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A GENERALIZED SAITO FREENESS CRITERION

DANIELE FAENZI, MARCOS JARDIM, AND JEAN VALLÈS

Abstract. We establish generalizations of Saito’s criterion for the freeness of divisors in projective spaces
that apply both to sequences of several homogeneous polynomials and to divisors on other complete
varieties. As an application, the new criterion is applied to several examples, including sequences whose
polynomials depend on disjoint sets of variables, some sequences that are equivariant for the action of a
linear group, blow-ups of divisors, and certain sequences of polynomials in positive characteristics.

1. Introduction

The sheaf TXxDy of vector fields tangent to some reduced divisor D in a smooth n-dimensional complex
variety X , and its dual sheaf of differential 1-forms with poles of order at most one along D are classical
objects studied for decades. K. Saito in [Sai80] made the important observation that these sheaves can
be locally free and gave a very simple and efficient criterion for characterizing the divisors whose sheaf of
tangent vector fields is locally free, stating that the determinant of the coefficient matrix of a n logarithmic
derivations alongD should be a defining equation of D. It can be applied when X is the affine or projective
space to check that the module of logarithmic derivations along a divisor D is free, or equivalently that
the sheaf TXxDy as a direct sum of line bundles, in which case we say that D is free.

More recently, the authors introduced in [FJV21] a generalization of Saito’s theory from divisors to
subvarieties of Pn with codimension higher than 1. One goal of the present paper is to provide a general-
ization of Saito’s criterion that applies to our new theory. To be precise, let σ “ pf1, . . . , fkq be a sequence
of algebraically independent homogeneous polynomials in krx0, . . . , xns for some field k. In [FJV21] the
authors considered the Jacobian k ˆ pn` 1q matrix ∇pσq, whose ith line consists of the partial derivatives
of the polynomial fi, as a morphism

∇pσq : O‘n`1
Pn ÝÑ

k
à

i“1

OPnpdiq.

The main character considered in [FJV21] is the sheaf Tσ :“ kerp∇pσqq, called the logarithmic tangent
sheaf associated with the sequence σ. When σ is a regular sequence and Z the base locus of σ, then Tσ is
a subsheaf of TPnxZy, and the interplay between these sheaves is described by a basic exact sequence, see
[FJV21, Lemma 2.4]. While TPnxZy cannot be reflexive if k ě 2, Tσ is always reflexive, possibly locally
free or even isomorphic to a direct sum of line bundles, in which case we say that σ is locally-free and free,
respectively.

The first main result of this paper gives an effective criterion to check whether Tσ is isomorphic to an
arbitrary reflexive sheaf E, rather than just the direct sum of line bundles. To formulate it, given a map
E Ñ Tσ Ă O

‘n`1
Pn , we complete it via the Euler derivation to a map θ : E ‘ OPnp´1q Ñ O

‘n`1
Pn .

Theorem 1. We have Tσ » E if there is h P k
ˆ such that

gcd
´

ľ

θ
¯

¨ gcd
´

ľ

∇pσq
¯

“ h ¨ gcd
´

ľ

σ
¯

.

Date: July 19, 2024.
2010 Mathematics Subject Classification. AF404; 14J60; 14M10; 32S65.
Key words and phrases. Logarithmic sheaves, freeness, and local freeness. Complete intersections.
D.F. partially supported by FanoHK ANR-20-CE40-0023, SupToPhAG/EIPHI ANR-17-EURE-0002, Région Bourgogne-
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2 D. FAENZI, M. JARDIM, AND J. VALLÈS

Here
Ź

f refers to the maximal minors of a given map f . The result is formulated in greater generality
in the paper, see Theorem 14. It boils down to the Saito criterion on P

n when k “ 1, see Lemma 15. We
apply it to sequences σ whose elements depend on disjoint sets of variables, see Examples 16 and 17. It
also applies to some sequences σ which are equivariant for the action of a linear group, cf. Example 18. A
version of this criterion valid for derivation modules over the polynomial ring was given in [FJV24].

Anyway, a major limitation of the global version of the Saito criterion is that it only applies to divisors
in affine or projective spaces. Our Theorem 14 mentioned above is actually derived from a general result in
sheaf theory, namely Theorem 3 below. This allows for instance to prove the following result (see Theorem
13 for a more general version).

Theorem 2. Let X be a smooth complete variety, C is a reduced divisor of Y , p1, . . . , pk P Y zC. Let
X be the blow-up of Y at p1, . . . , pk, D the strict transform of C and E the exceptional divisor. Then
TXxDy » π˚pTY xCyqp´Eq, so D is free whenever C is free.

Finally, our second technical result (Theorem 4 below) is used to show that if σ “ pf1, . . . , fn´1q is a
sequence of algebraically independent homogeneous polynomials in krx0, . . . , xns such that charpkq divides
degpfiq for each i “ 0, . . . , n ´ 1 then σ is free, cf. Theorem 19 in Section 3.4.

The paper is logically ordered differently than the narrative presented so far. Indeed, we first carry out
some basic material, with two general statements in sheaf theory (Theorem 3 and Theorem 4) that will form
the basis of our applications to freeness criteria. Section 3 is dedicated to the main applications of Theorems
3 and 4, up to some extra work. More precisely, the proof of Theorem 1 is given in Section 3.3, where we
also explain how it implies the usual Saito criterion for divisors in projective spaces and give examples.
Theorem 2 is proved in Section 3.2. We complete the paper with Section 3.4 by establishing our last
claim regarding the freeness of certain sequences of algebraically independent homogeneous polynomials
in positive characteristics.

2. Isomorphy criteria for reflexive sheaves

Let X be a smooth connected complete variety over a field k, and consider coherent, torsion-free sheaves
A and B on X of rank a and b respectively. Let α : A Ñ B be a morphism; we say that α has maximal
rank if it is either injective, when a ď b, or generically surjective, when a ě b. In the last case, note that
cokerpαq is a torsion sheaf. We introduce the following notation:

(1) the divisor of a morphism α is defined as

divpαq :“ c1pτpcokerpαqqq P PicpXq,

where τpQq stands for the torsion part of a coherent sheaf Q.
(2) the degeneracy locus of a monomorphism α is defined as

Dpαq :“ Supp
`

Ext1pcokerpαq,OX

˘

,

regarded as a closed subset of X .

Note that divpαq “ 0 if and only if codim
`

Dpαq
˘

ě 2. The nomenclature for Dpαq comes from the
following observation: when A and B are locally free, then

Dpαq “ tp P X | αppq is not injectiveu

where αppq denotes the fiber map Appq Ñ Bppq, thus coinciding with the usual notion for the degeneration
locus of a monomorphism.

The present section aims to prove the following two technical results that will be useful in the main
body of the article. Given divisors D1, D2 P PicpXq, we write D1 ď D2 to express that D1 ´ D2 is not
effective. We assume from now on that α is generically surjective.

Theorem 3. Let F be a reflexive sheaf and consider a monomorphism θ : F Ñ A; assume that a ą b. If
rkpkerpα ˝ θqq “ a ´ b and divpθq ` divpαq ď divpα ˝ θq, then kerpαq » kerpα ˝ θq.

In the previous setting, put L :“ divpαq ` c1pAq ´ c1pFq ´ c1pBq and let L be the associated line bundle.
We then have the following result.
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Theorem 4. Assume that A is locally free. Let F be a locally free sheaf with rkpFq “ a ´ b ´ 1 ą 0 and
assume that h1pFp´Lqq “ 0. If θ : F Ñ A is a monomorphism such that α ˝ θ “ 0 and codim

`

Dpθq
˘

ě 3,
then kerpαq » F ‘ L.

The proofs require a few general, technical lemmas, which we will discuss in the next three subsections.

2.1. An isomorphy criterion. We start with the following lemma, keeping the notation and conventions
provided at the beginning of this section

Lemma 5. Assume that a “ b and that A is reflexive. If I changed the sense of the inequality here!
c1pBq ď c1pAq. Then α is an isomorphism.

Proof. Since rkpAq “ rkpBq and α is injective, cokerpαq is a torsion sheaf, which we assume to be nonzero by
contradiction. The divisorial locus of the support of cokerpαq is of class c1pBq´c1pAq. As this divisor class
is not effective by assumption, we get c :“ codimpcokerpαqq ě 2. It follows that Ext1pcokerpαq,OXq “ 0,
so dualizing the exact sequence:

(1) 0 ÝÑ A
α

ÝÑ B ÝÑ cokerpαq ÝÑ 0,

we get A_ » B_, and exact sequences

Extc´1pA,OXq ÝÑ Extcpcokerpαq,OXq ÝÑ ExtcpB,OXq.

The middle term has codimension equal to c while, according to [HL97, Proposition 1.10],
codimpExtcpB,OXqq ě c ` 1 (because B is torsion free) and codimpExtc´1pA,OXqq ě c ` 1 (because
A is reflexive). This is a contradiction, so we must have cokerpαq “ 0, therefore α is an isomorphism. �

The proof of our next lemma has a similar spirit.

Lemma 6. Assume that a ă b, A is locally free and B is reflexive. If codim
`

Dpαq
˘

ě 3, then cokerpαq is
a reflexive sheaf.

Proof. Under the current assumptions, α is a monomorphism, so we obtain a short exact sequence as in
display (1); dualizing it, we obtain the exact sequence

0 ÝÑ cokerpαq_ ÝÑ B
_ α_

ÝÑ A
_ ÝÑ Ext1pcokerpαq,OXq ÝÑ Ext1pB,OXq ÝÑ 0,

and isomorphisms Extppcokerpαq,OXq » ExtppB,OXq for each p ě 2. By hypothesis,
codimpExt1pcokerpαq,OXqq ě 3; in addition, since B is reflexive, [HL97, Lemma 1.1.10] guarantees that
codimpExtppcokerpαq,OXqq ě p ` 2, thus cokerpαq is a reflexive sheaf. �

2.2. Torsion and torsion-free parts of cokernel sheaves. Another useful general fact is the following.
Let U be a coherent sheaf on X . Recall that τpUq denotes the torsion part of U, namely the maximal
torsion subsheaf of F, so that the quotient Utf :“ U{τpUq is torsion free.

Given a morphism β : U Ñ V between coherent sheaves, we observe that there are induced morphisms
τpβq : τpUq Ñ τpVq and βtf : Utf Ñ Vtf ; in addition, both τpβq and βtf are monomorphisms when β is.
Indeed, the composition

τpUq ãÑ U
β

Ñ V ։ V
tf

vanishes, since it gives a morphism from a torsion sheaf to a torsion-free one. It follows that βpτpUqq Ď τpVq,
thus we get a commutative diagram

0

��

0

��

τpUq

��

τpβq
// τpVq

��

U
β

//

��

V

��

Utf
βtf

//

��

Vtf

��

0 0

(2)
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Finally, if β is injective, τpβq is also injective. It also follows that kerpβtfq is a subsheaf of cokerpτpβqq;
however, the latter is a torsion sheaf, while the former is a torsion-free sheaf, thus, in fact, kerpβtfq “ 0.
We summarize our conclusions in the following statement.

Lemma 7. Let β : U Ñ V be an injective morphism between coherent sheaves on a scheme X. Then there
is an exact sequence

0 ÝÑ cokerpτpβqq ÝÑ cokerpβq ÝÑ cokerpβtfq ÝÑ 0

Proof. As we noted above, if β is injective, then so are τpβq and βtf . The exact sequence is an immediate
consequence of the snake lemma applied to the diagram in display (2). �

2.3. Proof of Theorem 3. The morphisms α and θ induce the following commutative diagram

0

��

0

��

0

��

0 // kerpα ˝ θq //

θ0
��

F //

θ

��

impα ˝ θq //

θ2
��

0

0 // kerpαq // A
α

// B

(3)

where θ0 and θ2 are the naturally induced morphisms. Clearly, θ2 factors through impαq; denote by θ̄2 the
induced morphism impα ˝ θq Ñ impαq. We set

F0 :“ kerpα ˝ θq, E0 :“ kerpαq, F2 :“ impα ˝ θq,

C0 :“ cokerpθ0q, C1 :“ cokerpθq, C2 :“ cokerpθ̄2q

we write the commutative exact diagram

0

��

0

��

0

��

0 // F0
//

θ0
��

F //

θ
��

F2
//

θ̄2
��

0

0 // E0
//

��

A
α

//

��

impαq

��

// 0

0 // C0

γ
//

��

C1
//

��

C2
//

��

0

0 0 0

We apply Lemma 7 to the morphism γ : C0 Ñ C1 induced by the diagram above. Since rkpkerpα ˝ θqq “
rkpkerpαqq, the sheaf C0 is a torsion sheaf, so we get an exact sequence:

0 Ñ C0 Ñ τpC1q Ñ C2 Ñ Ctf
1 Ñ 0,

where the image of the middle map is cokerpτpγqq. Such an image is a torsion sheaf, so it must lie in τpC2q
and we get a quotient sheaf P fitting into:

0 Ñ cokerpτpγqq Ñ τpC2q Ñ P Ñ 0, 0 Ñ P Ñ Ctf
1 Ñ Ctf

2 Ñ 0.

Now P is torsion by the first sequence and torsion-free by the second one so that P “ 0 and cokerpτpαqq »
τpC2q. We get:

(4) c1pE0q ´ c1pF0q “ c1pC0q “ c1pτpC1qq ´ c1pτpC2qq “ divpθq ´ divpθ̄2q.
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Next, we consider the exact commutative diagram

0

��

0

��

F2

��

F2

θ2
��

0 // impαq

��

// B

��

// Q // 0

0 // C2

β
//

��

R //

��

Q // 0

0 0

Here, β is defined by the diagram and we set

R :“ cokerpθ2q » cokerpα ˝ θq and Q :“ cokerpαq;

the isomorphism above comes from the rightmost column of the diagram in display 3. We apply again
Lemma 7, this time to β, and get an exact sequence

0 Ñ τpC2q Ñ τpRq Ñ Q Ñ cokerpβtfq Ñ 0,

the image of the middle map being cokerpτpβqq. Since this image is a torsion sheaf, it must be contained
in τpQq, the quotient being a torsion sheaf that we denote by S, fitting into:

0 Ñ cokerpτpβqq Ñ τpQq Ñ S Ñ 0.

Since S is a torsion sheaf, c1pSq is effective and ´c1pSq is not. We get :

(5) divpθ̄2q “ c1pτpC2qq “ c1pτpRqq ´ c1pτpQqq ` c1pSq “ divpθ2q ´ divpαq ` c1pSq.

Plugging into (4), using the assumption divpθq ` divpαq ´ divpα ˝ θq ď 0 and the fact that divpθ2q “
divpα ˝ θq while ´c1pSq is not effective, we obtain:

c1pE0q ´ c1pF0q “ divpθq ` divpαq ´ divpα ˝ θq ´ c1pSq ď 0

Therefore, θ0 is an isomorphism by Lemma 5.
This concludes the proof of Theorem 3. l

2.4. Proof of Theorem 4. Since α ˝ θ “ 0, we obtain an induced monomorphism θ0 : F Ñ E0, where
E0 “ kerpαq, and the following exact commutative diagram

0

��

0

��

0 // F //

θ0
��

F

θ
��

0 // E0
//

��

A
α

//

��

B

0 // L //

��

cokerpθq //

��

B

0 0

(6)

where L :“ cokerpθ0q. By Lemma 6, cokerpθq is a reflexive sheaf. It follows that L is the kernel of a
morphism from a reflexive sheaf to a torsion-free sheaf, thus L is a reflexive sheaf [OSS80, Lemma 1.1.16].
Since, in addition, rkpLq “ 1, we conclude that L is a line bundle [OSS80, Lemma 1.1.15]. Note that

L » detpFq´1 b detpE0q » detpFq´1 b detpAq b detpBq´1 b divpαq

The leftmost column displays E0 as an extension of L by F. But Ext1pL,Fq “ H1pF b L´1q “ 0 by
hypothesis, so in fact E0 » F ‘ L. l
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2.5. Characterizing the divisor of a morphism. Let θ : F Ñ A be a monomorphism and set r “ rkpFq;
assume that A is a locally free sheaf such that

Źr
A is isomorphic to a direct sum of line bundles. The

following lemma shows that, under these hypotheses, an equation defining the divisor representing divpθq
can be computed as the greatest common divisor of the entries of the maximal exterior power

Ź

θ of θ:

r
ľ

θ :“
r

ľ

F__ » detpFq ÝÑ
r

ľ

A »
k

à

i“1

Mi, Mi P PicpXq, k :“

ˆ

a

r

˙

.

To be more precise, note that
Ź

θ is given by a k-tuple g “ pg1, . . . , gkq with each gj being a global
section of Mj b detpFq_. A common divisor of g is a global section h of L P PicpXq such that gj “ h ˝ qj
for each j “ 1, . . . , k and for some global section qj P H0pL_ b Mj b detpFq_q; in other words, we have
the diagram:

OX
h

//

gj

##

L
qj

// Mj b detpFq_ .

In particular, if A also has rank equal to r, then
Ź

θ is just a single section of detpAq b detpFq_, so
gcdp

Ź

θq is simply detpθq.

Lemma 8. Let F be a torsion-free of rank r and A be a locally free sheaf such that
Źr

A is isomorphic to
a direct sum of line bundles. If θ : F Ñ A is a monomorphism, then:

i) cokerpθq is torsion free if and only if gcdp
Ź

θq P k
ˆ.

ii) More generally, divpθq ” Vpgcdp
Ź

θqqq.

Proof. Set Q :“ cokerpθq. For the first claim, dualize the short exact sequence

0 ÝÑ F
θ

ÝÑ A ÝÑ Q ÝÑ 0

to obtain

0 ÝÑ Q_ ÝÑ F_ θ_

ÝÑ A_ ÝÑ Ext1pQ,OXq ÝÑ 0,

and ExtcpQ,OPnq » Extc`1pF,OPnq for p ě 1. In addition, note that

V
`

ľ

θ
˘

“ Supppcokerpθ_qq “ SupppExt1pQ,OPnqq.

If Q is torsion-free, then codimSupppExt1pQ,OXqq ě 2, thus V
`

Ź

θ
˘

does not contain a hypersurface,
thus gcdp

Ź

θq P k
ˆ.

Conversely, if gcdp
Ź

θq P k
ˆ, then codimV

`
Ź

θ
˘

ě 2, and it follows that codimExtcpQ,OXq ě c ` 1
for every c ą 0, so Q is torsion free, see [HL97, Proposition 1.10].

Let us now check the second statement. Let F1 denote the kernel of the composed epimorphism

A ։ cokerpθq ։ cokerpθqtf ;

note that it fits into the following short exact sequence

0 ÝÑ F ÝÑ F1 ÝÑ τpcokerpθqq ÝÑ 0,

so that

divpθq “ c1pτpcokerpθqqq “ c1pF1q ´ c1pFq.

Write θ1 : F1 ãÑ A the induced inclusion and consider the commutative square:

F

��

θ
// A

F1 θ1

// A

(7)

It yields, after taking maximal exterior powers and double duals, the diagram

Źr
F__

g
��

Ź

θ
//
Źr

A

Źr
pF1q__

Ź

θ1

//
Źr

A

(8)



A GENERALIZED SAITO FREENESS CRITERION 7

Note that g is an injective morphism between line bundles, so its cokernel is a torsion sheaf supported
on a divisor of class divpθq, as:

c1

˜

r
ľ

pF1q__

¸

´ c1

˜

r
ľ

F
__

¸

“ c1pF1q ´ c1pFq “ divpθq.

Since
Ź

θ “ g ¨
Ź

θ1 and cokerpθ1q “ cokerpθqtf is a torsion free sheaf, we have that gcdp
Ź

θ1q P k
ˆ thus

g “ gcdp
Ź

θq, and the second claim follows. �

Lemma 8 allows us to check that the converse of Theorem 3 is not generally true.
To see this, take X “ P

2, A “ O
‘3
P2 , B “ OP2p1q‘2 let α be the morphism given by the matrix

α “

ˆ

x1 x0 0
x2 0 x0

˙

where px0, x1, x2q are homogeneous coordinates in P
2; the second part of Lemma 8 yields divpαq – Vpx0q.

In addition, one can check that kerpαq » OP2p´1q (it must be a reflexive rank 1 sheaf with c1 “ ´1).
Now let F “ OP2p´1q‘2 and consider the morphism θ : F Ñ A given by the matix

θ “

¨

˝

x0 x0

´x1 x1

´x2 x2

˛

‚.

It is easy to see that kerpα ˝ θq “ OP2p´1q, so it is isomorphic to kerpαq. However, one can check that
divpθq – divpα ˝ θq – Vpx0q so the inequality in the hypothesis of Theorem 3 is not satisfied.

We conclude this section by showing that a converse to Theorem 3 can be obtained after an additional
condition on divpϕq is assumed.

Proposition 9. Let F be a reflexive sheaf and consider a monomorphism θ : F Ñ A; assume that a ą b.
If the natural monomorphism ι : kerpαq ãÑ A factors through θ and divpαq “ 0, then divpθq “ divpα ˝ θq.

Proof. Fix the following notation

E0 :“ kerpαq, F2 :“ impα ˝ θq, C “ cokerpθq, and R “ cokerpα ˝ θq.

The condition of the statements yields the following exact commutative diagram

0

��

0

��

0 // E0
// F //

θ

��

F2
//

θ2
��

0

0 // E0
// A

α
//

��

B

��

C
γ

//

��

C2

��

0 0

(9)

Here, the morphisms θ2 and γ being induced by the diagram. In addition, notice that kerpαq » kerpα˝θq.
It follows that γ is a monomorphism and cokerpγq » cokerpαq.

Applying the arguments of Section 2.2, we obtain a monomorphism τpγq : τpCq ãÑ τpRq whose cokernel
is a subsheaf of cokerpαq. Since divpαq “ 0, codim cokerpαq ě 2, thus c1pτpCqq “ c1pτpRqq, which can be
translated into the equality divpθq “ divpα ˝ θq. �
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3. Applications to freeness

In this section we develop the main applications of our the results of the previous section, mostly in the
direction of showing that some divisors or more generally some algebraically independent sequences give rise
to reflexive, locally free, or free sheaves of logarithmic derivations, one of the most natural generalizations
of the idea of free divisor being that the sheaf of logarithmic derivations along a divisor splints as a direct
sum of line bundles.

In the next subsection we spell out the Saito criterion for reduced divisors of a smooth complete variety
X and recall how Saito’s global criterion for divisor in P

n fits our discussion. Then, in §3.2 we look
at a particular class of divisor of blow-ups at points. In §3.3 we apply our method to study freeness of
logarithmic sheaves attached to algebraically independent families on P

n. Finally in §3.4 we point out a
result on freeness in positive characteristic.

3.1. Saito criterion for hypersurfaces. We now explain how Theorem 14 gives a Saito criterion for
hypersurfaces of a given variety X .

Let X be a smooth connected complete variety of dimension n over a field k. Let D be a geometrically
reduced divisor of X , defined by an equation f P H0pOXpDqq. We consider the logarithmic tangent sheaf
TXxDy defined as kernel of the natural composition:

τD : TX Ñ TX |D Ñ ODpDq.

Let F be a reflexive sheaf of rank n and consider an injective map θ : F Ñ TX .

Proposition 10. Assume that τD ˝ θ “ 0. Then detpθq “ λf , with λ P k
ˆ if and only if θ induces an

isomorphism F » TXxDy. This happens if and only if divpθq ď D.

Proof. Since TXxDy “ kerpτDq and τD ˝ θ “ 0, we get an induced map θ0 : F Ñ TXxDy. The map θ0
is still injective, it is thus of maximal rank, hence by Lemma 5, θ induces an isomorphism if and only
if c1pFq ě c1pTXxDyq “ c1pXq ´ D, i.e. if and only if divpθq “ c1pXq ´ c1pFq ď D. Note that detpθq
vanished along D, hence f divides detpθq and there is an effective divisor D’ and g P H0pOXpD1qq such
that detpθq “ fg. Hence divpθq “ D ` D1. Then D1 is empty if and only if g is a nonzero constant, which
happens if and only if divpθq ď D. �

Example 11. Let X1, . . . , Xm be smooth complete varieties, and for 1 ď i ď m, let Di be a reduced
effective divisor in Xi. Set X “ X1 ˆ ¨ ¨ ¨ ˆ Xm, let pi : X Ñ Xi be the i-th projection, put Fi “ p˚

i pDiq,
for 1 ď i ď m and consider F “ F1 Y ¨ ¨ ¨ Y Fm. Taking θ to be diagonal map whose blocks are pull-backs
of the obvious injection TXi

xDiy Ñ TXi
and applying the proposition, we get

TXxF y “
à

1ďiďm

π˚pTXi
xDiyq.

Hence, if Di is free for all 1 ď i ď m, then F is also free. For instance when dimpXiq “ 1 for all 1 ď i ď m:

TXxF y “
à

1ďiďm

π˚pω_
Xi

p´Diqq.

Example 12. Let E be a p´1q-curve on a smooth complete surfaceX . Blowing down E we get a morphism
π to a smooth complete surface Y . Multiplying by E gives a map π˚pTY qp´Eq Ñ π˚pTY q that factors
through TX . We get a map θ : π˚pTY qp´Eq Ñ TX and we compute divpθq “ E, hence by the proposition

TXxEy » π˚pTY qp´Eq.

Therefore, E is free for instance when Y is an abelian surface or a product of smooth projective curves.

3.2. Blow-ups. Let C be a hypersurface of a smooth complete variety Y and

p1, . . . , pk P Y z SingpCq.

Consider the blow-up π : X Ñ Y of Y at p1, . . . , pk and let E1, . . . , Ek be the exceptional divisors of X
lying over p1, . . . , pk and E “ E1 Y ¨ ¨ ¨ Y Ek. Let C̃ Ă X be the strict transform of C and consider the
hypersurface

D “ C̃ Y E Ă X.
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Theorem 13. We have an exact sequence

0 Ñ π˚pTY xCyqp´Eq Ñ TXxDy Ñ
à

piPC

OEi
Ñ 0.

In particular, if p1, . . . , pk lie away from C, then TXxDy » π˚pTY xCyqp´Eq, so that if C is free, then D

is free.

Proof. Let n “ dimpXq. Taking differentials of π gives the exact sequence

0 Ñ TX Ñ π˚pTY q Ñ TEp´1q Ñ 0,

where OEp1q is the taugological ample bundle of E and we consider TEp´1q as extended by zero to X .
The equisingular normal bundle N1

C , namely the subsheaf of the normal bundle NC locally defined by the
partial derivatives of a defining equation of C Ă Y , fits into:

0 Ñ TY xCy Ñ TY Ñ N1
C Ñ 0.

Assume first that the points p1, . . . , pk lie away from C so C̃ “ π˚pCq. Then we have

0 Ñ OEp´1q Ñ N
1
D Ñ π˚pN1

Cq Ñ 0.

We get an exact commutative diagram:

(10) 0

��

// OEp´1q

��

// TXxDy //

��

π˚pTY xCyq

��

// O
‘n
E

//

��

0

0 //

��

TX

��

// π˚pTY q

��

// TEp´1q

��

// 0

OEp´1q // N1
D

��

// π˚pN1
Cq //

��

0

0 0

Now, since π is constant on E, the restriction of π˚pTY xCyq to each component Ei of E is a trivial vector
bundle, whose rank equals the rank ni ě n of TY xCy at the point pi, for i “ 1, . . . , k. Then, tensoring by
π˚pTY xCyq the exact sequence

0 Ñ OXp´Eq Ñ OX Ñ OE Ñ 0,

we get

(11) π˚pTY xCyqp´Eq » ker

˜

π˚pTY xCyq Ñ
k

à

i“1

O
‘ni

E

¸

.

For all i “ 1 . . . , k, since ni ě n, we may define a surjective map O
‘ni

E Ñ O
‘n
Ei

. This gives rise to a

surjection
Àk

i“1 O
‘ni

E Ñ O
‘n
Ei

and thus, comparing (11) the second row of (10), yields an injective map

θ : π˚pTY xCyqp´Eq Ñ TXxDy

Note that these two sheaves are reflexive of rank n. We compute:

divpθq “ c1pTXxDyq ´ c1pπ˚pTY xCyqp´Eqq “ c1pXq ´ D ´ pπ˚pc1pY q ´ Cq ´ nEq “

“ π˚pc1pY qq ´ pn ´ 1qE ´ π˚pCq ´ E ´ pπ˚pc1pY q ´ Cq ´ nEq “ 0.

Therefore, the proof of Theorem 3 applies to show that θ is as isomorphism.
Now we treat the case that one of the points p1, . . . , pk, say p “ pi lies in Cz SingpCq. The general

case, with say j points in Cz SingpCq and k ´ j in XzC, is analogous. For the sake of the proof we may
even assume that k “ 1 so E “ Ei » P

n´1. Since p lies in the smooth locus of C, we have a surjection
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N_
p{Y Ñ N_

p{C , which induces an embedding EC,p :“ PpN_
p{Cq » P

n´2 Ă E “ PpN_
p{Y q. Observe that

D “ E Y C̃, EC,p “ E X C̃ and that the divisor EC,p of E lies in the |OEp1q|, so that we have:

0 Ñ OEp´1q Ñ OD Ñ OC̃ Ñ 0.

Since D ” C̃ ` E ” π˚pCq and E X C̃ P |OEp1q|, so that OXpEq restricts trivially to D, we have

ND » ODpDq » ODpC̃q. So twisting the above sequence by OXpC̃q we get, since OC̃pC̃q:

0 Ñ OE Ñ ND Ñ NC̃ Ñ 0.

Also, the Jacobian subscheme of D is the disjoint union of Ep and the pull-back of the Jacobian subscheme
of C via π, more precisely, we have a commutative exact diagram:

0

��

π˚pN1
Cq

��

ND
»

//

��

π˚pNCq //

��

0

0 // OEC,p
// T1

D
// π˚pT1

Cq

��

// 0

0

where TC̃ and T1
D are the singular tangent sheaves of C and D, see [Ser06, Chapter 3].

Since ND » π˚pNCq, instead of (10) we get:

0

��

0

��

0

��

0 // TXxDy //

��

π˚pTY xCyq

��

// O
‘pn´1q
E

//

��

0

0 // TX

��

// π˚pTY q

��

// TEp´1q

��

// 0

0 // N1
D

��

// π˚pN1
Cq //

��

OE
//

��

0

0 0 0

As in the proof of the previous case, we get an injective map θ : π˚pTY xCyqp´Eq Ñ TXxDy, whose cokernel
fits as kernel of a surjection O

‘ni

E Ñ OE . Comparing first Chern classes we find ni “ n for all i P t1, . . . , ku
such that pi lies in C, which proves the desided exact sequence. �

3.3. Free sequences on projective spaces. In this part, we fix X “ P
n “ Proj

`

krx0, . . . , xns
˘

for some

field k. Set A “ O
‘r
Pn and B “

Àk
i“1 OPnpdiq, with r ą k. By our hypothesis at the beginning of Section

2, kerpαq is a reflexive sheaf of rank r ´ k. In addition, consider the following ingredients

(1) a reflexive sheaf F0 of rank r ´ k together with a morphism ν : F0 Ñ O
‘r
Pn such that α ˝ ν “ 0;

(2) a reflexive sheaf F2 together with a morphism γ : F2 Ñ O
‘r
Pn such that α ˝ γ is a monomorphism.

With these elements in mind, we set F “ F0 ‘ F2 and consider the morphism

θ : F0 ‘ F2 ÝÑ O
‘r
Pn , θ :“ ν ‘ γ.

These conditions imply that kerpα ˝ θq » F0, leading to a morphism θ0 : F0 Ñ kerpαq such that ν “ ι ˝ θ0,
where ι : kerpαq ãÑ O

‘r
Pn is natural the inclusion. Moreover, impα ˝ θq » F2.
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The framework described above can be summarized in the following commutative diagram, which is to
be compared with the diagram in display (3) with θ2 “ α ˝ γ:

0

��

0 // F0

θ0
��

// F

θ
��

// F2

α˝γ
��

// 0

0 // kerpαq
ι
// O

‘r
Pn

α
//

Àk
i“1 OPnpdiq

(12)

leading to the following statement.

Theorem 14. Fix the setup as above. There is a homogeneous polynomial h P krx0, . . . , xns such that

gcd
´

ľ

θ
¯

¨ gcd
´

ľ

α
¯

“ h ¨ gcd
´

ľ

pα ˝ γq
¯

.

If h P k
ˆ, then θ0 is an isomorphism.

Proof. Following the argument in the proof of Theorem 3, we obtain

divpαq ` divpθq “ divpα ˝ γq ` divpθ0q.

The desired equality is obtained by setting h :“ gcd
`

Ź

θ0
˘

and invoking the second part of Lemma
8. When h P k

ˆ, then the first part of Lemma 8 implies that cokerpθ0q is a torsion-free sheaf; how-
ever, rkpcokerpθ0qq “ rkpkerpαqq ´ rkpF0q “ 0 by hypothesis, implying that cokerpθ0q “ 0, thus θ0 is an
isomorphism. �

As an application of the previous statement, we will take α as the Jacobian matrix associated with a
sequence σ “ pf1, . . . , fkq of algebraically independent homogeneous polynomials in krx0, . . . , xns; assume
that charpkq does not divide degpfiq for i “ 1, . . . , k and set di :“ degpfiq ´ 1.

In [FJV21] the authors considered the Jacobian matrix ∇pσq, whose ith line consists of the partial
derivatives of the polynomial fi, as a morphism

∇pσq : O‘n`1
Pn ÝÑ

k
à

i“1

OPnpdiq;

the reflexive sheaf Tσ :“ kerp∇pσqq is called the logarithmic tangent sheaf associated with the sequence
σ. Note that the hypothesis that the polynomials pf1, . . . , fkq are algebraically independent implies that
∇pσq has maximal rank, so that rkpTσq “ n ´ k ` 1.

When k “ 1, so that σ consists of a single polynomial f , we get back Tfp1q » TPnxDy where D “ Vpfq.
In this situation, the usual Saito criterion for the freeness of divisors in projective spaces can be recovered
as a particular case of Theorem 14.

Indeed, let f P krx0, . . . , xns be a square-free homogeneous polynomial of degree coprime to charpkq.
We consider n Jacobian syzygies, namely a map

ν : F0 “
n

à

i“1

OPnp´ejq Ñ O
‘n`1
Pn , with ∇pfq ˝ ν “ 0.

Set F “ F0 ‘ OPnp´1q, let γ : OPnp´1q Ñ O
‘n`1
Pn be the Euler matrix and define θ “ pν|γq : F Ñ O

‘n`1
Pn .

Lemma 15 (Saito criterion on P
n). Fix the setting as above. Then there is a polynomial h such that

detpνq “ hf . Moreover TXxDy » F0 if and only if h P k
ˆ.

Proof. In the notation of Theorem 14, F2 :“ OPnp´1q and α ˝ γ “ degpfq ¨ f , which follows by the Euler
identity. Since charpkq does not divide degpfq, α ˝ γ is injective. The morphism θ is the Saito matrix: a
pn`1qˆpn`1q matrix whose columns are syzygies of∇pfq plus the Euler derivation. Since f is square-free,
we have that gcd

`
Ź

α
˘

P k
ˆ. The equality in the statement of Theorem 14 reduces to detpθq “ h ¨ f for

some homogeneous polynomial h, as expected. In addition, if h P k
ˆ, then the assertion of Theorem 14

says that TPnxDy »
Àn

j“1 OPnp´ejq, that is, D is free. Finally, note that the converse claim, namely if

TPnxDy splits as a sum of line bundles, then detpθq “ λf for some λ P k
ˆ, follows from Proposition 9. �
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Returning to the case k ě 2, we say that an algebraically independent sequence σ is free if Tσ splits
as a sum of line bundles. We now apply Theorem 14 to three situations involving several homogeneous
polynomials, providing new examples of free sequences of homogeneous polynomials in krx0, . . . , xns.

Example 16. Consider P
2k`1 “ Proj

`

krx00, x01, . . . , xk0, xk1s
˘

, and let fi “ fipxi0, xi1q be a homoge-
neous, square-free polynomial of degree di ` 1 depending only of the variables xi0 and xi1. We argue that

the sequence σ “ pf1, . . . , fkq is free, and Tσ “
Àk

i“0 OP2k`1p´diq.
Indeed, the Jacobian matrix has the following shape

α :“ ∇pσq “

¨

˚

˚

˚

˝

B0f0 B1f0 0 0 ¨ ¨ ¨ 0 0
0 0 B0f1 B1f1 ¨ ¨ ¨ 0 0
...

...
...

...
...

...

0 0 0 0 ¨ ¨ ¨ B0fk B1fk

˛

‹

‹

‹

‚

: O
‘2k`2
P2k`1 Ñ

k
à

i“0

OP2k`1pdiq

where Bjfi :“ Bfi{Bxij for j “ 0, 1. We then consider the morphism

ν :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B1f0 0 ¨ ¨ ¨ 0
´B0f0 0 ¨ ¨ ¨ 0

0 B1f1 ¨ ¨ ¨ 0
0 ´B0f1 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ B1fk
0 0 ¨ ¨ ¨ ´B0fk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

:
k

à

i“0

OP2k`1p´diq Ñ O
‘2k`2
P2k`1

so that α ˝ ν “ 0.
We set G :“ OPnp´1q‘k`1 and let γ be the morphism,

γ :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x00 0 ¨ ¨ ¨ 0
x01 0 ¨ ¨ ¨ 0
0 x10 ¨ ¨ ¨ 0
0 x11 ¨ ¨ ¨ 0
...

...
...

0 0 ¨ ¨ ¨ xk0

0 0 ¨ ¨ ¨ xk1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

: OP2k`1p´1q‘k`1 Ñ O
‘2k`2

P2k`1

thus α ˝ γ is a diagonal pk ` 1q ˆ pk ` 1q matrix whose entries are
´

pd0 ` 1qf0 ¨ ¨ ¨ pdk ` 1qfk

¯

.

The morphism θ :“ ν ‘ γ is then given by a p2k ` 2q ˆ p2k ` 2q matrix which, after re-arranging its
columns, becomes block-diagonal with 2 ˆ 2 blocks of the form

ˆ

B1fi xi0

´B0fi xi1

˙

.

It follows that

gcd
´

ľ

pα ˝ γq
¯

“ detpα ˝ γq “ Πk
i“0pdi ` 1qfi “ detpθq “ gcd

´

ľ

θ
¯

Since gcd
`

Ź

α
˘

P k
ˆ (because each fi is square-free), Theorem 14 implies that Tσ »

Àk
i“0 OP2k`1p´diq,

as desired.

Example 17. More generally, given a partition of n as n “ n0 ` ¨ ¨ ¨ ` ns, with ni ě 1 we may take
variables :

x0,0, . . . , x0,n0
, . . . , xi,0, . . . , xi,ni

, . . . xs,0, . . . , xs,ns
,

and homogeneous polynomials

σ “ pf1,1, . . . , f1,k1
, . . . , fs,1, . . . , fs,ks

q,
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such that, for all i P t1, . . . , su, we have:

fi,1, . . . , fi,ki
P krxi,0, . . . , xi,ni

s,

If σ is algebraically independent then also σi “ fi,1, . . . , fi,ki
is algebraically independent for all i P

t1, . . . , su. Then, for all i P t1, . . . , su we may consider the sheaf Tσi
on the linear space Pni defined by the

equations xj,k “ 0 for all j ‰ i and k P t0, . . . , nku. Such sheaf has a unique lift T̂σi
to P

n, which is locally
free at Pni if and only if Tσi

is free. The module associated with such sheaf has the same presentation as
the module associated with Tσi

, with only the variables xi,0, . . . , xi,ni
showing up. On the other hand, the

sheaf T̂σi
is obtained via pull-back and direct image of Tσi

by the blow-up diagram:

P
ni Ð P̂

ni

Ñ P
n,

where P̂
ni

is the blow-up of Pn at the linear space defined by xi,0 “ ¨ ¨ ¨ “ xi,ni
“ 0. Then our main result

implies:

Tσ » ‘s
i“1T̂σi

Example 18. Let us work in characteristic zero. Let C Ă P
d be a rational normal curve and consider its

tangent developable surface X , namely the union of tangent projective lines to C. This is a non-normal
surface of degree 2d ´ 2, singular along C. According to [AFP`19], one has ωX » OX and the minimal
graded free resolution of the ideal of X in P

d is understood.

‚ For d “ 3, an equation of X is :

σ “ px2
0x

2
1 ´ 4x3

0x2 ´ 4x3
1x3 ` 6x0x1x2x3 ´ x2

2x
2
3q

Then X is free, Tσ » O3
P3p´1q and with Saito matrix:

¨

˚

˚

˝

x3 x0 2x1

2x0 ´x1 x2

3x1 ´3x2 0
0 3x3 3x0

˛

‹

‹

‚

Stacking the column vector of indeterminates to the left of the above matrix and taking the
determinant gives 6σ.

‚ For d “ 4, X is a complete intersection of a quadric and a cubic, we may take:

σ “ pf, gq “ px2
2 ´ 2x1x3 ` 2x0x4, 2x

3
2 ´ 6x1x2x3 ` 9x0x

2
3 ` 6x2

1x4 ´ 12x0x2x4q.

Then we get Tσ » O3
P4p´1q and a matrix of syzygies of ∇pσq is:

¨

˚

˚

˚

˚

˝

2 x1 2 x0 0
3 x2 x1 x0

3 x3 0 x1

2 x4 ´x3 x2

0 ´2 x4 x3

˛

‹

‹

‹

‹

‚

Note however that X is not strongly free, as one could also take

σ1 “ pf, x0f ` gq.

as system of minimal generators of the ideal of X , and check that Tσ1 has a minimal graded free
resolution of the following form:

0 Ñ OP4p´5q Ñ OP4p´4q‘5 Ñ OP4p´3q‘5 ‘ OP4p´2q ‘ OP4p´1q Ñ Tσ1 Ñ 0

‚ For d “ 5, X is a surface of degree 8 which is the intersection of 3 quadrics in P
5, defining a web

σ. Direct computation with Macaulay 2 tells us that the sheaf Tσ is simple and fits into an exact
sequence:

0 Ñ OP5p´5q‘6 Ñ OP5p´4q‘18 Ñ OP5p´3q‘15 Ñ Tσ Ñ 0.

‚ For d “ 6, X is a surface of degree 10 in P
6 whose ideal is generated by 6 algebraically independent

quadrics. We get Tσ » OP6p´6q.
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‚ For d ě 7, X is generated by quadrics. The Jacobian of a system σ of quadric generators of the
ideal of X is injective. Hence Tσ “ 0.

3.4. Freeness for positive characteristics. In the same context as in the previous section, take a
sequence σ “ pf1, . . . , fn´1q of algebraically independent homogeneous polynomials in krx0, . . . , xns.

Theorem 19. If charpkq divides degpfiq for each i “ 0, . . . , n ´ 1, then Tσ » OPnp´1q ‘ OPnp´dq with

d “
n´1
ÿ

i“1

degpfiq ´ pn ´ 1q ´ deg
´

gcd
`

ľ

∇pσq
˘

¯

` 1.

Proof. Define the following:

E1 “ O
‘pn`1q
Pn , E2 “

n´1
à

i“1

OPnpdegpfiq ´ 1q, F “ OPnp´1q,

ϕ “ ∇pσq, θ “ px0 ¨ ¨ ¨ xnq.

Since charpkq divides degpfiq, we have that
n

ÿ

j“0

xjBjfi “ 0, for each i P t1, . . . , n ´ 1u,

therefore ∇pσq ˝ θ “ 0. In addition, note that Dpθq “ H. Therefore, we can apply Theorem 4 to conclude:

Tσ » OPnp´1q ‘ OPnp´dq.

�
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