better qualitative description of the dynamics of propa-
gation of the disease. Fig. 3 illustrates Poincaré plot for
the evolution of daily cases for each wave of COVID-19 as
time varies from τ = 1 to τ = 5, to capture the temporal
nonlinear variation [27, 29].

To start the analysis of our findings, we should re-
call that when dealing with epidemiological diseases, there
is a time in which the symptoms of the disease take to
manifest in the infected individual (virus latency period).
Overnight, the initially infected group contaminates an-
other group due to people interactions, which, in turn,
infects a new group of individuals, starting community
transmission. Such behavior can be observed by the in-
creasing number of new cases. We should pay attention
to the fact that, concerning the first wave, we are at the
beginning of the pandemic in Rio de Janeiro city. During
this period, the restrictions on the movement of people
had not yet been widely adopted by a significant portion
of the population since the 1st decreet was on March 11,
2020 [4]. As time passes we observe that the time series
begins to lose correlation. This could indicate that the
initially infected group has acquired immunity, at least to
the same variant circulating during this period. This effect
also applies to the other infected groups.

A visual inspection of the first panel in Fig. 3, cor-
responding to the 1st wave (τ = 1), the PP reveals the
presence of several points concentrated along the identity
line (xi+1 = xi). This indicates that at the onset of the
disease, there is a strong correlation in the number of new
cases per day. In other words, the initial high correlation
observed in the PP during the 1st wave can be analyzed
in terms of an initial population of infected individuals
who, due to the virus’s latency period and the absence of
symptoms, end up infecting susceptible individuals. As

the system evolves over time, for τ = 2, it can be noticed
that some points start to become more dispersed in the
PP, indicating a slight decrease in the correlation of new
cases for the first wave. As we vary τ from 1 to 5, the loss
of correlation from one day to the next becomes more ev-
ident. When τ = 5, the correlation of new cases decreases
significantly, and the geometric representation of the PP
approaches the shape of the system attractor. This de-
cline in correlation over time suggests that as individuals
acquire immunity to the current variant or due to reduced
contact between the population of infected and suscepti-
ble individuals (social isolation), the number of new daily
cases tends to decrease.

In the 2nd wave, we observe that the number of new
cases per day is slightly lower compared to the 1st wave.
As seen in the PP, the time series it describes exhibits a
shortening along the diagonal and the presence of more
scattered points perpendicular to the identity line. This
suggests that during the considered period, short-term con-
tagion is less responsible for the number of cases. Thus,
considering that the number of cases was lower compared
to the 1st wave, it can be conjectured that during this
period, individuals remained infected for a longer time or
stayed asymptomatic for a longer time.

A similar behavior is observed for the time series of
the 3rd wave. In this case, the number of new cases per
day is higher compared to the 2nd wave. However, as we
vary τ , the correlation of the time series decreases. It is
interesting to note that in both the 2nd and 3rd waves,
there is a region of “separation” of some points, forming
a cluster close to the region with higher correlation. By
analyzing the geometric pattern in Fig. 3, this can indicate
a long-term loss of correlation associated with a short-term
one. In other words, a period in the time series during
which the number of new cases remained approximately
constant.

The fourth wave is characterized by an initial pattern
with numerous points along the identity line, indicating
high correlation. However, there is also a pattern where
the points are more scattered away from the identity line,
perpendicular to it. Analyzing the time series in Fig. 1,
we can observe a sudden increase in the number of cases,
which is captured by the emergence of a new cluster in the
PP. Similar to the previous waves, the points are dispersed
perpendicular to the identity line, suggesting that short-
term contagion is not solely responsible for the increase in
cases.

During the 4th wave, Brazil experienced a significant
increase in cases due to the predominant circulation of the
Gamma variant (since January 2021), a variant of concern
(VOC). In the same period, in the city of Rio de Janeiro,
the Zeta variant (P.2), a mutation of the Gamma variant
(variant of interest - VOI), was responsible for a significant
rise in daily new infections. The Gamma variant can be 1.7
to 2.4 times more transmissible than other VOCs, indicat-
ing that short-term contagion was not the primary factor
contributing to the pronounced increase in cases. Rather,
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the mutation of the virus played a crucial role [5, 6, 8].
A equivalent pattern can be observed for the 5th wave;

however, the geometric representation of the time series
in the Poincaré plot exhibits a slight shortening along the
diagonal. This suggests that, in addition to the number
of daily cases being lower than in the 4th wave, there is a
higher correlation between short-term and long-term vari-
abilities, considering the spread of the disease. The vari-
ations in correlation around the central part are due to
the oscillations shown in the time series, where there is a
reduction in the number of new cases (explaining the scat-
tered points in the lower part of the plot), followed by a
subsequent increase in the number of cases.

Lastly, the 6th wave corresponds to the period when
the Omicron variant was circulating in Brazil. The main
characteristics of the Omicron variant (B.1.1.529) include
a higher reinfection rate compared to other VOCs and
milder symptoms, which can lead an infected individual
to not identify the infection caused by the virus [8]. An-
alyzing the PP, when τ = 1, we can see different clusters
in the dispersion pattern of points. At the beginning of
the 6th wave, the points are highly correlated, indicating
low variability in the number of new cases from one day
to the next. After a certain period, there is a break in this
geometric pattern, and the first cluster emerges, revealing
the abrupt increase in the number of new daily COVID-19
cases. Once again, the presence of other clusters indicates
a decrease and subsequent increase in the number of cases.
Finally, the PP shows reduced variability, indicating that
up until the considered period, daily cases tend to stabilize
around a constant value.

It is interesting, in this case, to mention the effects of
increasing τ for the study of the time series. As we increase
τ , we observe the same pattern of clusters; however, the
variability within each cluster necessarily decreases, ap-
proaching the system’s attractor. Note that waves 1 to 5
were all shown on the same scale, except for the 6th wave,
which had the highest number of daily cases. Overall, this
behavior can be observed for all the waves considered in
this study, with slight variations for each of them.

The analysis of the PP allows a qualitative represen-
tation of the dynamics of COVID-19 waves. One way
to quantify these results is by using the measures of the
descriptors SD1 and SD2, as discussed in Sec. 2.1. Ta-
ble 3.1 presents the values of the descriptors SD1, SD2,
and the ratio between them. By observing the values of
these descriptors, we can see that they corroborate the
results obtained from the figures shown on the Poincaré
map (Fig. 3), where we observe a breakdown of correla-
tion within each wave as we increase the values of τ .

Considering the 1st wave, we can see that the calcu-
lated values for SD1 and SD2 align with the results ob-
tained from the PP. When τ = 1, the SD1 measure has
the lowest value. As τ increases, the value of SD1 in-
creases, reflecting the loss of correlation observed in the
first frame of Fig. 3. Regarding SD2, there is little vari-
ation in the calculated values, suggesting that long-term

variability is not a determining factor in the first wave.
The ratio of the descriptors provides the day-to-day vari-
ation of the number of cases according to the variation of
SD1 relative to SD2. According to Table 3.1, for τ = 1,
SD1/SD2 = 0.15 (1st wave), indicating that there is not
much variation between the measures, thus corroborating
the correlation observed in the PP.

In the 2nd wave, the most pronounced characteristic
is the shortening of the diagonal (identity line), and the
value of SD2 captures this behavior well when compared
to the 1st wave, as we can see that these values are lower.
The values of SD1 follow the same pattern as in the previ-
ous case, where correlation decreases as τ increases, conse-
quently leading to an increase in SD1. The ratio between
the descriptors, in the case of the 2nd wave, is almost twice
as high as in the 1st wave, reinforcing the idea that during
this period, people remained infected for a longer time,
as the day-to-day variability is higher in this period. In
the period corresponding to the 3rd wave, the values of
SD1 and SD2 are consistent with what is shown in Fig. 3.
The value of SD1/SD2 = 0.43 captures the points off the
diagonal in the PP, indicating appreciable long-term and
short-term variation in the time series of COVID-19 cases
during this period. Overall, the results presented in Ta-
ble 3.1 corroborate the observed behavior in the PP, re-
vealing the loss of correlation as τ increases.

Table 1: Values of SD1, SD2 and ratio for occurrence of cases of
COVID-19 for τ varying from 1 to 5.

1st wave τ1 τ2 τ3 τ4 τ5

SD1 40.58 65.89 87.40 107.92 124.71
SD2 265.77 261.52 255.20 248.28 240.68

SD1/SD2 0.15 0.25 0.34 0.43 0.52
2nd wave τ1 τ2 τ3 τ4 τ5

SD1 52.41 65.02 73.14 85.60 92.76
SD2 161.10 157.30 156.28 151.39 144.12

SD1/SD2 0.32 0.41 0.47 0.56 0.64
3rd wave τ1 τ2 τ3 τ4 τ5

SD1 96.91 128.04 152.15 171.90 190.09
SD2 255.33 215.81 199.38 185.76 163.17

SD1/SD2 0.43 0.59 0.76 0.92 1.16
4th wave τ1 τ2 τ3 τ4 τ5

SD1 89.27 166.40 233.11 287.61 333.02
SD2 713.86 700.32 680.32 657.91 633.43

SD1/SD2 0.12 0.24 0.34 0.44 0.53
5th wave τ1 τ2 τ3 τ4 τ5

SD1 138.08 199.22 240.77 266.12 295.93
SD2 431.65 417.18 398.50 387.09 366.45

SD1/SD2 0.32 0.48 0.60 0.69 0.81
6th wave τ1 τ2 τ3 τ4 τ5

SD1 271.11 415.80 563.85 700.63 834.17
SD2 3591.21 3582.22 3568.22 3548.03 3524.61

SD1/SD2 0.07 0.12 0.16 0.20 0.24

The same quantitative and qualitative analyses were
conducted for the time series of COVID-19 deaths, con-
sidering the same intervals for the beginning and end of
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Figure 3: Poincaré plot for occurrence of cases with different values of τ . All frames were placed on the same scale, with the exception of
the 6th wave. By direct observation, it can be seen that as the value of τ increases in the Poincaré graph, the correlation between the points
decreases.

the waves. In order to facilitate visual comparison, the
colors representing the waves have been kept consistent.
The analysis of the PP of the six waves of deaths from
COVID-19, as shown in Figure 4, reveals patterns similar
to those observed in cases time series. In the 1st wave, we
can see a geometric pattern similar to what was observed
in the 6th wave of cases. The PP shows low variability
initially, followed by the emergence of clusters due to the
increase in the number of deaths over the considered pe-
riod. As we increase τ , the points become more dispersed,
indicating a decrease in correlation.

In the subsequent waves (2nd, 3rd, 4th, 5th, and 6th),
a similar behavior is observed in the PP for deaths. In the
2nd wave of deaths, we observe a similar shortening of the
diagonal as in the cases time series. During this period,
it is assumed that individuals manifested the symptoms
of the disease later, remaining infected for a longer time.
The number of deaths is lower in the 2nd wave compared
to the 1st wave because some of the individuals infected
during this period only started showing symptoms in the
interval that corresponds to the 3rd wave. In both the PP
and the death time series, we can observe an increase in
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the number of deaths during the 3rd wave. As seen in the
PP, the time series corresponding to the 3rd wave exhibits
the appearance of clusters related to the abrupt increase
and decrease in the number of deaths.

The dynamics of the 4th wave of cases differs signifi-
cantly from that of deaths. While in the former, the loss
of correlation is evident, for deaths, the correlation is still
appreciable. However, as τ increases, the dispersion occurs
around the diagonal without the formation of clusters, in-
dicating that the number of deaths is slightly decreasing
(without many abrupt variations) along the time series,
exhibiting greater variability of points perpendicular to
the identity. In other words, the effect is more apparent
in the short term. The behavior of the 5th wave is similar
to the pattern observed in the previous period, revealing
the predominance of short-term variation and a decrease
in the number of deaths in the time series.

During the 6th wave, we once again observe the short-
ening of the PP. The number of deaths has decreased con-
siderably compared to the previous waves. It is noteworthy
that the plot shows low variability of points, indicating a
strong correlation between short and long term. Addition-
ally, we observe the emergence of a cluster, which, com-
bined with the high correlation seen in the PP, indicates
a period of stability in the number of cases, followed by
a further decrease in the number of deaths (Fig. 2). The
hypothesis is that this behavior may be associated with
the effects of the advanced vaccination campaign among
the population at this stage.

The contrasting results between the number of cases
and deaths are due to the Omicron variant circulating in
the city of Rio de Janeiro during this period, which, de-
spite its high transmission, has a low mortality rate, either
due to acquired immunity from previous infections or the
effect of vaccination. It is interesting to note that for both
cases and deaths, as we consider τ > 1, the time series
loses correlation. This indicates that the disease tends to
stabilize, meaning that either the number of cases remains
at a constant rate or the infection through virus transmis-
sion is extinguished, either through the implementation
of control measures, acquired immunity, or the action of
vaccines. Therefore, considering the COVID-19 pandemic,
and likely other epidemic diseases with similar spreading
patterns, as time goes on, the observed behavior between
cases and deaths becomes inverse.

The SD1 and SD2 descriptors, as well as their ratio,
were calculated for the death time series. The values ob-
tained provide quantitative measures of the variability and
correlation in the data. These results, are presented in a
the Table 2), further support the findings from the PP,
confirming the decreasing correlation as τ increases. The
measure of the diagonal (SD2) shows slight variations as
we increase the value of τ , with the highest value observed
in the first wave.

It is worth noting that for the second wave, the value
of SD2 decreases considerably, reflecting the shortening of
the diagonal observed in the PP. The quantity SD1/SD2 is

Table 2: Values of SD1, SD2 and ratio for occurence of deaths of
COVID-19 for τ = 1. Values of Sd1, Sd2 e ratio for occurence of
cases of COVID-19 for τ = 1.

1st wave τ1 τ2 τ3 τ4 τ5

SD1 2.57 4.21 5.44 6.58 7.72
SD2 29.90 29.63 29.22 28.77 28.33

SD1/SD2 0.08 0.14 0.19 0.23 0.27
2nd wave τ1 τ2 τ3 τ4 τ5

SD1 2.02 2.53 3.08 3.79 4.26
SD2 6.84 6.74 6.58 6.14 6.06

SD1/SD2 0.30 0.37 0.47 0.62 0.70
3rd wave τ1 τ2 τ3 τ4 τ5

SD1 2.89 4.00 4.93 5.78 6.53
SD2 14.62 14.48 14.17 13.87 13.60

SD1/SD2 0.20 0.28 0.35 0.42 0.48
4th wave τ1 τ2 τ3 τ4 τ5

SD1 3.43 4.91 6.28 7.51 8.68
SD2 17.67 17.63 17.86 17.83 17.79

SD1/SD2 0.19 0.27 0.35 0.42 0.49
5th wave τ1 τ2 τ3 τ4 τ5

SD1 3.49 4.25 4.52 4.82 5.70
SD2 17.87 17.48 17.21 17.03 16.72

SD1/SD2 0.19 0.24 0.26 0.28 0.35
6th wave τ1 τ2 τ3 τ4 τ5

SD1 1.16 1.58 1.96 2.34 2.68
SD2 8.46 8.42 8.38 8.34 8.29

SD1/SD2 0.14 0.19 0.23 0.28 0.32

lower than for the cases, suggesting that for deaths, there
is no significant distinction between long-term and short-
term variables, except in the second wave where SD1/SD2=0.30
(2nd wave), which is the highest variation captured for
deaths.

3.2. Approximate entropy analysis

The result illustrated in Fig. 5 shows how the measure
of ApEn varies considering different values for R in the
time series of cases. By inspection of Fig. 5, we see that
the 2nd wave has the highest entropy value (ApEn ≈ 0.80)
while the 4th has the lowest value (ApEn ≈ 0.42) with
0 ≤ R ≤ 6.3 × 103. As the value of the parameter R in-
creases, the entropy values decrease, until it reaches zero,
which indicates that the data series becomes more pre-
dictable, that is, the system reaches a state of equilibrium.
The amplification in Fig. 5 allows a better visualization of
the entropy behavior for each series. The waves with the
lowest ApEn values are 1, 4 and 6. Looking at the behav-
ior of the 1st wave in Fig. 3 (τ = 1 ), a relationship can be
seen between the entropy value and the results obtained
by the PP. Given the high correlation present in the first
wave, suggested by the first return map, the pattern of the
time series is more predictable, which implies a lower vari-
ability of the time series, therefore, low ApEn. The same
behavior is seen in waves 4 and 6, both have low ApEn,
which indicates little variability during the considered pe-
riods.

During the fourth wave, the transmission of the virus
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Figure 4: Poincaré plot for occurrence of deaths with different values of τ . All frames were placed on the same scale, with the exception of
the 6th wave. By direct observation, it can be seen that as the value of τ increases in the Poincaré map, the correlation between the points
decreases.

by the Zeta variant was predominant in the city of Rio
de Janeiro, although this variant was responsible for an
increase in the number of cases, the spread of the virus
occurred in a similar way to the 1st wave. For the 6th
wave, the behavior is similar to that presented by waves
4 and 5. Again, the approximate entropy value indicates
a more predictable pattern of the time series. The ApEn
calculation reveals the low complexity in the time series
caused by the transmission of the virus due to the variants
Alpha, Zeta and Mu, each of which captures the effects of
the restraint measures adopted in the periods in question.

The highest values of approximate entropy are achieved
by the 2nd, 3rd, and 5th waves. In the case of the 2nd
wave, as observed in the PP, the time series exhibits a less
predictable pattern, with scattered points along the diag-
onal and the formation of clusters. This indicates that the
patterns are less repetitive, leading to higher complexity
and, consequently, higher entropy values in the time series.
The low predictability of the time series in the 2nd wave
may be associated with the characteristics of the Gamma
variant. As mentioned earlier, individuals take longer time
to develop symptoms, which leads to delays in implement-
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Figure 5: Approximated entropy for incidence of new cases. Each
color corresponds to one wave. The amplification show a better
visualization of the entropy for each series.

ing restrictive measures. All of these factors contribute to
an increase in the number of cases, which is subsequently
captured in the 3rd wave.

Regarding the 5th wave, combining the results of ap-
proximate entropy with those obtained from the PP, we
observe that most points lie along the diagonal, indicating
good correlation between the data. However, the presence
of scattered points away from the identity line and the
formation of clusters increase the variability of the data.
This results in an approximate entropy value of around
0.5, indicating the simultaneous presence of regularity and
unpredictability in this period.

The behavior of the third wave is similar to that of the
second wave, exhibiting a less predictable pattern. This
is captured by the presence of clusters, indicating higher
variability in the data. As for the fifth wave, it has an in-
termediate approximate entropy value (around 0.5). When
analyzing it together with the PP, we observe the presence
of clusters with good correlation and also less repetitive
patterns.

Analyzing the time series of deaths (Fig. 6), the ini-
tial observation is that the value reached for the entropy
of the COVID-19 waves. Comparing the entropy values
for deaths with those for cases, we can see that all the
entropy values for deaths are lower. In Fig. 6, we can ob-
serve that the maximum entropy value is approximately
ApEn ≈ 0.31 for the 4th wave, and the minimum value
is approximately ApEn ≈ 0.12 for the 2nd wave. These
values are directly related to the dynamics of virus spread.

In the 2nd wave, there was an increase in the number
of cases caused by the Gamma variant, which resulted in
a high number of deaths during that period, making the
time series more predictable. On the other hand, the 4th
wave shows higher entropy values, capturing the effects of
the start of the vaccination campaign, indicating that the
number of individuals who die is lower than the number of
infections. This result can be confirmed by comparing the
entropy for the cases (Fig. 5) vs deaths time series (Fig. 6)
during the 4th wave period.
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Figure 6: Approximated entropy for incidence of daily deaths. Each
color corresponds to one wave. The amplification show a better
visualization of the entropy for each series.

The results of entropy indicate that the time series of
deaths exhibits lower complexity compared to the time se-
ries of cases. This is expected since deaths have a more
deterministic dynamics, as they are directly related to con-
firmed cases that have progressed to death. Unlike cases,
where the dynamics of virus spread can be influenced by
various factors such as control measures, incubation period
of the disease, and characteristics of circulating variants,
deaths are directly linked to the clinical outcome of in-
fected individuals. Therefore, it is natural for the time
series of deaths to be more predictable and exhibit lower
complexity than the time series of cases. The slight differ-
ences in the entropy values shown in Figure 6 are due to
the fact that the number of deaths varies from one wave
to another. This can be corroborated by the SD1 mea-
surements, where it can be observed that the long-term
variation does not show significant changes. For the time
series of deaths with τ = 1, similar to what occurs with
cases, as R increases, the entropy value tends to zero, in-
dicating that the disease reaches a state of equilibrium.

3.3. Central Tendency Measure analysis

The results shown below were obtained using the SODP
and CTM. Figure 7 displays the relationship between CTM
and radius (R) for the cases os COVID-19. It can be ob-
served that as the radius value increases, all the points
tend to fall within the radius R, causing the CTM value
to saturate at 1. Given this, we choose a radius that pro-
vides intermediate CTM values. The CTM is evaluated
on a range from 0 to 1, so as R increases, it is expected
that the CTM value saturates at 1, indicating that all the
points are within the specified radius.

Figure 7 illustrates the CTM value for each wave as
the radius varies. In the second difference plot a radius of
R = 200 was set for waves from 1 to 5, and R = 400 for
the 6th. This choice of radius allows for an appropriate
representation of the waves in the second difference plot.

We can observe that for R > 400, five waves exhibit
a high CTM value, indicating low variability. In these
cases, all the points fall within the radius. However, the
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Figure 7: Variation of CTM by radius for time series of cases. As R
increases, all waves tend towards CTM = 1.

6th wave stands out with a CTM value of approximately
0.7, indicating greater variability compared to the other
waves. This show that the series of the 6th wave has more
scattered points outside the radius.

The SODP xi+1 − xi vs xi+2 − xi+1 for the six waves
of cases can be seen in Figure 8. In the 1st wave, most
of the points fall within the circle with R = 200, where,
according to Figure 7, we have CTM ≈ 0.9, indicating
low variability. This aligns with the first panel shown in
Figure 8. We can also compare it with Figure 3 for τ = 1,
where we observe high correlation in the PP, which directly
implies low variability in the data. In terms of disease
spread, within the considered radius, one can infer that
the disease was spreading in a “controlled” velocity rate,
reflecting the early stages of the pandemic in the city of Rio
de Janeiro. The implementation of restrictive measures
also played a role in reducing virus transmission among
the population.

In the 2nd wave, the points are slightly more dispersed
within the specified radius region, and there are also more
points outside this region, indicating slightly higher vari-
ability compared to the 1st wave, with CTM ≈ 0.8, re-
vealing lower variability. In terms of disease spread, one
can infer that the virus transmission rate is spreading at
a faster pace than in the first wave. In the 3rd wave, we
continue to observe high variability. Comparing it with
Figure 7, in this case, we have CTM ≈ 0.825, slightly
higher than the previous value (2nd wave). This is also
captured in the PP (Figure 3), where we see the presence
of scattered points along the identity line and the forma-
tion of clusters.

In the 4th wave, the pattern of the SODP shows an
interesting behavior. In this case, CTM ≈ 0.815, which is
slightly lower than in the 3rd and 2nd waves, indicating a
slight increase in data variability. This suggests that dur-
ing the period considered in the 4th wave, the number of
infected individuals is higher than in the previous waves.
It is interesting to note that most of the scattered points
are in the III quadrant of the plot. This suggests that
although the number of infections is increasing compared
to the previous waves (see Figure 1), it follows a decreas-
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10



ing pattern. In other words, despite the increased data
variability, the number of cases starts to decrease.

The behavior of the 5th wave corroborates what was
observed in the 4th wave. In this case, CTM ≈ 0.825, in-
dicating lower variability compared to the previous wave,
which strongly suggests that the number of cases is de-
creasing. It indicates a decrease in the virus’s transmission
rate. Finally, in the 6th wave, CTM ≈ 0.6. Compared to
the previous waves, this is the lowest CTM value, indicat-
ing high variability. After the decrease in the number of
cases in the fifth wave, the number of infected individuals
increases abruptly, resulting in an increase in the disease’s
transmission rate. Note that with the chosen radius of
R = 400, few points fall within it. The presence of many
points in the first quadrant reveals the increasing nature of
the disease’s transmission rate. This phenomenon can be
observed in both time series (Figure 1) and the PP (Fig-
ure 3). Remembering that in the 6th wave, the circulating
variant was Omicron, known for its high transmission rate
among individuals, which is consistent with the results pre-
sented.

The same analysis can be applied to the time series of
deaths. In this case, the radius was set to R = 10 for all
waves, which returns CTM values in the same range as we
considered for the COVID-19 cases. By direct inspection
of Figure 9, we can see that the CTM values saturate for
much smaller radii, even for the 6th wave, with R > 20.
The CTM curve increases monotonically for all waves, in-
dicating that the CTM value does not vary significantly
from one wave to another.
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Figure 9: Variation of CTM by radius for time series of deaths. As
R increases, all waves tend towards CTM = 1, the same behavior
presented for the case time series.

Figure 10 shows that for the 1st wave, there is high
variability among the points, as seen in Figure 9, with
CTM ≈ 0.7, which may indicate a high number of deaths
caused by the disease during that period (see Figure 2).
In the 2nd wave, CTM ≈ 0.25, indicating fewer points
outside the region defined by the radius, suggesting lower
variability compared to the 1st wave. During the 3rd wave,
there is a slight increase in variability, as evidenced by a
greater number of points outside the defined radius. The
4th and 5th waves have the same CTM value for all con-

sidered radii. By analyzing the SODP, most points fall in
the third quadrant, indicating a decrease in the number
of deaths in the following wave, which is supported by the
time series of deaths (see Figure 2). However, in the 5th
wave, many points fall on the horizontal and vertical lines,
which is an indication that the number of deaths continues
to decrease at a high rate.

Finally, in the 6th wave, almost all points fall within
the region defined by the radius. Therefore, the time se-
ries for the considered period exhibits low variability, with
CTM ≈ 0.75. Analyzing both the time series (Figure 2)
and the PP (Figure 4), we can see that indeed the 6th
wave has the lowest number of deaths during the ana-
lyzed period of the COVID-19 pandemic. Similarly to the
cases analysis, during this period, the Omicron variant was
present, which, in addition to its high transmission rate,
is characterized by lower lethality. It is worth noting that
during the 6th wave, a significant portion of the popula-
tion had acquired immunity to the virus and its variants,
either through previous infection or as a result of the high
vaccination coverage in the city of Rio de Janeiro.

4. Conclusion

In this study, we conducted an analysis of the time se-
ries data for COVID-19 cases and deaths in Rio de Janeiro
city from March 27, 2020 up to September 9, 2022. Through
the techniques employed, we were able to identify the dy-
namic behavior of the virus spreading shown in the time
series using Poincaré plot, approximate entropy, second-
order difference plot and central tendency measures. Both
for cases and deaths time series, the calculated values
for the descriptors adequately reflect the behavior in the
Poincaré plot, corroborating the evolution of the multiple
waves of COVID-19. The agreement between the descrip-
tors and the visual representation in the Poincaré plot rein-
forces the analysis of the waves and contributes to a better
understanding of the dynamics of COVID-19. By entropy
analysis, we capture the level of complexity of each wave,
caused by each variant, in circulation in the considered
period.

Our results lead us to corroborate that in the city of
Rio de Janeiro, the Gamma variant was responsible for
the highest number of deaths in relation to the number
of infected individuals during the pandemic. Second-order
difference plot and central tendency measures techniques
reveal the speed of virus spread. By examining the struc-
ture, patterns, and properties of the time series, using the
set of techniques cited in this paper, we got a better under-
standing of the epidemic spread behavior, identify under-
lying dynamics, and extract meaningful information about
the dynamical behavior of the time series.
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of COVID-19 deaths. The figure captures the deceleration in the
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