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A GENERALIZED SAITO FREENESS CRITERION

DANIELE FAENZI, MARCOS JARDIM, AND JEAN VALLES

ABSTRACT. We establish generalizations of Saito’s criterion for the freeness of divisors in projective spaces
that apply both to sequences of several homogeneous polynomials and to divisors on other complete
varieties. As an application, the new criterion is applied to several examples, including sequences whose
polynomials depend on disjoint sets of variables, some sequences that are equivariant for the action of a
linear group, blow-ups of divisors, and certain sequences of polynomials in positive characteristics.

1. INTRODUCTION

The sheaf Tx{D) of vector fields tangent to some reduced divisor D in a smooth n-dimensional complex
variety X, and its dual sheaf of differential 1-forms with poles of order at most one along D are classical
objects studied for decades. K. Saito in [Sai80] made the important observation that these sheaves can
be locally free and gave a very simple and efficient criterion for characterizing the divisors whose sheaf of
tangent vector fields is locally free, stating that the determinant of the coefficient matrix of a n logarithmic
derivations along D should be a defining equation of D. It can be applied when X is the affine or projective
space to check that the module of logarithmic derivations along a divisor D is free, or equivalently that
the sheaf Tx (D) as a direct sum of line bundles, in which case we say that D is free.

More recently, the authors introduced in [EJV21] a generalization of Saito’s theory from divisors to
subvarieties of P with codimension higher than 1. One goal of the present paper is to provide a general-
ization of Saito’s criterion that applies to our new theory. To be precise, let o = (f1, ..., fx) be a sequence
of algebraically independent homogeneous polynomials in k[zg,...,x,] for some field k. In [EJV21] the
authors considered the Jacobian k x (n + 1) matrix V (o), whose i*! line consists of the partial derivatives
of the polynomial f;, as a morphism

k
V(o) : 0Pt — @ Opn (d;).
1=1

The main character considered in [F'JV2I] is the sheaf T, := ker(V(0)), called the logarithmic tangent
sheaf associated with the sequence . When o is a regular sequence and Z the base locus of o, then T, is
a subsheaf of Tpn(Z), and the interplay between these sheaves is described by a basic exact sequence, see
[FIJV21, Lemma 2.4]. While Tp»{Z) cannot be reflexive if k > 2, T, is always reflexive, possibly locally
free or even isomorphic to a direct sum of line bundles, in which case we say that o is locally-free and free,
respectively.

The first main result of this paper gives an effective criterion to check whether T, is isomorphic to an
arbitrary reflexive sheaf €, rather than just the direct sum of line bundles. To formulate it, given a map
E—>T, C O%ﬁ“, we complete it via the Euler derivation to a map 6 : €@ Opn(—1) — OP@QH.

Theorem 1. We have T, ~ & if there is h € k* such that
gcd(/\@) -gcd(/\V(a)) = h-gcd(/\o).
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2 D. FAENZI, M. JARDIM, AND J. VALLES

Here A\ f refers to the maximal minors of a given map f. The result is formulated in greater generality
in the paper, see Theorem [I4]l It boils down to the Saito criterion on P™ when k = 1, see Lemma [T5l We
apply it to sequences o whose elements depend on disjoint sets of variables, see Examples and [ Tt
also applies to some sequences o which are equivariant for the action of a linear group, cf. Example[I8 A
version of this criterion valid for derivation modules over the polynomial ring was given in [FJV24].

Anyway, a major limitation of the global version of the Saito criterion is that it only applies to divisors
in affine or projective spaces. Our Theorem [I4] mentioned above is actually derived from a general result in
sheaf theory, namely Theorem [ below. This allows for instance to prove the following result (see Theorem
[[3 for a more general version).

Theorem 2. Let X be a smooth complete variety, C is a reduced divisor of Y, p1,...,pr € Y\C. Let
X be the blow-up of Y at p1,...,px, D the strict transform of C' and E the exceptional divisor. Then
Tx{(D) ~ 1*(Ty{C))(—FE), so D is free whenever C is free.

Finally, our second technical result (Theorem M below) is used to show that if o = (f1,..., fn_1) is a
sequence of algebraically independent homogeneous polynomials in k[, . .., x,] such that char(k) divides
deg(f;) for each i = 0,...,n — 1 then o is free, cf. Theorem [I9in Section B.4

The paper is logically ordered differently than the narrative presented so far. Indeed, we first carry out
some basic material, with two general statements in sheaf theory (Theorem [3and Theorem[]) that will form
the basis of our applications to freeness criteria. Section[3lis dedicated to the main applications of Theorems
Bland [ up to some extra work. More precisely, the proof of Theorem [ is given in Section [3.3] where we
also explain how it implies the usual Saito criterion for divisors in projective spaces and give examples.
Theorem [2] is proved in Section We complete the paper with Section B4 by establishing our last
claim regarding the freeness of certain sequences of algebraically independent homogeneous polynomials
in positive characteristics.

2. [SOMORPHY CRITERIA FOR REFLEXIVE SHEAVES

Let X be a smooth connected complete variety over a field k, and consider coherent, torsion-free sheaves
A and B on X of rank a and b respectively. Let a : A — B be a morphism; we say that « has maximal
rank if it is either injective, when a < b, or generically surjective, when a > b. In the last case, note that
coker(a) is a torsion sheaf. We introduce the following notation:

(1) the divisor of a morphism « is defined as
div(a) := ¢1(7r(coker(a))) € Pic(X),

where 7(Q) stands for the torsion part of a coherent sheaf Q.
(2) the degeneracy locus of a monomorphism « is defined as

D(a) := Supp (Emtl(coker(a), 0x)),

regarded as a closed subset of X.

Note that div(a) = 0 if and only if codim (D(«)) > 2. The nomenclature for D(e) comes from the
following observation: when A and B are locally free, then

D(a) = {pe X | a(p) is not injective}

where a(p) denotes the fiber map A(p) — B(p), thus coinciding with the usual notion for the degeneration
locus of a monomorphism.

The present section aims to prove the following two technical results that will be useful in the main
body of the article. Given divisors Dy, Dy € Pic(X), we write D1 < Dy to express that D1 — D is not
effective. We assume from now on that « is generically surjective.

Theorem 3. Let F be a reflexive sheaf and consider a monomorphism 6 : F — A; assume that a > b. If
rk(ker(ao 0)) = a — b and div(0) + div(a) < div(a 0 6), then ker(a) ~ ker(a o 9).

In the previous setting, put L := div(a) + ¢1(A) — c1(F) — c1(B) and let £ be the associated line bundle.
We then have the following result.
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Theorem 4. Assume that A is locally free. Let F be a locally free sheaf with tk(F) =a—b—1> 0 and
assume that h* (F(—L)) = 0. If 0 : F — A is a monomorphism such that oo 6 = 0 and codim (D(6)) > 3,
then ker(a) ~ F@ L.

The proofs require a few general, technical lemmas, which we will discuss in the next three subsections.

2.1. An isomorphy criterion. We start with the following lemma, keeping the notation and conventions
provided at the beginning of this section

Lemma 5. Assume that a = b and that A is reflezive. If ¢1(B) < c1(A). Then « is an isomorphism.

Proof. Since rk(A) = rk(B) and « is injective, coker(a) is a torsion sheaf, which we assume to be nonzero by
contradiction. The divisorial locus of the support of coker(«) is of class ¢1(B) —c1(A). As this divisor class
is not effective by assumption, we get ¢ := codim(coker(a)) = 2. It follows that Ext!(coker(a),Ox) = 0,
so dualizing the exact sequence:

(1) 0 — A - B — coker(a) — 0,
we get AV ~ BV and exact sequences
Ext YA, Ox) —> Ext(coker(a), Ox) — Ext(B, Ox).
The middle term has codimension equal to ¢ while, according to [HLI97, Proposition 1.10],

codim(Ext¢(B,0x)) = ¢ + 1 (because B is torsion free) and codim(Ext"1(A,0x)) = ¢+ 1 (because
A is reflexive). This is a contradiction, so we must have coker(a) = 0, therefore « is an isomorphism. [

The proof of our next lemma has a similar spirit.

Lemma 6. Assume that a < b, A is locally free and B is reflexive. If codim (D(a)) > 3, then coker(a) is
a reflexive sheaf.

Proof. Under the current assumptions, a is a monomorphism, so we obtain a short exact sequence as in
display ([l); dualizing it, we obtain the exact sequence

0 —> coker(a)¥ —> BY 25 AY — Ext! (coker(a), Ox) —> Ext'(B,0x) —> 0,
and isomorphisms ExtP(coker(a),0x) ~ EatP(B,0x) for each p = 2. By hypothesis,
codim(€xt! (coker(a), Ox)) = 3; in addition, since B is reflexive, [HLI7, Lemma 1.1.10] guarantees that
codim(ExtP(coker(a), Ox)) = p + 2, thus coker(a) is a reflexive sheaf. O

2.2. Torsion and torsion-free parts of cokernel sheaves. Another useful general fact is the following.
Let U be a coherent sheaf on X. Recall that 7(U) denotes the torsion part of U, namely the maximal
torsion subsheaf of F, so that the quotient U := U/7(U) is torsion free.

Given a morphism S : U — V between coherent sheaves, we observe that there are induced morphisms
7(8) : T(U) — 7(V) and B : U — V' in addition, both 7(8) and B* are monomorphisms when f is.
Indeed, the composition

FU) = UD V- VT
vanishes, since it gives a morphism from a torsion sheaf to a torsion-free one. It follows that S8(7(U)) < 7(V),
thus we get a commutative diagram

Lo,
(2) b,
uitf ...... W) \}tf



4 D. FAENZI, M. JARDIM, AND J. VALLES

Finally, if 3 is injective, 7(3) is also injective. It also follows that ker(B3f) is a subsheaf of coker(T(ﬁ));
however, the latter is a torsion sheaf, while the former is a torsion-free sheaf, thus, in fact, ker(8') = 0.
We summarize our conclusions in the following statement.

Lemma 7. Let §: U — V be an injective morphism between coherent sheaves on a scheme X. Then there
is an exact sequence

0 —> coker(7(8)) — coker() — coker(B') — 0

Proof. As we noted above, if 3 is injective, then so are 7(/3) and 8*. The exact sequence is an immediate
consequence of the snake lemma applied to the diagram in display (2]). ([

2.3. Proof of Theorem [Bl The morphisms a and # induce the following commutative diagram

0 0 0
bl
(3) 0 —=>ker(eof) —=F —=im(ao ) —=0
[ Jo Jo
0 —— ker(a) A——B

where 6y and 6, are the naturally induced morphisms. Clearly, 65 factors through im(a); denote by 5 the
induced morphism im(« o §) — im(a). We set

Fo :=ker(a 0 9), &o = ker(a), Fo :=im(a 0 ),
Co := coker(6y), C1 := coker(6), Gy := coker(fs)
we write the commutative exact diagram

0 0 0

ool

0—F)—F——F——0

e

0—& —=A—=im(a) —0

U T

0—C)—C ——=C,——=0

ool

0 0 0

We apply Lemma [ to the morphism « : €g — €; induced by the diagram above. Since rk(ker(a o 6)) =
rk(ker(«)), the sheaf Cg is a torsion sheaf, so we get an exact sequence:

0— Gy — 7(€)) = Cy — € -0,

where the image of the middle map is coker(7(7)). Such an image is a torsion sheaf, so it must lie in 7(Cz)
and we get a quotient sheaf P fitting into:

O—)COkeI’(T(’y)) —)T(e2) — P -0, 0> P — egf_) egf 0.

Now P is torsion by the first sequence and torsion-free by the second one so that P = 0 and coker(7(«)) ~
7(Cz). We get:

(4) 01(80) - 61(3:0) = 01(60) = 01(7(61)) - Cl(T(eg)) = le(@) - le(éQ)
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Next, we consider the exact commutative diagram

0 0

o

Fa Fa

.
0—im(a) —B—Q9—0

R
0—=C ——R—>9Q—=0

I

0 0

Here, ( is defined by the diagram and we set
R := coker(f2) ~ coker(awof) and Q := coker(«);

the isomorphism above comes from the rightmost column of the diagram in display Bl We apply again
Lemma [7 this time to 3, and get an exact sequence

0 — 7(Cy) — 7(R) — Q — coker(8') — 0,

the image of the middle map being coker(7(/3)). Since this image is a torsion sheaf, it must be contained
in 7(Q), the quotient being a torsion sheaf that we denote by 8, fitting into:

0 — coker(7(B8)) —» 7(Q) > 8§ — 0.
Since § is a torsion sheaf, ¢;1(8) is effective and —c;(8) is not. We get :
(5) div(f2) = c1(1(C2)) = c1(T(R)) — c1(7(Q)) + c1(8) = div(fa) — div(a) + c1(8).

Plugging into (@), using the assumption div(#) + div(«) — div(ar 0 #) < 0 and the fact that div(f2) =
div(a 0 0) while —c;(8) is not effective, we obtain:

c1(&0) — c1(Fp) = div(f) + div(a) — div(ao ) — ¢1(8) <0

Therefore, 0y is an isomorphism by Lemma
This concludes the proof of Theorem [3 O]

2.4. Proof of Theorem [4l Since a0 = 0, we obtain an induced monomorphism g : F — &g, where
&o = ker(a), and the following exact commutative diagram

0 0

0 ——= L —— coker(§) —= B

0 0

where £ := coker(p). By Lemma [0 coker(d) is a reflexive sheaf. It follows that £ is the kernel of a

morphism from a reflexive sheaf to a torsion-free sheaf, thus £ is a reflexive sheaf [OSS80, Lemma 1.1.16].

Since, in addition, rk(£) = 1, we conclude that £ is a line bundle [OSS80, Lemma 1.1.15]. Note that
L~ det(F) ! @det(Eg) ~ det(F) ! @ det(A) ® det(B) ™! ® div(a)

The leftmost column displays g as an extension of £ by F. But Extl(L, F)=HF®LY) =0by
hypothesis, so in fact £ ~ F P L. OJ
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2.5. Characterizing the divisor of a morphism. Let 6 : ¥ — A be a monomorphism and set r = rk(F);
assume that A is a locally free sheaf such that /" A is isomorphic to a direct sum of line bundles. The
following lemma shows that, under these hypotheses, an equation defining the divisor representing div(#)
can be computed as the greatest common divisor of the entries of the maximal exterior power A 0 of 6:

T

/\9 = AT ~ det(7) H/T\A: ém M; € Pie(X), k= <“>
1=1

r

To be more precise, note that /\ 0 is given by a k-tuple g = (g1,...,gx) with each g; being a global
section of M; ® det(F)¥. A common divisor of g is a global section h of £ € Pic(X) such that g; = hog;
for each j = 1,...,k and for some global section ¢; € H°(£LY @ M; ® det(F)"); in other words, we have

the diagram: .
TN

Ox — £ —qj>Mj ®det(F)V .
In particular, if A also has rank equal to r, then A € is just a single section of det(A) ® det(F)V, so
ged(A 0) is simply det(9).

Lemma 8. Let F be a torsion-free of rank r and A be a locally free sheaf such that /\" A is isomorphic to
a direct sum of line bundles. If 0 : F — A is a monomorphism, then:

i) coker(0) is torsion free if and only if ged(/\ 6) € k*.
ii) More generally, div(0) = V(ged(A 6))).

Proof. Set Q := coker(f). For the first claim, dualize the short exact sequence
0—F-LA—2—0
to obtain
0— Q¥ — 5 L5 A — €at'(Q,0x) — 0,
and Ext¢(Q, Opn) ~ Ext1(F, Opn) for p > 1. In addition, note that
V(/\@) = Supp(coker(¥)) = Supp(Ext'(Q, Opn)).

If Q is torsion-free, then codim Supp(€zt'(Q, Ox)) > 2, thus V(A 6) does not contain a hypersurface,
thus ged (A 0) € k*.

Conversely, if ged(/A 6) € k*, then codimV( A 6) > 2, and it follows that codim zt°(Q,0x) = ¢+ 1
for every ¢ > 0, so Q is torsion free, see [HLI7, Proposition 1.10].

Let us now check the second statement. Let F’ denote the kernel of the composed epimorphism
A — coker(f) — coker()"';
note that it fits into the following short exact sequence
0— F — F — 7(coker()) — 0,
so that
div(f) = c1(7(coker(0))) = c1(F') — c1(F).
Write 0’ : 7 — A the induced inclusion and consider the commutative square:
524
™ b
Sy
It yields, after taking maximal exterior powers and double duals, the diagram
A5y L AT A

® b
INCAREENT
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Note that ¢ is an injective morphism between line bundles, so its cokernel is a torsion sheaf supported
on a divisor of class div(6), as:

B </T\<3"')W> - (/\5") — a1(F) — (%) = div(h).

Since A6 = g-/\ & and coker(#') = coker(6)" is a torsion free sheaf, we have that gcd(/\ ¢') € k* thus
g = ged(A 6), and the second claim follows. O

Lemma [§ allows us to check that the converse of Theorem [ is not generally true.
To see this, take X = P2, A = 082, B = Op2(1)®? let a be the morphism given by the matrix

o= Tr1 To 0
TNz 0z
where (29, 71, ¥2) are homogeneous coordinates in IP?; the second part of Lemma R yields div(a) = V(o).

In addition, one can check that ker(a) ~ Opz(—1) (it must be a reflexive rank 1 sheaf with ¢; = —1).
Now let F = Op2(—1)®? and consider the morphism 6 : § — A given by the matix

Zo To
0= —Ir1 X1
—T2 T2

It is easy to see that ker(a o ) = Op2(—1), so it is isomorphic to ker(«). However, one can check that
div(0) = div(a 0 0) = V(x0) so the inequality in the hypothesis of Theorem Blis not satisfied.

We conclude this section by showing that a converse to Theorem [3] can be obtained after an additional
condition on div(yp) is assumed.

Proposition 9. Let F be a reflexive sheaf and consider a monomorphism 6 : F — A; assume that a > b.
If the natural monomorphism v : ker(a) — A factors through 0 and div(a) = 0, then div(6) = div(a o 0).

Proof. Fix the following notation
&o 1= ker(a), Fy := im(a 0 0), C = coker(6), and R = coker(a o 8).

The condition of the statements yields the following exact commutative diagram

0 0
0 Eo F I 0
CE
9) 0—> & —>A—>B
6762
0 0

Here, the morphisms 63 and v being induced by the diagram. In addition, notice that ker(a) ~ ker(ao#).
It follows that « is a monomorphism and coker(y) ~ coker(a).

Applying the arguments of Section [Z2] we obtain a monomorphism 7(7) : 7(€) < 7(R) whose cokernel
is a subsheaf of coker(«). Since div(a) = 0, codim coker(a) > 2, thus ¢;(7(€)) = ¢1(7(R)), which can be
translated into the equality div(f) = div(a o 6). O
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3. APPLICATIONS TO FREENESS

In this section we develop the main applications of our the results of the previous section, mostly in the
direction of showing that some divisors or more generally some algebraically independent sequences give rise
to reflexive, locally free, or free sheaves of logarithmic derivations, one of the most natural generalizations
of the idea of free divisor being that the sheaf of logarithmic derivations along a divisor splints as a direct
sum of line bundles.

In the next subsection we spell out the Saito criterion for reduced divisors of a smooth complete variety
X and recall how Saito’s global criterion for divisor in P™ fits our discussion. Then, in §3.21 we look
at a particular class of divisor of blow-ups at points. In §3.3] we apply our method to study freeness of
logarithmic sheaves attached to algebraically independent families on P". Finally in §3.4] we point out a
result on freeness in positive characteristic.

3.1. Saito criterion for hypersurfaces. We now explain how Theorem [I4] gives a Saito criterion for
hypersurfaces of a given variety X.

Let X be a smooth connected complete variety of dimension n over a field k. Let D be a geometrically
reduced divisor of X, defined by an equation f € H°(Ox(D)). We consider the logarithmic tangent sheaf
Tx{D) defined as kernel of the natural composition:

D : ‘.TX i TX|D g OD(D)
Let F be a reflexive sheaf of rank n and consider an injective map 6 : F — Tx.

Proposition 10. Assume that 7p 08 = 0. Then det(8) = \f, with A € k* if and only if 0 induces an
isomorphism F ~ Tx{(D). This happens if and only if div(0) < D.

Proof. Since Tx(D) = ker(rp) and 7p 0 = 0, we get an induced map 6y : F — Tx{(D). The map 6y
is still injective, it is thus of maximal rank, hence by Lemma Bl 6 induces an isomorphism if and only
if 1(F) =z ca1(Tx{(D)) = c1(X) — D, ie. if and only if div(f) = ¢1(X) — c1(F) < D. Note that det(d)
vanished along D, hence f divides det(f) and there is an effective divisor D’ and g € H°(Ox(D')) such
that det(f) = fg. Hence div(d) = D + D’. Then D’ is empty if and only if ¢ is a nonzero constant, which
happens if and only if div(f) < D. O

Example 11. Let X1,...,X,, be smooth complete varieties, and for 1 < i < m, let D; be a reduced
effective divisor in X;. Set X = X7 x --- x X;p,, let p; : X — X, be the i-th projection, put F; = p¥(D;),
for 1 <+ < m and consider F' = F; U --- U F),,. Taking 6 to be diagonal map whose blocks are pull-backs
of the obvious injection Tx,(D;) — Tx, and applying the proposition, we get
Tx(F)= @ 7*(Tx, (D).
1<i<m
Hence, if D; is free for all 1 < i < m, then F is also free. For instance when dim(X;) =1 for all 1 <14 < m:
Tx(F)= @ 7wk, (~Di)).
1<is<m
Example 12. Let E be a (—1)-curve on a smooth complete surface X. Blowing down E we get a morphism
7 to a smooth complete surface Y. Multiplying by F gives a map 7*(Ty)(—F) — 7*(Ty) that factors
through Tx. We get a map 6 : 7*(Ty ) (—FE) — Tx and we compute div(f) = E, hence by the proposition
Tx(E) ~ 7*(Ty)(—E).
Therefore, E is free for instance when Y is an abelian surface or a product of smooth projective curves.

3.2. Blow-ups. Let C be a hypersurface of a smooth complete variety Y and

P1,---, Pk € Y\Slng(c)
Consider the blow-up 7 : X — Y of Y at p1,...,py and let Fy,..., Ey be the exceptional divisors of X
lying over p1,...,pr and E = E; U --- U Ey. Let C © X be the strict transform of C' and consider the
hypersurface
D=CuEcX.



A GENERALIZED SAITO FREENESS CRITERION 9

Theorem 13. We have an exact sequence

0 — 7 (Ty{(CY)(—E) — Tx(D) - P Op, — 0.
pi€C

In particular, if p1,...,pr lie away from C, then Tx{D) ~ 7*(Ty{C))(—E), so that if C is free, then D
is free.

Proof. Let n = dim(X). Taking differentials of m gives the exact sequence
0— TX i F*(Ty) - TE(—l) - O,

where Og(1) is the taugological ample bundle of E and we consider Tg(—1) as extended by zero to X.
The equisingular normal bundle N¢., namely the subsheaf of the normal bundle N¢ locally defined by the
partial derivatives of a defining equation of C' c Y, fits into:

0— Ty(C) —> Ty —» N — 0.
Assume first that the points p1, ..., pr lie away from C so C = 7*(C). Then we have
0— Og(—1) > Np — 7*(N) — 0.

We get an exact commutative diagram:

(10) 1)4> Op(-1)
|
——— Tx(D) —= 7 (Ty{C)) ogr 0
| l |
0 Tx ™*(Ty) ——=Te(-1) —=0
l | | |
0p(~1) —> N}, T (Nf) ———0
| l
0 0

Now, since 7 is constant on E, the restriction of 7*(Ty(C)) to each component E; of E is a trivial vector
bundle, whose rank equals the rank n; > n of Ty (C) at the point p;, for ¢ = 1,..., k. Then, tensoring by
m*(Ty{C) the exact sequence

0 Ox(—E) > 0x — Op — 0,

we get
k
(11) 7*(Ty{C))(—E) ~ ker <7r* (Ty{C)) - P O%’”) .
i=1

For all i = 1...,k, since n; > n, we may define a surjective map O%"i — O%" This gives rise to a
surjection @le 09" — O%:I and thus, comparing () the second row of ([I0), yields an injective map
0 : 7 (Ty{CH)(—F) — Tx{(D)
Note that these two sheaves are reflexive of rank n. We compute:
div(0) = c1(Tx(D)) — er(7*(Ty(CH)(=F)) = c1(X) = D — (7*(e1(Y) = C) —nkE) =
=11 (Y)—(n—1)E—-7*(C)—FE — (7*(c1(Y) = C) —nE) = 0.

Therefore, the proof of Theorem Bl applies to show that 6 is as isomorphism.

Now we treat the case that one of the points p1,...,pk, say p = p; lies in C\ Sing(C). The general

case, with say j points in C\ Sing(C) and k — j in X\C, is analogous. For the sake of the proof we may
even assume that k = 1 so E = E; ~ P"!. Since p lies in the smooth locus of C, we have a surjection
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va/y — 3\{;/0, which indtlces an embedding E¢c, = ]P(N;/C) ~P"2cFE = P(Ng/y), Observe that
D=FEuC, Ec;, = En C and that the divisor Ec, of F lies in the |Og(1)], so that we have:
0= Og(—1) > Op — 05 — 0.

Since D = C + E = 7*(C) and E n C € |0g(1)], so that Ox(E) restricts trivially to D, we have

Np =~ Op(D) ~ Op(C). So twisting the above sequence by Ox (C) we get, since O(C):
0—- 0 >Np —>Ng—0.

Also, the Jacobian subscheme of D is the disjoint union of E, and the pull-back of the Jacobian subscheme
of C' via m, more precisely, we have a commutative exact diagram:

0

|

™ (Ne)

|

Np —> 1*(Ng) —=0

Lo

0—0p., —Tp —7*(Tp) —=0

l

0

where Tz and T7, are the singular tangent sheaves of C' and D, see [Ser06, Chapter 3].
Since Np ~ 7*(N¢), instead of (I0) we get:

0 0 0

| l

0 —> Tx(D) —= 7*(Ty{C)) —= 0P H 0

0 (.TX F*(Ty)%TE(—l)ﬁ-o
0 N, ™ (N¢) Og 0
0 0 0
As in the proof of the previous case, we get an injective map 60 : 7*(Ty(C»)(—FE) — Tx{D), whose cokernel
fits as kernel of a surjection O%m — Op. Comparing first Chern classes we find n; = n for alli e {1,...,k}
such that p; lies in C, which proves the desided exact sequence. (I
3.3. Free sequences on projective spaces. In this part, we fix X = P" = Proj (]k[:vo, . ,xn]) for some

field k. Set A = OP@S and B = @le Opn(d;), with » > k. By our hypothesis at the beginning of Section
2 ker(a) is a reflexive sheaf of rank r — k. In addition, consider the following ingredients

(1) a reflexive sheaf Fy of rank r — k together with a morphism v : Fy — Oﬂ.@ﬂ such that aov = 0;
(2) a reflexive sheaf F together with a morphism « : Fo — O%7 such that « oy is a monomorphism.

With these elements in mind, we set F = Fy @ F2 and consider the morphism
0:Fo@F, — 0% | 0:=vDr.

These conditions imply that ker(a o ) ~ F, leading to a morphism 6y : Fy — ker(a) such that v = o 6y,
where ¢ : ker(a) < OP7 is natural the inclusion. Moreover, im(a o §) ~ Fs.
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The framework described above can be summarized in the following commutative diagram, which is to
be compared with the diagram in display @) with 62 = a0 ~:
0

L

(12) 0 Fo F Fy 0

\Lgo le Laow

0 — ker(a) —= O%r > @f:l Opn (di)

leading to the following statement.

Theorem 14. Fiz the setup as above. There is a homogeneous polynomial h € K[z, ..., x,] such that

gcd(/\6‘> -gcd(/\a) = h-gcd(/\(aoy)).

If h € k*, then Oy is an isomorphism.

Proof. Following the argument in the proof of Theorem [B] we obtain
div(a) + div(0) = div(a o) + div(fo).

The desired equality is obtained by setting h := gcd ( /\6‘0) and invoking the second part of Lemma
B When h € k*, then the first part of Lemma [ implies that coker(fy) is a torsion-free sheaf; how-
ever, rk(coker(fy)) = rk(ker(a)) — rk(Fo) = 0 by hypothesis, implying that coker(dp) = 0, thus 6y is an
isomorphism. ([l

As an application of the previous statement, we will take v as the Jacobian matrix associated with a
sequence o = (f1,..., fi) of algebraically independent homogeneous polynomials in k[zo, ..., z,]; assume
that char(k) does not divide deg(f;) for i = 1,...,k and set d; := deg(f;) — 1.

In [FIV21] the authors considered the Jacobian matrix V(c), whose i line consists of the partial
derivatives of the polynomial f;, as a morphism

k
V(o) : 0Pt — @ Opn (d;);
i=1

the reflexive sheaf T, := ker(V(o)) is called the logarithmic tangent sheaf associated with the sequence
o. Note that the hypothesis that the polynomials (f1,..., fi) are algebraically independent implies that
V(o) has maximal rank, so that rk(T,) =n — k + 1.

When k = 1, so that o consists of a single polynomial f, we get back T;(1) ~ Tpn{D) where D = V(f).
In this situation, the usual Saito criterion for the freeness of divisors in projective spaces can be recovered
as a particular case of Theorem [14]

Indeed, let f € k[xo,...,2,] be a square-free homogeneous polynomial of degree coprime to char(k).
We consider n Jacobian syzygies, namely a map

v:Fo =P O0pn(—e;) = OFT,  with  V(f)ov=0.

i=1
Set F = Fo @ Opn(—1), let v : Opn(—1) — O+ be the Euler matrix and define § = (v|y) : F — OPr+t.

Lemma 15 (Saito criterion on P™). Fiz the setting as above. Then there is a polynomial h such that
det(v) = hf. Moreover Tx{(D) ~ Fy if and only if h € k*.

Proof. In the notation of Theorem [[d, F5 := Opn(—1) and a0y = deg(f) - f, which follows by the Euler
identity. Since char(k) does not divide deg(f), a oy is injective. The morphism 6 is the Saito matrix: a
(n+1)x (n+1) matrix whose columns are syzygies of V(f) plus the Euler derivation. Since f is square-free,
we have that ged (/\ @) € k*. The equality in the statement of Theorem [[4] reduces to det(6) = h - f for
some homogeneous polynomial h, as expected. In addition, if A € k*, then the assertion of Theorem [I4]
says that Tpn(D) ~ @?:1 Opn(—e;), that is, D is free. Finally, note that the converse claim, namely if
Tpn(D) splits as a sum of line bundles, then det(f) = A\f for some A € k*, follows from Proposition[@ O
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Returning to the case k > 2, we say that an algebraically independent sequence o is free if T, splits
as a sum of line bundles. We now apply Theorem [I4] to three situations involving several homogeneous
polynomials, providing new examples of free sequences of homogeneous polynomials in k[zo, ..., z,].

Example 16. Consider P?**! = Proj(k[zoo, Zo1, - .-, ko, Tk1]), and let f; = fi(xi0,zi1) be a homoge-
neous, square-free polynomial of degree d; + 1 depending only of the variables x;o and z;;. We argue that
the sequence o = (f1,..., fx) is free, and T, = @LO Opzr+1(—d;).

Indeed, the Jacobian matrix has the following shape

dofo 0ifo O 0 0 0
0 0 doft Aifr 0 0 k
a:=V(o) = , , , 0 0D — P Operta (dy)
: : : : : : i=0
0 0 0 0 dofe NSk
where 0; f; :== 0f;/0x;; for j = 0,1. We then consider the morphism
A1 fo 0 0
—dofo 0 0
0 O1f1 0 .
V= O 700](‘1 O : @O]p2k+1 (—d/l) i 0%22754:2
: : : =0
0 0 01 [
0 0 —0o fx
so that cov = 0.
We set G := Opn(—1)®**! and let v be the morphism,
0o 0 0
o1 0 0
0 T10 0
pem | 0 0 g (c1)ER o222
0 0 Tro
0 O Tkl

thus o is a diagonal (k + 1) x (k + 1) matrix whose entries are

((do+ D)o -+ (di+ 1) ).

The morphism 6 := v @ ~ is then given by a (2k + 2) x (2k + 2) matrix which, after re-arranging its

columns, becomes block-diagonal with 2 x 2 blocks of the form

It follows that

Since ged (A @) € k* (because each f; is square-free), Theorem [l implies that T, ~ (—szo Opan+1(—d;),

as desired.

Example 17. More generally, given a partition of n as n

variables :

alf’L'
—0ofi

(

Zi0
Tl

).

ged (/\(a o 7)) — det(aor) =% g (d; + 1)f; = det(d) = ged (/\9)

217010, ..

and homogeneous polynomials

o= (fi1,...

'5370177«07"

'7'ri,07' .

7f17k17"'

. 7‘ri7"i7 .

afS,la"

-+ Ts,05 -5 Tsngs

) f51k5)7

ng + -+ + ng, with n; > 1 we may take
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such that, for all i € {1,..., s}, we have:
fi,la sy fi,ki € ]k[xi,Ou s 7xi7m]7
If o is algebraically independent then also o; = fi1,..., fik, is algebraically independent for all i €

{1,...,s}. Then, for alli e {1,...,s} we may consider the sheaf T,, on the linear space P" defined by the
equations z;, = 0 for all j # ¢ and k € {0, ..., ng}. Such sheaf has a unique lift ‘j'gi to P™, which is locally
free at P™ if and only if T,, is free. The module associated with such sheaf has the same presentation as
the module associated with T,,, with only the variables z; o, ..., i, showing up. On the other hand, the

sheaf ‘j'gi is obtained via pull-back and direct image of T, by the blow-up diagram:
P — IAPM - P,

where P is the blow-up of P™ at the linear space defined by ;9 = - - - = @;,,, = 0. Then our main result
implies:
To >~ @f:ljoi

Example 18. Let us work in characteristic zero. Let C' < P? be a rational normal curve and consider its
tangent developable surface X, namely the union of tangent projective lines to C'. This is a non-normal
surface of degree 2d — 2, singular along C. According to |[AFP¥19|, one has wx ~ Ox and the minimal
graded free resolution of the ideal of X in P¢ is understood.

e For d = 3, an equation of X is :

o = (2323 — dxdry — daas + 6wor 2003 — T3T3)

Then X is free, T, ~ O%B(—l) and with Saito matrix:

I3 Zo 2$1

21‘0 —I1 To

31‘1 —31‘2 0
0 3:173 3:170

Stacking the column vector of indeterminates to the left of the above matrix and taking the
determinant gives 6o.

e For d =4, X is a complete intersection of a quadric and a cubic, we may take:
o=(f,g) = (23 - 2x123 + 2w014, 205 — 6212073 + ITx3 + 62324 — 1200T274).
Then we get T, ~ O3,(—1) and a matrix of syzygies of V(o) is:

2$1 21‘0 0
3$2 X1 i)

3$3 0 I
2x4 —x3 T9
0 —2z4 a3

Note however that X is not strongly free, as one could also take

U, = (fvxof + g)
as system of minimal generators of the ideal of X, and check that T, has a minimal graded free
resolution of the following form:

0 — Ops(—5) = Ops(—4)® — Ops(=3)®° ® Ops(~2) @ Ops(~1) = T — 0

e For d = 5, X is a surface of degree 8 which is the intersection of 3 quadrics in IP®, defining a web
0. Direct computation with Macaulay 2 tells us that the sheaf T, is simple and fits into an exact
sequence:

0 — Ops (=5)% — Ops (—4)®"® - Ops (—3)%° - T, — 0.

e For d = 6, X is a surface of degree 10 in IP® whose ideal is generated by 6 algebraically independent

quadrics. We get T, ~ Ops (—6).
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e For d > 7, X is generated by quadrics. The Jacobian of a system o of quadric generators of the
ideal of X is injective. Hence T, = 0.

3.4. Freeness for positive characteristics. In the same context as in the previous section, take a
sequence o = (f1,..., fn—1) of algebraically independent homogeneous polynomials in k[xz, ..., x,].

Theorem 19. If char(k) divides deg(f;) for each i =0,...,n—1, then T, ~ Opn(—1) ® Opn(—d) with
n—1
d= Z deg(fi;) — (n —1) — deg (gcd (/\V(a))) + 1.
i=1

Proof. Define the following;:

n—1

& = OR"Y, &2 = (D Opr(deg(fi) — 1), F = 0pa(-1),
=1

p=Y(0), 6= (xg - ).

Since char(k) divides deg(f;), we have that

ijéjfizO, for each i e {1,...,n — 1},
=0
therefore V(o) 08 = 0. In addition, note that D(#) = . Therefore, we can apply Theorem [ to conclude:
To ~ Opn(—1) @ Opn (—d).
O
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